稻瘟病菌相关致病基因MgATG3、MgATG4和MgATG7的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是水稻上重要的病害之一,其病原菌为子囊菌Magnaporthe grisea。了解M.grisea的致病机理不仅有利于稻瘟病的防治,而且作为研究植物病原真菌与寄主互作的理想模式系统,对于了解其它真菌的致病机理也有重要意义。
     细胞自噬广泛存在于真核细胞内,在饥饿条件下,它可以调节细胞内长寿蛋白和细胞器的降解,降解产物再被细胞重新利用。因此,真核生物在分化和发育的过程中,细胞自噬过程被认为与细胞的形态建成相关,在细胞器和蛋白质周转的过程中发挥重要作用。
     本文克隆了稻瘟病菌中的自噬基因MgATG3、MgATG4和MgATG7,通过基因取代的方法分析了MgATG4基因在稻瘟病菌致病性及其他相关过程的作用。具体研究结果如下:
     1.利用酵母中ATG3、ATG4和ATG7基因序列,在稻瘟病菌中找到同源基因,定名为MgATG3、MgATG4和MgATG7。
     2.通过构建MgATG3、MgATG4和MgATG7基因置换载体和敲除转化,得到MgATG4 Knock-out突变子。通过PCR和Southern杂交分析鉴定出2个Knock-out突变子,明确MgATG4在Guy11菌株中为单拷贝。
     3.⊿MgATG4突变子的菌落形态与野生型不同,生长速度无明显改变。在N饥饿,C饥饿,高渗(1M NaCl)胁迫条件下的菌落形态,生长速度与野生型比较无明显差异。
     4.⊿MgATG4产孢能力下降,萌发速度与野生型相比明显减缓。⊿MgATG4突变子对大麦的致病力比野生型大大下降。
     5.MgATG4基因PBNEATG4荧光蛋白表达载体的设计和构建。
Magnaporthe grisea is an important ascomycete that causes rice blast. Studying of the disease-caused basis of M. grisea is not only beneficial for rice blast control, but also serve as a model for revealing other fungal pathogen-plant interactions.
     Autophagy is a ubiquitous process that degrades and recycles long-lived proteins and organelles under starvation in all eukaryotic cells. So autophagy has been presumed to be involved in cellular architectural changes that occur during differentiation and development, presumably via its role in organelle and protein turnover.
     In this study, MgATG3, MgATG4 and MgATG7 genes from M. grisea were cloned. The role of MgATG4 in pathogenicity was analyzed by targeted gene replacement. The results are showed as follows:
     1. Using the sequence of ATG3、ATG4 and ATG7 genes in yeast , we found the homologous sequence from M. grisea genome databases, named as MgATG3、MgATG4 and MgATG7.
     2. MgATG3、MgATG4 and MgATG7 genes replacement vector were constructed, and hygromycin-resistance transformants were obtained by MgATG4 gene fungal transformation. Knockout mutants were identified by PCR and Southern blot. Single copy was detected by genomic Southern blot in the genome of Guy11 for MgATG4 gene.
     3. Compared to Guy11, the colony modality ofΔMgATG4 was much different. The growth rate of the mutants on CM, CM-C, CM-N and CM with 1M NaCl had no obvious change.
     4. Conidia germination and appressoria formation of mutantΔMgATG4 was suppressed, compared to wild type. The pathogenicity ofΔMgATG4 mutant was partially reduced on barley.
     5. MgATG4 eGFP fusion expressing vectors, named as PBNEATG4, is constructing.
引文
1. Abeliovich, H. (2004). Regulation of autophagy by the Target of Rapamycin (Tor) proteins. In Autophagy, D.J. Klionsky, ed. (Georgeand town, TX: Landes Bioscience), pp. 60-69.
    2. Adachi K, Hamer JE, 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell, 10: 1361-1373.
    3. Alan IP, Kim S, Choi WB, Lee YH, 2003. Calcium restores prepenetration morphogenesis abolished bypolyamines in Colletotrichum gloeosporioides infecting red pepper. FEMS Microbiology Letters, 227: 237-241.
    4. Alspaugh JA, Perfect JR, Heitman J, 1998. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genetics and Biology, 25:1-14.
    5. Baker B, Zambryski P, Staskawicz B, Dinesh~Kumar SP, 1997. Signaling in Plant Microbe Interactions. Science, 276: 726-733.
    6. Balhadere PV, and Talbot, NJ, 2001. PDE1 encodes a p-type Atpase involved in appressorium~mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 13, 1987-2004.
    7. Balhadere PV, Foster AJ, Talbot NJ, 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Molecular Plant Microbe Interaction, 12: 129-142.
    8. Balhadere PV, Foster AJ, Talbot NJ, 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Molecular Plant Microbe Interaction, 12: 129-142.
    9. Balhadere PV, Talbot NJ, 2002. A Magnaporthe grisea Cyclophilin acts as a Virulence Determinant during Plant Infection. Plant Cell, 14: 917-930.
    10. Beckerman JL, Ebbole DJ, 1996. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Molecular Plant-Microbe Interaction, 9: 450-456.
    11. Bolker M, 1998. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology, 25: 143-156.
    12. Bourett TM, Howard RJ, 1990. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Canadian Journal of Botany, 68: 329-342.
    13. Choi WB, Dean RA, 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 9: 1973-1983.
    14. Chumley FG, Valent B, 1990. Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Molecular Plant~Microbe Interaction, 3: 135-143.
    15. Claire VF, Barooah M, Egan M, Wakley G, Talbot NJ, 2006. Autophagic fungal cell death is necessary for infenction by the rice blast fungus. Science, 312: 580-583.
    16. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH, 2001. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA, 98: 6963-6968.
    17. De Jong JC, Mccormack J, Sminoff N, Talbot NJ, 1997. Glycerol generates turgor in rice blast. Nature 389: 244-255.
    18. Dean RA, 1997. Signal pathways and appressorium morphogenesis. Annual Review of Phytopathology, 35: 211-234.
    19. Dean RA., Talbot NJ, Ebbole DJ, Farman mI, Mitchell1TK, Orbach MJ, Thon M, Kulkarni R, Xu J, Pan H, Read ND, Lee Y, Carbone I, Brown D, OYee Y, Donofrio N, Jeong JS, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L, Nico R, Purcell S, Nusbaum C, Galagan JE, Birren BW, 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434 (21): 980-86.
    20. Deising HB, Werner S, Wernitz M, 2000. The role of fungal appressoria in plant infection. Microbes and Infection, 2: 1631-1641.
    21. DeZwaan TM, Carroll AM, Valent B, Sweigard JA, 1999. Magnaporthe grisea pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 11: 2013-2030.
    22. Dickman MB, Yarden O, 1999. Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genetic Biology, 26: 99-117.
    23. Dixon KP, Xu JR, Smirnoff N, Talbot NJ, 1999. Independent signalling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 11: 2045-2058.
    24. Ekwamu A, 1991. Influence of head blastinfection on seed germination and yieldcomponents of finger millet (Eleusinecoracana L. Gaertn) Trop. Pest Management, 37: 122-23.
    25. Fujimoto D, Shi Y, Chistian D, Mantanguihan JB, Leung H, 2002. Tagging quantitative loci controlling pathogenicity in Magnaporthe grisea by insertional mutagenesis. Physiological and Molecular Plant Pathology, 61(2): 77-88.
    26. Gilbert RD, Johnson AM, and Dean RA, 1996. Chemical signals responsible for appressorium formation in the rice blast fungus. Physiological and Molecular Plant Pathology, 48: 335-346.
    27. Gustin MC, Albertyn J, Alexander M, K Davenport, 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62: 1264-1300.
    28. Hamer JE, Givan S, 1990. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Molecular Genetics and Genomics,, 223: 487-495.
    29. Hamer JE, Valent B, Chumley F G, 1989. Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics, 122: 351-361.
    30. Hamer JE and Talbot NJ, 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Current Opinions on Microbiology, 1: 693-697.
    31. Hamer JE, Howard R J, Chumley FG, Valent B, 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science, 15: 288-290.
    32. Hegde Y, Kolattukudy PE, 1997. Cuticular waxes relieve self-inhibition of germinationand appressorium formation by the conidia of Magnaporthe grisea. Physiological and Molecular Plant Pathology, 51: 75-84.
    33. Howard RJ and Valent B, 1996. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annual Review of Microbiology, 50: 491-512.
    34. Howard R J, Ferrari MA, Roach DH, and Money NP, 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc NatlAcad Sci. USA, 88: 11281-11284.
    35. Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS, 1986. Pyriculariain wheat Occurrence ofPyricularia sp in Paran state cc 11: 351-52..
    36. Jelitto TC, Page HA, Read ND, 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta, 194: 471-477.
    37. Kaminskyi R, Basse C, Feldbrugge M, 1999. Fungal-plant signaling in the Ustilago maydis-maize pathosystem. Current Opinions on Microbiology, 2: 647-650.
    38. Kang SH, Khang CH, Lee YH, 1999. Regulation of camp-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiology Letters, 170: 419-423.
    39. Kershaw MT and Talbot NJ, 1998. Hydrophobins and repellents: Proteins with fundamental roles in fungal mmorphogenesis. Fungal Genetics and Biology, 23: 18-33.
    40. Kim YK, Li D, Kolattukudy PE, 1998. Induction of Ca2~-calmodulin signaling by hard~surface contact primes Colletotrichum gloeosporioides conidia to germinate and forrnappressoria, Journal of Bacteriology, 180: 5144-5150.
    41. Klionsky DJ, 2005. The molecular machinery of autophagy: unanswered questions. Journal of Cell Science, 118: 7-18.
    42. Koga H, Nakayachi O, 2004, Morphological studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice. Journal of Genetic and Plant Pathology, 70: 11-15.
    43. Kronstad J, de Maria A, Funnell D, Laidlaw RD, Lee N, Moniz de Sa M, Ramesh M, 1998. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Archives of Microbiology, 170: 395-404.
    44. Kuma A, Mizushima N, Ishihara, N, Ohsumi Y, 2002. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex,mediated by Apg16 oligomerization, is essential for autophagy in yeast. Journal of Biological Chemistry, 277: 18619-18625.
    45. Lau GW, Hamer JE, 1996. Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell, 8: 771-781.
    46. Lee YH, Dean RA, 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell, 5: 693-700.
    47. Lee YH, RA Dean, 1994. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiology Letters, 115: 71-75.
    48. Lengeler KB, Davidson RC, Souza CD, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J, 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol Molecular Biological Review, 64: 746-785.
    49. Lev S, Sharon A, Hadar R, Ma H, Horwitz BA, 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. USA, 96: 13542-13547.
    50. Liu S, RA Dean, 1997. G protein a-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. Molecular Plant Microbe Interaction, 10: 1075-1086.
    51. Liu ZM, Kolattukudy PE, 1998. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. Journal of Bacteriology, 181(10): 3571-3577.
    52. Lorenz MC, Fink GR, 2002. Life and Death in a Macrophage: Role of the Glyoxylate Cycle in Virulence. Eukaryotic Cell, 1(5): 657-662.
    53. Lu JP, Liu TB, Lin FC, 2005. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiology Letters, 245(1): 131-137.
    54. Madhani HD, Fink GR, 1998. The control of filamentous differentiation and virulence in fungi. Trends in Cell Biology, 8: 348-353.
    55. McCafferty HRK, Talbot NJ, 1998. Identification of thee ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonization.Current Genteics, 33: 352-361.
    56. Mitchell TK, Thon MR, Jeong JS, Brown D, Deng JX, Dean RA, 2003. The rice blast pathosystem as a case study for the development of new tools and raw materials for genome analysis of fungal plant pathogens. New Phytologist, 159: 53-61.
    57. Mizushima N, Yamamoto A, Hatano Met al., 2001. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657-667.
    58. Mochly RD, 1995. Localization of protein kinases by anchoring proteins.a theme in signal transduction. Science, 268: 247-251.
    59. Money NP, Howard RJ, 1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method o turgor measurement. Fungal Genetics and Biology, 20: 217-227.
    60. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K et al., 2004. Autophagy defends cells against invading group A Streptococcus. Science,106: 1037-1040.
    61. Nishimura M, Park G, Xu JR, 2003. The G-beta subunit MgB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Molecular Microbiology 50: 231-243.
    62. Ohsumi Y, 2001. Molecular dissection of autophagy: two ubiquitin-like systems. National. Review. Moecularl. Cell Biological. 2: 211-216.
    63. Ou S, 1985. Rice Disease, 2nd ed. (Kew, Uk: Commonwealth Mycological Institute)
    64. Park G, Xue C, Zheng L, Lam S, Xu JR, 2002. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Molecular Plant~Microbe Interaction, 15: 183-92.
    65. Reggiori F, Klionsky DJ, 2002. Autophagy in the eukaryotic cell. Eukaryot Cell, 1:11-21
    66. Sesma A, Osbourn AE, 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008): 582-586.
    67. Shi Z, Chistian D, Leung H, 1995. Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA. Phytopathology, 85: 329-333.
    68. Shi Z, Leung H, 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Molecular Plant Microbe Interaction, 8:949-959.
    69. Silue D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH, 1998. Identification and characterization of apfl(-) in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Molecular Plant Pathological, 53: 239-251.
    70. Sweigard J, Carroll AM, Farrall L, Chumley FG, Valent B, 1998. Magnaporthe grisea Pathogenicity Genes Obtained Through Insertional Mutagenesis. MPMI, 11(5): 404-412.
    71. Sweigard JA, Chumley FG, Valent B, 1992. Disruption of a Magnaporthe grisea cutinase gene. Molecular Genetics and Genomics, 232: 183-190.
    72. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B, 1998. Magnaporthe grisea pathogenicity genes obtained though insertional mutagenesis. Molecular Plant-Microbe Interaction, 11: 404-412.
    73. Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I, 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Molecular Plant~Microbe Interaction, 13: 374-383.
    74. Talbot NJ, 1995. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology, 3: 9-16.
    75. Talbot NJ, Ebbole DJ, Hamer JE, 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5: 1575-1590.
    76. Talbot NJ, Kershaw MJ, Wakley GE, OMH de Vries, Wessels JGH, Hamer JE, 1996. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell, 8: 985-999.
    77. Talbot NJ, 2003. On the trail of a cereal killer: Exploring the Biology ofMaguaporthe grisea. Annual Review of Microbiology, 57: 177-202.
    78. Thines E, Eilbert F, Sterner O, AnkeH, 1997. Signal transduction leading toappressorium formation in germinatingconidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramindesand sphingomyelin. FEMS Microbiology Letters, 156: 91-94.
    79. Thompson JE, Fahnestock S, Farrall L, Liao DI, Valent B, Jordan DB, 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea-tetrahydroxynaphthalene reductase. Journal of Biological Chemistry, 275: 34867-34872.
    80. Tucker SL, Talbot NJ, 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39: 385-417.
    81. Uchiyama T, Okuyama K, 1990. Participation of Oryza sativa leaf wax in appressorium formation by Pyricularia oryzae. Phytochemistry, 29: 91-92.
    82. Urban M, Bhargava T, Hamer JE, 1999. An ATP~driven efflux pump is a novel pathogenicity factor in rice blast disease. The EMBO Journal, 18(3): 512-521.
    83. Velent B, Chumley FG, 1991. Molecular genetic analysis of the rice blast fungus Ma gnaporthe grisea, Annual Review of Phytopathology, 29:443-467
    84. Viaud MC, Balhadere PV, Talbot NJ, 2002. A Magnaporthe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection, Plant Cell, 14: 917-930.
    85. Villaba F, Lebrun MH, Van AH, Daboussi MJ, Grosjean Cournoyer MC, 2001. Transposon impala, a noveltool for gene tagging in the rice blast fungus Magnaporthegrisea. Molecular Plant~Microbe Interaction, 14: 308-315.
    86. Wawrzak Z, Sandalova T, Steffens JJ, Basarab GS, Lundqvist T, Lindqvist Y, Jordan DB, 1999. High-resolution structures of scytalone dehydratase-inhibitor complexes crystallized at physiological pH. Proteins, 35 425-439.
    87. Wessels JG, 1997. Hydrophobins: proteins that change the nature of the fungal surfaace. Advance Microbiology Physiological, 38: 1-45.
    88. Wosten HA, Schuren FH, Wessels JG, 1994. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. The EMBO Journal, 13: 5848-5854.
    89. Xiao JZ, Watanabe T, Kamakura T, Oshima A, Yamaguchi I, 1994. Studies on cellular differentiation of Magnaporthe grisea. Physiochemical aspects of substratum surfaces in relation to appressorium formation. Physiological and Molecular Plant Pathology, 44: 227-236.
    90. Xu JR, 2000. MAP Kinases in Fungal Pathogens. Fungal Genetics and Biology, 31: 137-152.
    91. Xu JR, Hamer JE, 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Development, 10: 2696-2706.
    92. Xu JR, Staiger CJ, Hamer JE, 1998. Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defence responses. Proc Natl Acad Sci USA, 95: 12713-12718.
    93. Xu JR, Urban M, Sweigard JA, Hamer JE, 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Molecular Plant~Microbe Interaction, 10:187-194.
    94. Xu JR, Xue CY, 2002. Time for a blast: genomics of Magnaporthe grisea. Molecular plant pathology, 3(3): 173-176.
    95. Xue CY, Park G, Choi W, Zheng L, Dean R.A, Xu JR, 2002. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell, 14: 2107-2119.
    96. Yoshimori T., 2004. Autophagy a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 313(2):453-458.
    97. Zeigler RS, 1998. Recombination in Magnaporthe grisea, Annual Review of Phytopathology, 36: 9-275.
    98. Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND, 2004. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 41: 827-841.
    99. Zhao X, Kim Y, Park G, Xu J, 2005. A Mitogen-Activated Protein Kinase Cascade Regulating Infection~Related Morphogenesis in Magnaporthe grisea. Plant cell, 17: 1317-1329.
    100. Zhu H, Whitehead DS, Lee YH, Dean RA, 1996. Genetic analysis of developmental mutants and rapid chromosome mapping of APP1, a gene required for appressorium formation in Magnaporthe grisea. Molecular Plant~Microbe Interaction, 9: 767-774.
    101. Xiao-Hong Liu, Jian-Ping Lu, Lei Zhang, Bo Dong, Hang Min, Fu-Cheng Lin, 2007. Involvement of a Magnaporthe grisea Serine/Threonine Kinase Gene, MgATG1, in Appressorium Turgor and Pathogenesis.
    102.何月秋,唐文华,2001.水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性及变异机制,云南农大学学报,16(1):60-64.
    103.刘同宝,2005。稻瘟病菌成熟附着胞cDNA差减文库的构建。浙江大学硕士学位论文。
    104.刘小红,2004.利用启动子陷阱技术(Promoter trapping)构建稻瘟病菌(Magnaporthe grisea)突变体库.浙江大学硕士学位论文.
    105.张正光,郑小波,1999.稻瘟病菌营养体亲和和配对筛选及其亲和能力遗传,植物病理学报,29(4):304-308.
    106.张正光,郑小波,2000.稻瘟病菌不同小种菌株间无性重组的研究,植物病理学报,30(4):312-318.
    107.李宏宇,鲁国东等,2003.稻瘟病菌无毒基因研究进展.中国生物工程杂志,23(6):27~30.
    108.李宏宇,鲁国东等,2003b.稻瘟病菌微波诱发突变子的分析.菌物系统,22(4):639~644.
    109.李宏宇,潘初沂,陈涵,赵长江,鲁国东,王宗华,2003a.稻瘟病菌T~DNA插入方法优化及其突变子分析.生物工程学报,19(4):419~423.
    110.林福呈,李德葆,2001.稻瘟病菌分生孢子发芽和附着胞形成的影响因素研究.中国水稻科学,15(4):291-297.
    111.沈瑛,李成云等,1997.稻瘟病菌的菌丝融合现象及其后代致病性变异,中国农业科学,30(6):16-22.
    112.沈瑛等,1998.我国稻瘟病菌的遗传多样性及其地理分布(英),浙江农业大学学报,24(5):493-501.
    113.王教瑜,2005.稻瘟病菌MgTA1基因的克隆与功能分析.浙江大学博士学位论文.
    114.王立安,王源超,李昌文,郑小波,2003.Ca2+信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控.菌物系统 22(3):457-465.
    115.陆凡,郑小波等,2001.江苏省稻瘟病菌的毒性多样性及水稻品种的抗病性,生物多样性,9(3):201-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700