低温超导磁体复杂环境下的力磁行为实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着超导磁体技术的快速发展,一些大型电磁科学仪器与装置中所用的超导磁体具有体积庞大、磁场极高等特点。从磁体设计角度讲,若要提高磁场强度,唯有极大地提升超导磁体内的载流电流强度。然而受到超导材料临界态(磁场、电流、温度)限制,在高场环境下超导线的载流能力会急剧降低,同时由于磁场和传导电流的增大,导致的温度效应以及极低温冷却成本也将大幅上升。如何寻找一种多因素制约下的平衡和优化,一直是超导磁体设计和研发中的关键基础问题。除此之外,不断提高超导磁体中的传导电流以产生强磁场势必导致磁体结构必须承受由此产生的巨大Lorentz(洛伦兹)力,带来磁体结构设计和安全上的极大挑战。在运行中,超导磁体是处于大电流、强磁场、极低温的多场并存环境并且多场之间存在相互影响、相互作用,单纯基于电磁学特性、简单环境场及结构强度层面的设计是很难达到复杂环境下高性能超导磁体系统的研发要求。因此,开展超导磁体极端环境下的力磁性能等多场关联的研究具有极为重要的意义。
     针对中科院近代物理研究近年来所研制的一系列加速器用超导磁体的力学行为测量与分析,本学位论文运用低温电阻应变片及其补偿技术等开展了相关的应变测量,并对超导丝及其复合结构低温下的力学性能与温度的依赖关系进行了实验研究等。
     (1)LPT超导磁体(5T)模型线圈的应变测量与分析。首先开展了低温应变测量的可行性研究,采用低温电阻应变片的电测技术及无线应变仪,对液氮浸泡下的悬臂梁结构在静载条件下的应变进行了测量。基于这一应变测量技术开展了极端环境下5T超导磁体的力学实验研究,有效地实现了其在低温、强磁场下线圈内轴向、环向应变测量。其次,考虑其力-磁耦合效应,对该超导磁体在强电磁场下的变形进行了非线性有限元分析,相关实验测试结果与数值分析结果吻合良好。
     (2) C-ADS注入器Ⅱ超导螺线管结构多场环境下的力-电磁学测量研究。采用低温力学测量和补偿技术,实现了极端环境条件下(低温4.2K,强磁场8.2T)C-ADS注入器Ⅱ束流聚焦单元超导磁体及其低温支撑结构的高精度力学性能测量,并较好地评估超导磁体励磁下的力学性能。同时,基于超导磁体失超瞬间应变检测信号的急剧变化特征,可以实现超导磁体失超关联的安全运行问题给出及时预警。
     (3)提出了基于应变的低温超导磁体失超检测新方法。开展了超导磁体螺线管励磁过程中的电磁、温度、力学变形信号的实时检测与分析,并提出了一种低温超导磁体自发失超的应变检测方法。分别针对LPT超导磁体模型线圈和C-ADS注入器Ⅱ超导螺线管,成功实现了低温超导磁体的自发失超检测;同时基于多点应变失超检测的时差,估算了螺线管超导磁体轴向失超的传播速度,相关结果与已有文献结果量级上相一致。
     (4)低温超导复合材料力学性能测试系统与实验研究。开发、研制了超导材料的低温力-热耦合性能测试系统,开展了超导复合丝NbTi/Cu及其纯超导丝NbTi低变温环境下的力学拉伸实验研究,测量了其低温变温环境下的力学行为,包括拉伸强度、断裂百分比、屈服强度以及杨氏模量等,以及与温度的依赖关系。结果表明:超导复合丝与纯超导丝低温下表现出丰富的力学行为,如拉伸强度和杨氏模量与温度近似成线性关系,断裂百分比和屈服强度等与温度呈非线性关系等。此外,基于室温到液氮变温区下样品的力学性能的实验结果和外推方法,我们获得了与文献中液氦4.2K浸泡下相一致的相关力学参数。
With the development of superconductive science and technology, more and more superconducting magnets are being used in large electromagnetic scientific instruments and equipments with features of large volume and high magnetic fields. On the view of superconducting magnet design, the more high magnetic field will be obtained as the carry-current inside the superconducting magnet increases. However, since critical states of superconductors (magnetic field, current, temperature) are limited, as high magnetic field is achieved, its ability of carry-current will reduce sharply. And with the increase of carry current and magnetic field, the effect of temperature and the costs of cooling at extremely low temperature will also rise substantially. How to find a kind of balancing and optimization in the restriction of multi-factor, which have become a key problem in its design and R&D. In addition, continued raising carry-current superconducting coils are also exposed to large Lorentz forces with leading to a series of challenge on design and security of superconducting magnet structure. And during the operation of superconducting magnet, the entire superconducting magnet structure must work in multi-field environment, which include mighty current-magnetic field and ultra-low temperature, and those complicated environmental field will be also interaction. Obviously, the consideration only related to the electromagnetic characteristics, simple environmental field and strength of structure in the design of the superconducting magnet is always inadequate. Therefore, the study of superconducting magnet considering magneto-mechanical performance under complicated environment is important.
     Based on the measurement and analysis of mechanical behavior in some SC magnets produced by IMP in recent years, this dissertation presents related strain measurement using low-temperature strain gauge and its compensation technology. At the same time, cryogenic temperature dependence of tensile response of NbTi/Cu superconducting composite wires and its pure filaments also were argued in detail.
     (1) Strain measurements and analysis on LPT model superconducting magnet (5T) during coil excitation. Firstly, the feasibility of low-temperature strain measurements is carried out. Using low-temperature strain gauge and wireless strain acquisition system, the strain measurement of a cantilevered beam soaked to liquid nitrogen under static load is introduced. Based on this strain measurement technology, the hoop and axial strains of the LPT model superconducting magnet (5T) under cryogenic temperature and intense magnetic field were also measured effectively. Secondly, considering magneto-mechanical coupled effect, the deformation of superconducting magnet under intense magnetic field is analyzed by means of nonlinear FEM. The experimental data and simulation predictions show good agreements.
     (2) Measurements of mechanics and electromagnetics of C-ADS injector II superconducting solenoid structure in multi-field environment. Appling cryogenics mechanical measurement and its compensatory technology, their strain measurements can effectively capture the mechanical behavior of the C-ADS injector II superconducting solenoid structures in multi-field environment (4.2K,8.2T). And based on the rapid change characteristic of strain detetion signal during quench test, the strain measurements can also warn and detect the quench response of superconducting magnet.
     (3) Based on the strain measurement at cryogenic temperature and under intense magnetic field, a new non-electric quench detection method of a superconducting solenoid magnet is presented. During the excitation, electromagnetic, temperature and strain signal were real-time measured and analyzed, and the quench detection method based on the strain measurements for spontaneous quench of low temperature superconducting magnet is put forward. Applying the method, based on a LPT superconducting solenoid model magnet (5T) and C-ADS injectorⅡ superconducting solenoid structure, the spontaneous quench of low temperature superconducting magnet were performed successfully. At the same time, based on time lags of strain-based quench detection for multiple points, the axial quench propagation velocity of the solenoid is evaluated. This result fall to the same order of magnitude as other evaluation methods for low-temperature superconducting magnet.
     (4) The cryogenic test system of mechanical properties of superconducting composites and related experimental study. The development of the cryogenic test system of the thermo-mechanical coupling performance of superconducting materials under cryogenic temperature is introduced. The effects of variable cryogenic temperature on the tensile response are reported for the commercial superconducting composite wires consisting of niobium-titanium filaments in a copper matrix (NbTi/Cu). The mechanical behavior of the NbTi/Cu composite wire and pure NbTi filaments, including the tensile strength and elongation at fracture, yield strength and Young's modulus, are further captured. There shows that tensile strengths and Young's moduli of NbTi/Cu composite wire and pure NbTi filaments are almost linearly dependent on the temperature, while the elongation at fracture and yield strength exhibit notable nonlinear features with the superconducting wires cooling. In addition, based on the mechanical properties measured from room temperature to liquid nitrogen temperature, these properties at lower temperature of4.2K are extrapolated for the NbTi/Cu composite wire and NbTi filaments, which are compared with the experiment data in the literature.
引文
[1]吴其胜,新能源材料,华东理工出版社,2012.
    [2]张裕恒,超导物理,中国科学技术大学出版社,2009.
    [3]M. Banks, Superconductivity the first 100 years, Physics World,24(4),2011.
    [4]王惠龄,汀京荣,超导应用低温技术,国防工业出版社,2008.
    [5]焦高峰等,多芯NbTi/Cu复合棒的制造工艺改进和完善,低温物理学报,2007,29(3):230-232.
    [6]潘爱民,超导材料的发展和应用前景,大众科技,2012,153(14):92-94.
    [7]刘永长等,MgB2超导体的成相与掺杂机理,科学出版社,2009.
    [8]R. Hott, R. Kleiner, T. Wolf, Superconducting Materials-a Topical Overview in Frontiers in Superconducting Materials,Springer Verlag,Berlin,2004.
    [9]张平祥等,新型聚变堆用超导材料Nb3A1的研究现状,低温与超导,2011,39(6):24-27.
    [10]周廉,甘子钊,中国高温超导材料及应用发展战略研究,化学工业出版社,2008.
    [11]林良真,肖立业,超导电力技术,科技导报,2008,26(1):53-58.
    [12]赵忠贤等,科学通报,1987,32:412.
    [13]A. Naoki, K. Masashi, Y. Kouhei, Achievement of High-Temperature Superconducting Wire with Critical Current Exceeding 200A, Sumitomo Electric Technical Review,2006,169: 103-108.
    [14]南和礼,超导磁体设计基础,国防工业出版社,2007.
    [15]张新民,超导低温技术与粒子加速器,科学出版社.1994,37(5):289-297.
    [16]超导高电荷态ECR离子源——一个引进、消化、吸收、再创新的典范,中国科学院院刊,2007,22(3):253-254.
    [17]P. Yuan, H.W. Zhao, H. Leibrock, L.Z. Ma, L.T. Sun, X.Q. Zhang, B. Zhang, B.L. Guo, W.Wu, Q.G. Yao, W. Wu, Q. Wang, X. Wu, S. Han, Y. He, S. Zhang, Some Superconducting Magnets at IMP, IEEE Transactions on Applied Superconductivity,2010,20:214-217.
    [18]W. Huang, Y. Wang, High precision mass measurement and LPT. Chinese Physics C,2008,32: 197-200.
    [19]吴巍,兰州潘宁离子阱7T高均匀度磁体的磁场优化设计,中国科学院研究生院博士学位论文,2008.
    [20]王秋良,高磁场超导磁体科学,科学出版社,2008.
    [21]Y. Ren, F. Wang, Z. Chen, W. Chen, Mechanical Stability of Superconducting Magnet with Epoxy-Impregnated, Journal of Superconductivity and Novel Magnetism,2010,23: 1589-1593.
    [22]J. Fellinger, S. Freundt, D. Hathiramani, V. Bykov, F. Schauer, Dynamic response analysis of superconducting coils in Wendelstein 7-X and mechanical quench test, Fusion Engineering and Design,2011,86(6-8):1385-1388.
    [23]Y. Ilyin, A. Nijhuis, W. A. J. Wessel, N. van den Eijnden, H. H. J. ten Kate, Axial tensile stress-strain characterization of a 36 Nb3Sn strands cable, IEEE Transactions on Applied Superconductivity,2006,16:1249-1252.
    [24]A. Nijhuis, Y. Ilyin, Transverse load optimization in Nb3Sn CICC design, influence of cabling, void fraction and strand stiffness, Superconductor science and technology,2006,19:945-962.
    [25]A. Nijhuis, A solution for transverse load degradation in ITER Nb3Sn CICCs:verification of cabling effect on Lorentz force response, Superconductor science and technology,2008,21: 054011.
    [26]Z. Wang, Z. Chen, H. Wen. Stress effects for Bi-based superconducting tapes. Physica C, 2000,341-348:2587-258.
    [27]L.S. Wright, H.D. Wiederick, T.S. Hutchison, Tensile test evidence of morphological structural changes in superconducting NbTi fibers and composites, Joural of low temperature physical,1984,57(5):563-572.
    [28]T. Frank, Stress/strain characteristics of Cu-alloy sheath MgB2 superconducting wires, Cryogenics,2007,47:220-224.
    [29]M. Hojo, T. Matsuoka, M. Hashimoto, M. Tanaka, M. Sugano, S. Ochiai, K. Miyashita, Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method, Physica C,2006,445-448: 814-818.
    [30]J.D. Elen, The Superconductor Test Facility Sultan, IEEE Transactions on Applied Magnetics, 1981.
    [31]S. Ando et al., Completion of the ITER CS Model Coil-Outer Module Fabrication,IEEE Transactions on Applied Magnetics,2000.
    [32]T. Bruzzone et al., Performance Evolution of Nb3Sn Cable-in-Conduit Conductors Under Cyclic Load, IEEE Transactions on Applied Superconductivity,2002.
    [33]徐晗,陈灼民,武松涛,HT-7U超导模型线圈电阻应变的测量,低温与超导,2002,30(1):59-62.
    [34]陈灼民,国产金属箔式应变计在低温和强磁场下工作特性的研究,HT-7U装置主机设计文集(二),1999.
    [35]冯遵安,高温超导磁体应变的光纤探测与数值模拟,中科院研究生院硕十论文,2004.
    [36]冯遵安,王秋良等,液氮温区下光纤布拉格栅应变传感器测量性能的研究,低温物理学报,26(2004):227-231.
    [37]A. Nishimura, H. Tamura, S. Imagawa, T. Satow, S. Satoh, and O.Motojima, LHD group, Stress and strain measurement of the large helical device during coil excitation, Fusion Engineering and Design,2001,58-59:253-257.
    [38]V. Tomarchio, K. Risse, H. Viebke, Data analysis of the strain gauges system of theW7-X superconducting coils, Fusion Engineering and Design,2009,84:1852-1856.
    [39]S. Latka et al., A fiber optics sensor for strain and stress measurements in Superconducting accelerator magents, Cryogenics,2009,154:167-169.
    [40]L. Bottura, A Numerical Model for the Simulation of Quench in the ITER Magnets, Journal of Computational Physics,1996,125:26-41.
    [41]L. Bottura, A general model for thermal, hydraulic and electric analysis of superconducting cables, Cryogenics,2000,40:617-626.
    [42]Q. Wang, P. Weng, M. He, Simulation of quench for the cable-in-conduit-conductor in HT-7U superconducting Tokamak magnets using porous medium model, Cryogenics,2004,44: 81-92.
    [43]Y. Hwang, S. Lee, W. Kim, K. Choi, H. Lee, Detection of quench in HTS transformer windings. Physica C,2007,463-465:1229-1232.
    [44]K. J. Kim, J. B. Song, J. H. Kim, J. H. Lee, H. M. Kim, W. S. Kim, J. B. Na, T. K. Ko, H.G. Lee, Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system, Physica C,2010,470:1883-1886.
    [45]Y. Zhou, K. Miya, Mechanical Behavior for Superconducting Helical Coils in a Fusion Reactor. Fusion Engineering and Design,1998,38 (3):283-293.
    [46]王省哲,郑晓静,周又和,非圆TOKAMAK载流磁体的磁弹性分析,兰州大学学报(自然科学版),1999,35(1):34-43.
    [47]X. Zheng, X. Wang, Y. Zhou, Magnetoelastic Analysis of Non-circular Superconducting Partial Torus. International Journal of Solids and Structures,2000,3:563-576.
    [48]X. Zheng, Y. Zhou, X. Yang, et al, Analysis on Dynamic Stability of Superconducting Coils in a Three Coil Partial Torus, Fusion Engineering and Design,2001,54:31-39.
    [49]X. Zheng, X. Gou, Y. Zhou, Numerieal simulation of the Ievitation force of High-Tc superconductors, Key Engineering material,2003,243-244:553-555.
    [50]郑晓静,苟小凡,周又和,超导电磁悬浮力的数值模拟,固体力学报,2004,24:16-23.
    [51]苟小凡,2004,高温超导悬浮体的静/动力特性分析,兰州大学博士学文论文,兰州.
    [52]杨勇,2007,高温超导体面内移动时的静力特性研究,兰州大学博十学位论文,兰州.
    [53]Y. Zhou, H. Yong, Crack problem for a long rectangular slab of superconductor under an electromagnetic force, Phsycal Rewier B,2007,76:094523.
    [54]雍华东,2010,若干先进电磁材料结构的断裂与稳定性等力学特性的理论研究,兰州大学博十学位论文,兰州.
    [55]X. Zhang, Y. Zhou, J. Zhou, Three-dimensional measurements of forces between magnet and superconductor in a Ievitation system, Physica C,2007(467):125-129.
    [56]X. Zhang, Y. Zhou, J. Zhou, Modeling of symmetrical Ievitation force under different field cooling processes, Physica C,2005(468):401-404.
    [57]X. Zhang, Y. Zhou, J. Zhou, Effects of magnetic history on the Ievitation characteristics in a superconducting Ievitation system, Physica C,2008(468):1013-1016.
    [58]X. Zhang, Y. Zhou, J. Zhou, Experimental observation of a crossing in the force-displacement hysteretic curve of a melt processed YbaCuO bulk superconductor. Physica C,2008(468): 369-373.
    [59]L. Ma, X. Zhang, D. Ni, W. Wu, S. Han,Q. Yao, P. Yuan, H. Leibrock, Y. Xiang, E. Floch, The Cold Test of Super-FRS Superconducting Dipole Prototype for FAIR Project, IEEE Transactions on Applied Superconductivity,2012,22(3), JUNE.
    [60]W. Wu, Y. He, L. Ma, J. Xia, et al., The Application of Toolkit of Optimization in Designs of Accelerator Magnets, IEEE 2009-MT21 proceedings.
    [61]R. William, K. Murray, The bonded Electrical Resistance Strain Gage an Introduction.New York, Oxford University Press,1992.
    [62]T. Wakuda, M. Okada, S. Awaji, K. Watanabe, A new reforced winding of Bi-2212 coils for 30T class superconducting magnets. Physica C,2001,357-360:1293-1296.
    [63]Z. Chen, F. Long, H. Wu, Strain Measurement on the Toroidal Field (TF) Coil case, Plasma Science & Technology,2005,7(2):2734-2736.
    [64]山浦羲郎,用应变计在低温下测量应变和位移,低温与特气,No.1:58-63.
    [65]M. Steinberg, G. Wotsak, B. Manowitz, Neutron burning of longlived fission products for waste disposal, BNL-8558, Brookhaven National Laboratory,1964.
    [66]F. Carminati, R. Klapisch, J. Revol, C. Roche, J. Rubio, C. Rubbia. An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator, CERN/AT/93-47(ET), European Organization for Nuclear Research.1993.
    [67]Y. He, Z. Wang, Y. Liu, X. Chen, H. Jia, Y. Yao, C. Li, B. Zhang, H. Zhao, IMP, Lanzhou, China, The conceptual design of injector Ⅱ of ADS in China, Proceedings of IPAC2011, San Sebastian, Spain, pp:2613-2615,2011.
    [68]S. Awaji, K. Watanabe, K. Katagiri, Improvement of mechanical and superconducting properties in CuNb/(Nb, Ti)3Sn wires by applying bending strain at room temperature. Superconductor science and technology,2003,16:733-738.
    [69]M. Anerella, J. Cottingham, J. Cozzolino, P. Dahl, Y. Elisman, J. Escallier, H. Foelsche, G. Ganetis, M. Garber, A. Ghosh, et al. The RHIC magnet system. Nuclear Instruments and Methods in Physics Research A,2003,499:280-315.
    [70]E. Chehura, S. Buggy, S. James, A. Johnstone, M. Lakrimi, F. Domptail, A. Twin, R. Tatam, Multi-component strain development in superconducting magnet coils monitored using fibre Bragg grating sensors fabricated in highly linearly birefringent fibre. Smart materials and structures,2011,20:1-10.
    [71]D. Klimenko, V. Pasler, Safety of fusion magnets:Model experiments to high current arcs at ITER busbars and feeder lines, Fusion Engineering and Design,2012 (on line).
    [72]Q. Peng, F. Ren, B. Yin, Y. Wu, L. Dong, Z. Sun, Rotating coil field measurement of superconducting magnet for BEPCII interaction region, Nuclear Instruments and Methods in Physics Research A,2011,640:13-18.
    [73]X. Zheng, X. Wang, Y. Zhou. Magnetoelastic analysis of non-circular superconducting partial torus. International Journal of Solids Structure,2000,37:563-576.
    [74]X. Wang, M. Guan, L. Ma, Strain-based quench detection for a solenoid superconducting magnet, Superconductor science and technology,2012,25:095009.
    [75]P.H. Eberhard, M. Alston-Garnjost, M.A. Green, P. Lecomte, R.G. Smits, et al., Quenchs in large supercondicting magnets,6th International Conference on Magnet Technology, Brastislava, Czechoslovakia, August 29,1977.
    [76]R. Zaninoa, D. Bessetteb, L.S. Richarda, Quench analysis of an ITER TF coil, Fusion Engineering and Design,2010,85:752-760.
    [77]L. Bottura, A Numerical Model for the Simulation of Quench in the ITER MagnetsJournal of Computational Physics,1996,125:26-41.
    [78]M. N. Wilson. Superconducting magnets. Clarendon Press:1983.
    [79]I. R. Dixon, A. V. Gavrilin, J. R. Miller, J. A. Powell, B. L. Brandt, Analysis of the quench protection system of a series connected hybrid magnet, IEEE Transactions on Applied Superconductivity,2007,17(2):2446-2449.
    [80]N. Nanato, K. Nakamura. Quench detection method without a central voltage tap by calculating active power. Cryogenics,44:1-5,2004.
    [81]N. Nanato, Y. Tsumiyama, S.B. Kim, S. Murase, K. C. Seong, H. J. Kim. Development of quench protection system for HTS coils by active power method. Physica C,2007,463-465: 1281-1284.
    [82]J. H. Joo, S. B. Kim, T. Kadota, H. Sano, S. Murase, H. M. Kim, Y. K. Kwon, Y. S. Joo, Quench protection technique for HTS coils with electronic workbench. Physica C,2010,470: 1874-1879.
    [83]A. Ninomiya, K. Sakanniwa, H. Kado, Quench detection of superconducting magnets using ultrasonic wave, IEEE Transactions on Applied Superconductivity,1989,25:1520-1523.
    [84]S. Sanfilippo, A. Siemko, Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets, Cryogenics,2000,40:577-584.
    [85]A. Anghel, S. Pourrahimi, Y. Takahashi, G. Vecsey, Correlation between quench pressure and normal zone voltage observed in the QUELL experiment, Cryogenics,2000,40:549-553.
    [86]K. Arai, Y. Iwasa, Heating-Induced acoustic emission in an adiabatic high-temperature superconducting winding, Cryogenics,1997,37:473-475.
    [87]Y. Hwang, S. Lee, W. Kim, K. Choi, H. Lee, Detection of quench in HTS transformer windings. Physica C,2007,463-465:1229-1232.
    [88]K. J. Kim, J. B. Song, J. H. Kim, J. H. Lee, H. M. Kim, W. S. Kim, J. B. Na, T. K. Ko, H. G. Lee, Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system, Physica C,2010,470:1883-1886.
    [89]胡燕兰,吕环宇,朱则英,陆建华EAST全超导托卡马克装置失超保护检测技术的现状及发展.核电子学与探测技术,2010,30(9):1246-1250.
    [90]S. Choi, T. Kiyoshi, S. Y. Hahn, M. Sugano, Stress Analysis of a High Temperature Superconductor Coil Wound With Bi-2223/Ag Tapes for High Field HTS/LTS NMR Magnet Application, IEEE Transactions on Applied Superconductivity,2009,19(3):989-992.
    [91]D. Perini, F. Rodriguez-Mateos, Calculation of the thermostructural transient in LHC dipole at quench, IEEE Transactions on Magnetics,1992,28(1):370-373.
    [92]L. Imbasciati, P. Bauer, G. Ambrosio, M.J. Lamm, J.R. Miller, G.E. Miller, A.V. Zlobin, Effect of thermo-mechanical stress during quench on Nb3Sn cable performance, IEEE Transactions on Applied Superconductivity,2003,13(2):1718-1721.
    [93]方岱宁等著,铁磁固体的变形与断裂,科学出版社,2011.
    [94]冯雪,2002,铁磁材料本构关系的理论和实验研究,清华大学博士论文,北京.
    [95]A. Murakami, K. Katagiri, K. Noto, K. Kasaba, Y. Shoji, M. Muralidhar, N. Sakai, M. Murakami, Tensile mechanical properties of (Nd,Eu,Gd)-Ba-Cu-O bulk superconductors at room and liquid nitrogen temperatures, Physica C,2002,378-381:794-797.
    [96]H. Liu, Y. Wu, Q. Han, Z. Wu, L. Li, Mechanical tests on the ITER PF 316L jacket after compaction, Cryogenics,2011,51(6):234-236.
    [97]方岱宁等,功能材料的力、电、磁耦合行为的实验研究,机械强度,2005,27(2):217-226.
    [98]宋玉泉,宋家旺,熊伟,力、热、磁耦合新实验装置,金属学报,2008,44(1):69-73.
    [99]Z. Y.Zhao, M. Tomizuka, S. Isaka, Fuzzy gain scheduling of PID controllers. IEEE Transactions on Systems,1993,23(5):1211-1219.
    [100]B. Guo, L. Ma, Q. Li, W. Wu, Q. Yao, X. Zhang, X. Wu, Y. He, S. Han, S. Zhang, P. Yuan, A 3 Tesla Superconducting Magnet for Hall Sensor Calibration, IEEE Transactions on Applied Superconductivity,2010,20(3):1781-1784.
    [101]K.Osamura et.al, International round robin test for mechanical properties of Nb3Sn superconductive wires at temperature,Superconductor science and technology,2008,21: 045006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700