小型高温超导直线感应电机样机的设计与测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前的运输行业大多数直线电动驱动器是传统铜线圈及铁磁芯组成的,这样以便于提高运行速度。然而,这种结构的直线电机仍然存在一些不足之处:无论是同步电机还是感应电机,短定子或是长定子直线电机,铁磁芯的饱和最终会限制最高推进力。目前大多数对直线电机研究的目的在获取更大的推进力和更高的推力密度之上,其主要从线圈参数、绕组、安放位置和几何图形等关键组成部分上进行相关优化。相比而言,本论文提出了一种想法来获得更高的推进力密度。
     本文主要研究的直线感应电机初级是传统的由三相铜绕组绕制而成的单边扁平型硅钢电枢,次级是由多达四个二代YBCO涂层导体绕制而成的超导圈体,为了比较推进力数据,线圈内部的铁磁材料由铁和铁钴钒合金组成。
     首先,本论文对直线感应电机超导次级线圈进行了计算设计,并且在加工组装后,开展了相应的实验测试和数据分析。
     其次,在直线感应电机采用超导次级锁定状态下,考虑到次级在液氮温度下接近零电阻时的超导特性,超导线圈回路利用初级电枢产生的行波磁场感应出电流,从而产生推进力,实现系统推进。根据实验结果,测得最大推力为120N,相当于123.45N/m2的推进力密度,这个数值比铜线绕组好123倍,测量到的滑差和推进力曲线与传统的直线电机不一样,原因在于第二类超导体内部有电容成分。借助该实验结果验证了一个事实:此系统缔造的推进力密度已远远超过目前传统直线电机推进力密度技术上的限制,并且可能打破目前581km/h的地面速度记录,因此这个研究很有意义。
Most electric linear drives in the transportation industry nowadays are made of conventional copper wire coils along with the possible aid of ferromagnetic cores. High speeds can be conveniently obtained; however, some drawbacks still remain. The main shortfall of a linear motor, whether it be synchronous or inductive, short stator or long stator, is the magnetic saturation of its ferromagnetic cores which ultimately saturates generation of thrust. Most research has been devoted toward reaching higher and higher thrust densities; however, they mostly aim toward the optimization of its key components such as its coil parameters, winding, positioning and geometry. In contrast, this work focuses on a new concept so that higher thrust densities can be obtained.
     This work presents the design, construction, computing, experimental testing and data analysis of a linear induction motor that employs a superconducting secondary in the locked-mover state. Given the near zero resistance superconducting properties of the secondary, large amounts of current are able to be induced which are harnessed to generate thrust. The primary of the studied linear motor is a conventional flat, single sided and three-phased made of copper wound coils and a silicon steel armature. The secondary also uses a flat geometry consisting of up to four coils made of2nd generation YBCO coated conductor wire connected in series. Ferromagnetic materials made of iron and Permendur50were also used as cores of the superconducting coils for comparison.
     The obtained experimental results were better than expected; a maximum thrust of120N was achieved, which was equivalent to a thrust density of123.45N/m, or123x times better than its copper wound counterpart. The slip versus thrust curve was measured to be different than conventional linear motors which Ⅰ explain it by taking into account the capacitive component inherent in Type-Ⅱ superconductors. The evidence obtained from the experiments establish the fact that with the aid of superconducting components, the present thrust density limit in linear motor technology can be far surpassed allowing for the possibility of breaking the present ground speed record of581km/h.
引文
[1]王家素,王素玉.超导技术应用.成都科技大学出版社,1995.
    [2]L. K. Kovalev, K. V. Ilushin, and V. T. Penkin, Supercond. Sci.Technol. vol.15, p.817, 2002.
    [3]Bednorz JG, Muller KA. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitsch rift fur Physik B-Condensed Matter,1986,64(2):189-193.
    [4]Chu C W, Hor P H, Meng R L, et al. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system[J]. Science,1987,235(4788):567-569.
    [5]Zhao Z X, Chen L Q, Cui C G, et al. Superconductivity above liquid nitrogen temperature in new oxide systems[J], Kexue Tongbao,1987,32(16):1098-1102.
    [6]Michel C, Hervieu M, Borel M M, et al. Superconductivity in the Bi-Sr-Cu-O system[J]. Zeitschrift fur Physik B-Condensed Matter,1987,68(4):421-423.
    [7]Sheng Z Z, Hermann A M. Superconductivity in the rare-earth-free T1-Ba-Cu-O system above liquid-nitrogen temperature[J]. Nature,1988,332(6 159):55-58.
    [8]Putilin S N, Antipov E V, Chmaissem O, et al. Superconductivity at 94 K in HgBa2CuO4+A[J]. Nature,1993,362(6 417):226-228.
    [9]Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system[J]. Nature,1993,363(6 424):56-58.
    [10]Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature,2001,410(6 824):63-64.
    [11]金建勋,郑陆海.高温超导材料与技术的发展及应用.电子科技大学学报,Vol.35, P.2,2006.
    [12]Larbalestier D, Gurevich A, Feldmann D M, et al. High-Tc superconducting materials for electric power applications [J]. Nature,2001,414(6 861):368-377.
    [13]Mayor of pittsburgh. U. S. Patent,1890.
    [14]Proc. of the IEEE.1970,58(4):531-542.
    [15]A. Zehden. U.S.Patent.732321.1905.
    [16]A wound rotor motor 1400 ft long. Westinghouse Engineer,1946,6:160.
    [17]中国科学院电工研究所,中国科学技术情报研究所重庆分所.国外直线电机应 用,1980.
    [18]浙江大学新技术译丛编译组.直线感应电动机.1972.
    [19]中国科学院力学研究所,上海电气科学研究所.液态金属电磁泵.北京:科学出版社,1979.
    [20]Muramatsu R, Sadakata S, Tsuda M, et al. Trial production and experiments of linear actuator with HTS bulk secondary [J]. IEEE Trans on Applied Superconductivity, 2001,11(1):1976-1979.
    [21]Sato A, Ueda H, Ishiyama A. Operational characteristics of linear synchronous actuator with field-cooled HTS bulk secondary [J]. IEEE Trans on Applied Superconductivity,2005,15(2):2234-2237.
    [22]Stumberger G, Aydemir MT. Design of a Linear Bulk Superconductor Magnet Synchronous Motor for Electromagnetic Aircraft Launch Systems [J]. IEEE Trans on Applied Superconductivity,2004,14(1):54-62.
    [23]Oswald B, Best KJ, Maier T, et al. Conceptual design of a SC HTS linear motor [J]. Superconductor Science and Technology,2004,17(5):S445-S449.
    [24]Pina J, et al. J. Phys.:Conf. Ser.[J],2008,97:012220.
    [25]Kim W. S, et al. IEEE Trans. Appl. Supercond.[J],2002,12:842
    [26]Kim WS, Jung SY, Choi HY, et al. Development of a Superconducting Linear Synchronous Motor [J]. IEEE Trans on Applied Superconductivity,2002, 12(1):842-845.
    [27]陈世坤,韩维元.磁选机的电磁场分析和电抗计算.西安交通大学科研处科技情报室科学技术报告.1982,(7).
    [28]龙遐令.直线异步电动机.电工技术杂志.1998(3).
    [29]龙遐令.直线感应电动机的理论和电磁设计方法.科学出版社.2006.
    [30]Jungwook Sim, Kwangyoun Lee, et al. Development of a HTS squirrel cage induction motor with HTS rotor bars. IEEE Transactions on Applied Superconductivity.2004.14 (2):916-919.
    [31]Jungwook Sim, Myungjin Park, et al. Test of an induction motor with HTS wire at end ring and bars. IEEE Transactions on Applied Superconductivity.2003.13(2):2231-2234.
    [32]T. Nakamura, K. Matsumura, T. Nishimura, K. Nagao, Y. Yamada, N. Amemiya, Y. Itoh, T. Terazawa and K. Osamura, "A high temperature superconducting induction/synchronous motor with a ten-fold improvement in torque density," Superconducting Science and Technology,24,015014 (2011)
    [33]T. Nakamura, Y. Yamada, H. Nishio, K. Kajikawa, M. Sugano, N. Amemiya, T. Wakuda, M. Takahashi and M. Okada, "Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB2 cage windings," Superconducting Science and Technology 25 014004 (2012)
    [34]R. C. Duckworth, Y. Zhang, M. J. Gouge, C. M. Rey, D. C. van der Laan, C. Clickner. Voltage distribution and mechanical strength in splice joints made from as-manufactured YBCO coated conductors. Cryo. Eng. Conf.1219,2010:370-379
    [35]Qin wei, Fan Yu, Fang Jin, Li Guoguo and Lv Gang, "characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor," Journal of Applied Physics 111 07E707 (2012).
    [36]D. K. Park, M. C. Ahn, H. M. Kim, H. G. Lee, K. S. Chang, S. J. Lee, S. E. Yang, T. K. Ko. Analysis of a Joint Method between Superconducting YBCO Coated Conductors. IEEE Trans. Appl. Supercond.14 (2),2007
    [37]Iwasa, "Case Studies In Superconducting Magnets Design and Operational Issues", IEEE Transactions on Applied Superconductivity, VOL.20, NO.3,2010
    [38]M. N. Wilson, Superconducting magnets. New York:Oxford University Press,1983
    [39]王秋良.高磁场超导磁体科学.北京:科学出版社,2008
    [40]李婧.扁平型三相绕组上方高温超导磁体力学性能研究.西南交通大学博士研究生学位论文,2011
    [41]SWARN S. KALSI, KONRAD WEEBER, et al. Development Status of Rotating Machines Employing Superconducting Field Windings. Proceedings of the IEEE, October 2004,92(10):1688-1704
    [42]Dr. Swarn Kalsi. The State of Superconducting Technology. US Naval Graduate School Monterey, California, March 2005
    [43]郑陆海,金建勋.高温超导电机的发展与研究现状.电机与控制应用,2007,34 (3):1-6
    [44]W. Nick, G Nerowski, H.-W. Neumiiller, et al, "380 kW synchronous motor with HTS rotor windings-development at Siemens and first test results," Physica C,372-376, 1506-1512(2002)
    [45]B. Gamble, G Snitchler and T. MacDonald, "Full power test of a 36.5 MW HTS propulsion motor," IEEE Transactions on Applied Superconductivity 21,1083-88 (2011)
    [46]郑石钧.小型高温超导直线同步电机样机的设计与测试,西南交通大学硕士研究生学位论文(2011)
    [47]J. P. Donohoe, "Induction Machines I," ECE3414 Fundamentals of Energy Systems Course Notes (2004)
    [48]F. Yen, X. Chen, R. B. Wang, J. M. Zhu, J. Li, G T. Ma, "Induced Currents in Close-ended Type-II Superconducting Coils," submitted to IEEE Transactions on Applied Superconductivity (2013)
    [49]R. Hellinger and P. Mnich, "Linear Motor-Powered Transportation:History, Present Status and Future Outlook," Proceedings of the IEEE, vol.97, no.11,1892-1900 (2009)
    [50]Jacek F. Gieras, Linear Induction Drives, Oxford University Press, U. S. A. (1994)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700