MgB_2钉扎性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文主要包括以下方面内容:
     第一章简要介绍了MgB_2超导材料的研究背景,分析了目前所存在的主要问题,提出了本文的研究目标和研究内容。第二章回顾了超导电性的基本内容和MgB_2超导体的发现过程,着重介绍了MgB_2超导体钉扎性能的研究情况以及其它相关物性,并详细回顾了MgB_2化学掺杂的研究现状。第三章介绍了本文中用于制备MgB_2超导材料的三种制备方法:固相反应法、扩散法和化学溶液法,并简单介绍测量相关的表征手段。
     第四章研究了单质Al和碳纳米管单独掺杂对MgB_2超导电性和钉扎行为的影响。在单独掺Al的研究中发现,Al原子可以替代Mg进入到MgB_2的晶格当中,使c轴方向的晶胞参数减小。当Al掺杂量大于10%时,MgB_2晶格有相分离的情况出现,可能在材料中同时有两种合金相存在。另一方面,Al掺杂明显的抑制了MgB_2的超导电性,随着Al杂量的增加,超导转变温度线性下降。同时Al掺杂样品的H_(c2)、J_c等性能也受到了明显的抑制。然而,从钉扎力曲线的分析结果发现,掺杂并没有改变体系的钉扎机制,晶界钉扎仍是体系中主要的钉扎作用。
     分析单独CNTs掺杂对MgB_2的晶体结构和超导电性的影响时,发现碳纳米管掺杂可以在一定程度上提高MgB_2超导体的临界电流密度,但是当掺杂量过高时,掺杂样品在低场下的载流性能被明显的抑制。另一方面,用固相反应法制备的样品孔洞较多,实际密度只为理论密度的50%左右,因而其性能仍有较大的提升空间,用扩散法制备是解决这一问题的可能途径。
     在一体系中,还详细的研究了随着碳纳米管掺杂量的变化,系列样品中δT_c和δl钉扎的行为特性。发现在我们的MgB_2样品中,δT_c和δl两种钉扎行为同时存在,并且随着碳纳米管掺杂量的增加δl钉扎的比重逐渐增加,得到的实验结果和理论分析有很好的拟合,结果也说明了碳纳米管掺杂不但可以往样品中引入点钉扎的作用和,另外由于C掺杂引起的δl钉扎的增强,也可以极大的提高样品的钉扎作用。但在高温的情况下,由于温度等因素的影响,即使是高掺杂的样品在接近转变温度的区域,δT_c钉扎仍表现出较大的作用。
     在扩散法制备碳纳米管掺杂的MgB_2超导材料研究中,制备得到了较高致密性的超导块材,并且扩散法可以有效减少样品中MgO杂相的存在,同时极大的提高样品在低场下的临界电流密度。但是过于紧密的晶界连接反而削弱了MgB_2超导体晶界钉扎的作用从而导致高场下钉扎力较快衰退,因而有必要优化制备条件引入更有效的钉扎中心提高其高场下的性能。碳纳米管的掺杂在两组样品中都表现出了提高高场下钉扎力的能力,特别是0.5%掺杂量的样品,在整个磁场范围都有较好的表现。
     第五章研究了Al/C和Ti/C同时掺杂对MgB_2超导电性和钉扎性能的影响。
     研究MgB_2样品中同时掺杂Al和C时发现,Al替代Mg和C替代B这两种作用可以同时发生,并且当电子掺杂作用相当时,Al掺杂对超导转变温度(T_c)的抑制作用要更加明显,而另一方面Al掺杂却可以减缓C掺杂对T_c的影响。在对超导临界电流密度的影响方面,少量的Al掺杂可以提高MgB_2超导体在低场下的临界电流密度,C掺杂则可以显著改善高场下的性能。当样品中同时掺入1%Al和1%C时对J_c的改善达到最优化的效果,在0-7T范围内都表现出优于纯MgB_2样品的的临界电流密度性能。钉扎力性能的分析也印证了这一点,在低场下钉扎力达到最大值以前Al掺杂样品和共掺杂样品的钉扎力强度都要大于纯的样品,但当磁场增加以后共掺杂的样品则表现出了最好的性能。
     最后一节利用测量交流磁化率和直流磁化强度的方法研究了Ti,C共掺对MgB_2磁通钉扎行为的影响,发现Ti,C共掺显著提高了MgB_2超导体的临界电流密度,并且在整个外场下的综合性能要优于单掺Ti和单掺C的结果。通过交流磁化率的测量结果,我们分析了掺杂对钉扎势的影响。其中MgB_2和Ti,C共掺的样品分别得到了如下的关系式U(T,B,j)=U_0(?)和U(T,B,j)=U_0(?),这一结果也同样表明Ti,C掺杂明显提高了MgB_2材料的钉扎性能。
     第六章首先研究了柠檬酸掺杂对MgB_2超导电性及临界电流密度的影响。研究发现,柠檬酸掺杂可以有效的提高MgB_2超导体在高场下的临界电流密度(J_c),但同一般的C掺杂类似,柠檬酸掺杂会导致超导转变温度(T_c)下降,所以在高温下柠檬酸掺杂对J_c的提高并不是非常明显。临界电流密度和钉扎力性能的分析表明,柠檬酸掺杂可以有效的提高MgB_2在高场下的性能。在10K,4T条件下15%掺杂的样品得到了最优的结果,其临界电流密度值达到了1.2×10~4A/cm~(-2),要远高于没有掺杂的样品。但是当掺杂量进一步增加到20%时临界电流密度反而出现了下降,因而柠檬酸的最优掺杂可能在15.20%之间。
     其次对于山梨酸的结果,也进行了类似的分析。相对于柠檬酸,山梨酸含碳量相对较高,在相同掺杂量的情况下有更多的C被引入到MgB_2体系中,从而表现出较高的载流性能。为了更好的分析掺杂对MgB_2钉扎性能的影响,利用传统钉扎力理论的标度公f_p∝h~p(1-h)~q对两组不同掺杂样品的约化钉扎力曲线进行了拟合,发现掺杂使得拟合的结果向着晶界钉扎的结果靠近。我们推测在MgB_2体系中,临界电流密度除受到钉扎力的影响外可能还受到晶粒的各向异性等其它因素的影响,而山梨酸和柠檬酸掺杂所引入的C掺杂则可能会减少这类影响。而在磁测量的结果中,这一影响并不能很好的利用渗流模型来加以解释,为了更好的分析实验结果,在渗流模型的基础上进行了修正和补充,钉扎力标度的拟合公式和实验本质更为接近。
     另一方面,综合柠檬酸和山梨酸掺杂的结果,用化学溶液法进行掺杂与传统的固相反应法相比较有其自身的优点。因为纳米颗粒有团聚的性能,当用固相反应法进行掺杂时,纳米颗粒的团聚作用有可能使掺杂物无法很好的在体系中均匀分散,从而导致局部过掺杂的情况。用化学溶液法进行掺杂则可以有效的解决这一问题,当化学溶液挥发以后,析出的掺杂物会在原料B粉的表面形成一层包裹膜,这样就有利于掺杂反应的进行。因而在柠檬酸掺杂的样品中,我们得到均匀性较好的掺杂样品,适度掺杂的情况下,所有样品的超导转变都较窄,从而进一步反映出样品具有较好的超导性能。
     第七章研究了铁纳米线,纳米铁粉和二茂铁三种磁性物质对MgB_2掺杂的影响。发现铁掺杂对MgB_2超导电性的抑制主要是由于活性较强的Fe和B反应造成的,只有纳米铁粉对T_c表现出了较强的抑制作用,而纳米铁粉和二茂铁的作用则相对较小。铁纳米线掺杂提高了MgB_2超导体的临界电流密度(J_c),其原因可能是是由于掺杂的铁纳米线可以在中高磁下场提供额外的钉扎力,增加了样品在高场下的的钉扎性能。二茂铁掺杂对J_c也具有提高的作用,但在二茂铁掺杂的样品中,钉扎力约化曲线的峰值向h=0.17方向偏移,并且在高场下(h=0.75)有弱小的第二个峰存在,这有可能是由于二茂铁掺杂的磁性钉扎所引起的。但这一观点仍需要进一步的实验来验证。
The main contents of thesis are organized as follows:
     In Chapter 1, the background of MgB_2 is introduced, where the problems of the recent work are revealed. The aims as well as the main contents of the present dissertation are also explained. The development of investigation on MgB_2 has been reviewed in Chapter2 and the main contents are focus on the superconductivity and other physical properties of MgB_2, including crystal and electronic structure, critical current density and up critical field. Afterwords, the current research states of chemical doping on MgB_2 have been introduced. Chapter 3 has discussed the experimental details as well as the characterization approaches concerned in this project.
     In Chapter 4, the doping effect of Al on superconductivity of MgB_2 is studied as well as CNTs doping. In the section of Al doping, it is found that c-axis cell parameter is reduced by substitution of Al for Mg in the lattice. The phase separation is observed in samples doped at level higher than 10%. On the other hand the superconductivity of MgB_2 is suppressed severly by Al doping, while the mechanism of flux pinning in doped samples is not affected.
     The critical current, J_c, is ehanced by CNTs doping at low level, while depressed at high doping level. The density of samples prepared by solid state reaction is only 50% of theoretical values. It may be the key problem to improve the J_c in MgB_2 furtherly. Theδl andδT_c pinning properties of MgB_2 doped with CNTs is investigated and it is observed that the main pinning mechanism transforme fromδT_c toδl pinning with increasing CNTs doping.
     The density of MgB_2 is increased for samples prepared by diffusion methed. Less MgO impurity phase and better grain connection are also observed in these samples; however the behaviour of J_c is suppressed in high field range due to the weakening of grain boundaries.
     In Chapter 5, the cooperation doping effect of Al/C and Ti/C on superconductivity of MgB_2 is investigated. The observed decrease of T_c of samples could be attributed to the band filling effect and interband scattering. The similar behavior of H_(irr) versus contension carbon was observed in the both series of samples. It was found that transition temperature is suppressed more severely doping with aluminium than with carbon. The doping effect of carbon is depressed by aluminium doping when both elements are doped simultaneity.
     In the last section of Chapter 5, flux pinning behavior of carbon and titanium concurrently doped MgB_2 alloys has been studied by ac susceptibilityand dc magnetization measurements. It is found that critical current density and irreversibilityfield of MgB_2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to thesituation of C-only-doped or Ti-only-doped MgB_2 samples. AC susceptibility measurement reveals thatthe dependence of the pinning potential on the dc applied field of Mg_(0.95)Ti_(0.05)B_(1.95)C_(0.05) has been determinedto be U(B_(dc))∝B_(dc)~(-1) compared to that of MgB_2 U(B_(dc))∝B_(dc)~(-1.5). As to the U(J) behavior, a relationshipof U(J)∝J~(-0.17) is found fitting well for Mg_(0.95)Ti_(0.05)B_(1.95)C_(0.05) with respect to U(J)∝J~(-0.21) for MgB_2. All theresults reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB_2.
     The doping effect of citric acid on MgB_2 is studied in the first segment of Chapter6. It was observed that the J_c of MgB_2 is significantly enhanced by doping while the critical temperature, T_c, is suppressed as well as carbon doping. The best values of J_c is obtained in 15% doped sample at 10K, 4T, which is 1.2×10~4 A/cm~2. The analogous results are obtained in samples doped with sorbic acid. The fluxpinning behaviors is fitted with expression of f_p∝h~p(1-h)~q which is often usedin conventional flux pinning theory, and it is found that the values of f_p decreasemuch rapidly than the values of surface pinning theory in the high field range. However, the experimental data could not be explained by the percolation theory which is proposed by Eisterer because our values of J_c are obtained from magnetichysteresis loop. In order to explain the result, a new method of fitting f_p isproposed. It is found that the behavior of f_p in high field range is mainly influenceby the anisotropy of irreversibility field of MgB_2.
     In Chapter 7, Mg_(1-x)Fe_xB_2 superconductor was prepared by in situ solid state reaction to study the effects of nano-iron doping on the superconductivity of MgB_2. Two kinds of nano-iron sources have been used: nano-iron particles and nano-iron wires. It was found that crystal structure was not affected by nano-iron doping for either form of dopant source, while T_c, J_c, and H_m were severely suppressed by iron nano-particles doping. In contrast, with iron nano-wires doping, T_c of the MgB_2 superconductors were not changed remarkedly, while their J_c and H_(irr) were slightly enhanced at all the temperature ranges investigated in this work. Under 4 T field, the sample doped with 1% wt iron nano-wires reached the highest J_c of 1.1×10~4 A/cm~2 at 10 K and 2.2×10~2 A/cm~2 at 20 K, respectively. It is argued that the Fe nano-wires may be introduced into MgB_2 as external pinning centers in high field region.
     In addition, ferrocene is also used to dope in the MgB_2. In this situation, the results may be consider as the codoping of Fe and C, because ferrocene is decomposed into iron and carbon at high temperature. It is deteced that the J_c of doped samples is increased and this may be due to the doping of carbon in MgB_2.
引文
1. Onnes H.K., The resistance of pure mercury at helium temperature. Phys. Lab. Univ. Leiden, 1911.120b: p. 120b.
    2. Schilling, A., et al., Superconductivity above 130-K in the Hg-Ba-Ca-Cu-O System. Nature, 1993. 363(6424): p. 56-58.
    3. Nagamatsu, I, et al., Superconductivity at 39 K in magnesium diboride. Nature, 2001. 410(6824): p. 63-64.
    4. Buzea, C. and T. Yamashita, Review of the superconducting properties of MgB_2. Superconductor Science & Technology, 2001.14(11): p. R115-R146.
    5. Pu, X.L., et al., Effects of polycarbosilane doping on the superconductivity and microstructure of MgB_2. Superconductor Science & Technology, 2006.19(1): p. 68-71.
    6. Petaccia, L., et al., Characterization of high-quality MgB_2(0001) epitaxial films on Mg(0001). New Journal of Physics, 2006. 8: p. 12.
    7. Wilke R.H.T., et al., Synthesis of Mg(B_(1-x)C_x)_2 powders. Physica C-Superconductivity and Its Applications, 2005. 432(3-4): p. 193-205.
    8. Stamopoulos D. and Manios E., The nucleation of superconductivity in superconducting-ferromagnetic hybrid films. Superconductor Science & Technology, 2005.18(4): p. 538-551.
    9. Zhao Y., et al., High critical current density of MgB_2 bulk superconductor doped with Ti and sintered at ambient pressure. Applied Physics Letters, 2001. 79(8): p. 1154-1156.
    10. Zhang H.R., Zhao J.Y., and Shi L., The charge transfer induced by Cr doping in MgB_2. Physica C-Superconductivity and Its Applications, 2005. 424(1-2): p. 79-84.
    11. Yeoh W.K., et al., Control of nano carbon substitution for enhancing the critical current density in MgB_2. Superconductor Science & Technology, 2006.19(6): p. 596-599.
    12. Yamamoto A., et al., Doping effects on critical current properties of MgB_2 bulks synthesized by modified powder-in-tube method. Ieee Transactions on Applied Superconductivity, 2005.15(2): p. 3292-3295.
    13. Xu X., et al., Phase transformation and superconducting properties of MgB_2 using ball-milled low purity boron. Journal of Applied Physics, 2008. 103(2): p. 023912 .
    14. Ueda S., et al., Enhanced critical current properties observed in Na_2CO_3-doped MgB_2. Superconductor Science & Technology, 2004.17(7): p. 926-930.
    15.Rui X.F., et al., Doping effect of nano-alumina on MgB_2. Physica C-Superconductivity and Its Applications, 2004. 412-14: p. 312-315.
    16.Qin M.J., et al., Dependence of the flux-creep activation energy on current density and magnetic field for the MgB_2 superconductor. Physical Review B, 2001. 64: p. 060505.
    17.Ma Y.W., et al., Enhanced critical current density of MgB_2 superconductor synthesized in high magnetic fields. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2006. 45(17-19): p. L493-L496.
    18.Bugoslavsky Y., et al., Vortex dynamics in superconducting MgB_2 and prospects for applications. Nature, 2001. 410(6828): p. 563-565.
    19.Larbalestier D.C., et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB_2. Nature, 2001. 410(6825): p. 186-189.
    20.Canfield P.C., et al., Superconductivity in dense MgB_2 wires. Physical Review Letters, 2001. 86(11): p. 2423-2426.
    21.Feng Y., et al., High critical current density in MgB_2/Fe wires. Superconductor Science & Technology, 2003.16(6): p. 682-684.
    22.Yan G., et al., Preparation and transport J(c)(B) properties of Fe-clad MgB_2 wires. Physica C-Superconductivity and Its Applications, 2003. 386: p. 607-610.
    23.Yan G, et al., Supercondcuting properties in MgB_2/Fe wires prepared by PIT method. Chinese Science Bulletin, 2003. 48(13): p. 1331-1333.
    24.Xu X.L., et al., Effect of sintering temperature on properties of MgB_2 wire sheathed by low carbon steel tube. Physica C-Superconductivity and Its Applications, 2005. 419(3-4): p. 94-100.
    25.Fu B.Q., et al., Microstructures and superconducting properties in Ti-doped MgB_2/Ta/Cu tape. Physica C-Superconductivity and Its Applications, 2003. 386: p. 659-662.
    26.Fu B.Q., et al., High transport critical current in MgB_2/Fe wire by in situ powder-in-tube process. Physica C-Superconductivity and Its Applications, 2003. 392: p. 1035-1038.
    27.Feng Y., et al., Significant enhancement of flux pinning in MgB_2/Fe/Cu superconducting wires fabricated by in situ powder-in-tube method. Physica C-Superconductivity and Its Applications, 2005. 426: p. 1216-1219.
    28.Fujii H., et al, Enhancement of critical current densities of powder-in-tube processed MgB_2 tapes by using MgH_2 as a precursor powder. Superconductor Science & Technology, 2002.15(11): p. 1571-1576.
    29.Nakane T., et al., Effect of SiC nanoparticle addition on the critical current density of MgB2 tapes fabricated from MgH_2, B and MgB_2 powder mixtures. Superconductor Science & Technology, 2005.18(10): p. 1337-1341.
    30.Nakane T., et al., The improvement of in-situ powder in tube MgB_2 tapes by mixing MgB_2 to the starting powder of MgH_2 and B. Physica C-Superconductivity and Its Applications, 2005. 426: p. 1238-1243.
    31.Jiang C.H., Hatakeyama H., and Kumakura H., Preparation of MgB_2/Fe tapes with improved J(c) property using MgH_2 powder and a short pre-annealing and intermediate rolling process. Superconductor Science & Technology, 2005.18(5): p. L17-L22.
    32.Hata S., et al., Microstructures of MgB_2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder. Superconductor Science & Technology, 2006.19(2): p. 161-168.
    33.Kumakura H., et al., Critical current densities and irreversibility fields of MgB_2 bulks. Physica C-Superconductivity and Its Applications, 2001. 363(3): p. 179-183.
    34.Dhalle M., et al., Transport and inductive critical current densities in superconducting MgB_2. Physica C-Superconductivity and Its Applications, 2001. 363(3): p. 155-165.
    35.Wang J., et al., High critical current density and improved irreversibility field in bulk MgB_2 made by a scaleable, nanoparticle addition route. Applied Physics Letters, 2002. 81(11): p. 2026-2028.
    36.Dou S.X., et al., Superconductivity, critical current density, and flux pinning in MgB_(2-x)(SiC)_(x/2) superconductor after SiC nanoparticle doping. Journal of Applied Physics, 2003. 94(3): p. 1850-1856.
    37.Dew-Hughes D., Flux pinning mechanisms in type two superconductors. Phil. Mag, 1974. 26:p. 73.
    38.Campbell A. M, Flux vortices and transport currents in type two superconductors. Advances in Physics, 1972. 21: p. 1460.
    39.Blatter G., M.V.F.m., V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur, Vortice in high temperatrue superconductor. Reviews of Modern Physics, 1994. 66(4): p. 1125.
    40.Eisterer, M., Magnetic properties and critical currents of MgB_2 Superconductor Science and Technology, 2007(12): p. R47.
    41.Qin, M.J., et al., Evidence for vortex pinning induced by fluctuations in the transition temperature of MgB_2 superconductors. Physical Review B, 2002. 65(13): p. 132508
    42.Ma Y.W., et al., Significantly enhanced critical current densities in MgB_2 tapes made by a scaleable nanocarbon addition route. Applied Physics Letters, 2006. 88(7): p.072502
    43.Yamada H., et al., Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB_2 tapes. Superconductor Science & Technology, 2006.19(2): p. 175-177.
    44.Ma Y.W., et al., Significantly enhanced critical current densities in MgB[sub 2] tapes made by a scaleable nanocarbon addition route. Applied Physics Letters, 2006. 88(7): p. 072502.
    45.Zhang X.P., et al., Effect of nanoscale C and SiC doping on the superconducting properties of MgB_2 tapes. Acta Physica Sinica, 2006. 55(9): p. 4873-4877.
    46.Jiang C.H., et al, Enhancement of the low-field J_c properties of MgB_2/Fe tapes by a modified in situ process. Superconductor Science and Technology, 2007(10): p. 1015.
    47.Kim J.H., et al., Study of MgO formation and structural defects in tube situ processed MgB_2/Fe wires Superconductor Science and Technology, 2007(10): p. 1026.
    48.Gao Z. S., et al., Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB[sub 2] based tapes. Journal of Applied Physics, 2007. 102(1): p. 013914.
    49.Zhu Y., et al., Microstructures of SiC nanoparticle-doped MgB[sub 2]/Fe tapes. Journal of Applied Physics, 2007.102(1): p. 013913.
    50.Kim J.H., et al., Influence of disorder on the in-field J_c of MgB_2 wires using highly active pyrene. Applied Physics Letters, 2008. 92(4): p.042506.
    51.Shcherbakova, O.V., et al., Sugar as an optimal carbon source for the enhanced performance of MgB_2 superconductors at high magnetic fields. Superconductor Science & Technology, 2008. 21(1):p.015005 (7pp) .
    52.Zeng, R., et al., Excess Mg addition MgB_2/Fe wires with enhanced critical current density. Journal of Applied Physics, 2008. 103(8): p. 083911.
    53.Paranthaman, M., J.R. Thompson, and D.K. Christen, Effect of carbon-doping in bulk superconducting MgB_2 samples. Physica C-Superconductivity and Its Applications, 2001. 355(1-2): p. 1-5.
    54.Zhang, S.Y., et al., Structure and superconductivity of Mg(B_(1-x)C_x)_2 compounds. Chinese Physics, 2001. 10(4): p. 335-337.
    55.Mickelson, W., et al., Effects of carbon doping on superconductivity in magnesium diboride. Physical Review B, 2002. 65(5): p.052505.
    56.Bharathi, A., et al., Superconductivity in MgB_2: Phonon modes and influence of carbon doping. Sadhana-Academy Proceedings in Engineering Sciences, 2003. 28: p. 263-272.
    57.Hol'anova, Z., et al., Critical fluctuations in the carbon-doped magnesium diboride. Physica C-Superconductivity and Its Applications, 2004. 404(1-4): p. 195-199.
    58.Ohmichi, E., et al., Enhancement of irreversibility field in carbon-substituted MgB_2 single crystals. Journal of the Physical Society of Japan, 2004. 73(8): p. 2065-2068.
    59.Wilke, R.H.T., et al., Systematic effects of carbon doping on the superconducting properties of Mg(B_(1-x)C_x)_2. Physical Review Letters, 2004. 92(21): p.217003
    60.Xu, H.L., et al., Enhancement of critical current density in graphite doped MgB_2 wires. Chinese Physics Letters, 2004. 21(12): p. 2511-2513.
    61.Yeoh, W.K., et al., Strong pinning and high critical current density in carbon nanotube doped MgB_2. Superconductor Science & Technology, 2004.17(9): p. S572-S577.
    62.Ferdeghini, C, et al., Upper critical fields up to 60 T in dirty magnesium diboride thin films. Ieee Transactions on Applied Superconductivity, 2005.15(2): p. 3234-3237.
    63.Huang, X.S., et al., Enhancement of the upper critical field of MgB_2 by carbon-doping. Solid State Communications, 2005.136(5): p. 278-282.
    64.Yamamoto, A., et al., Effects of B_4C doping on critical current properties of MgB_2 superconductor. Superconductor Science & Technology, 2005.18(10): p. 1323-1328.
    65.Yeoh, W.K., et al., Effect of carbon nanotube size on superconductivity properties of MgB_2. Ieee Transactions on Applied Superconductivity, 2005.15(2): p. 3284-3287.
    66.Kim, J.H., et al., The doping effect of multiwall carbon nanotube on MgB_2/Fe superconductor wire. Journal of Applied Physics, 2006. 100(1): p. 023517
    67.Yeoh, W.K., et al., Improving flux pinning of MgB_2 by carbon nanotube doping and ultrasonication. Superconductor Science & Technology, 2006.19(2): p. L5-L8.
    68.Yeoh, W.K., et al., Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB_2 Applied Physics Letters, 2007. 90(12): p. 122502.
    69.Serrano, G., et al., SiC and carbon nanotube distinctive effects on the superconducting properties of bulk MgB_2. Journal of Applied Physics, 2008. 103(2): p. 14256.
    70.Wang, J.L., et al., Effects of C substitution on the pinning mechanism of MgB_2 Physical Review B (Condensed Matter and Materials Physics), 2008. 77(17): p. 174501.
    71.Meissner W.,Natuwiss R.O., 1933(21): p. 787.
    72.Gorterand C. J., H.B.G.C., Physica, 1934. 306: p. Z35.
    73. London F. ,London H., Supraleitung und diamagnetismus Phys. Lett, 1935. 2: p. 341.
    74. Pippard, A.B., An Experimental and Theoretical Study of the Relation between Magnetic Field and Current in a Superconductor Proc. Roy. Soc. A, 1950. 216: p. 547.
    75. V.L.Ginzberg, L.D.L., Zh. Eksp. Teor. Fiz, 1950. 32: p. 1064.
    76. Abrikocov, A.A., Zh. Eksp. Teor. Fiz, 1957. 32: p. 1442.
    77. Essmann U., The direct observation of individual flux lines in type Ⅱ superconductors , Physics Letters, 1967. 24A: p. 10.
    78. Bean, C.P., Magnetization of Hard Superconductors, Phys. Rev. Lett, 1962. 8: p. 250.
    79. Kim Y.B., Critical Persistent Currents in Hard Superconductors Phys. Rev. Lett., 1962. 9: p. 309.
    80. Jones M , M.R., The preparation and structure of magnesiumboride. J Am Chem Soc, 1954. 74: p. 1434-1436.
    81. Yamamoto, T. Masui, M. Izumi and S. Tajima, Physica C 200. 383: p. 197.
    82. Young, D.P., et al., Superconducting properties of BeB_(2.75). Physical Review B, 2002. 65(18): p.180518
    83. Gasparov, V.A., et al., Electron transport in diborides: Observation of superconductivity in ZrB_2. Jetp Letters, 2001. 73(10): p. 532-535.
    84. He, L.H., et al., Structure analysis of new superconductor MgB_2. Chinese Physics, 2001. 10(4): p. 343-344.
    85. Sung, G.Y., et al., High-resolution transmission electron microscopic observation of highly dense MgB_2 superconductors. Superconductor Science & Technology, 2001. 14(10): p. 880-883.
    86. Yu, R.C., et al., EELS studies of MgB_2 superconductor obtained under high pressure. Physica C-Superconductivity and Its Applications, 2001. 363(3): p. 184-188.
    87. Muranaka, T, et al., Vibrational spectroscopy of superconducting MgB_2 by neutron inelastic scattering. Journal of the Physical Society of Japan, 2001. 70(6): p. 1480-1482.
    88. Godwal, B.K., et al., Interpretation of high pressure experimental data in MgB_2: A challenge to current theories. High Pressure Research, 2004. 24(4): p. 525-530.
    89. Ivanovskii, A.L., Band structure and properties of superconducting MgB_2 and related compounds (a review). Physics of the Solid State, 2003. 45(10): p. 1829-1859.
    90. Dahm, T. and N. Schopohl, Fermi surface topology and the upper critical field in two-band superconductors: Application to MgB_2. Physical Review Letters, 2003. 91(1): p. 017001
    91.Wu, Z.Y., N.L. Saini, and A. Bianconi, Study of electronic structure of MgB_2 by multiple-scattering calculations of BK-edge XANES. International Journal of Modern Physics B, 2002.16(11-12): p. 1605-1612.
    92.Tajima, S., et al., Electronic state of MgB_2 superconductor. Current Applied Physics, 2002. 2(4): p. 315-319.
    93.Modak, P., et al., Electronic structure of MgB_2. Pramana-Journal of Physics, 2002. 58(5-6): p. 881-884.
    94.Kobayashi, K. and K. Yamamoto, Electronic and lattice properties of MgB_2 under a, b-axis compression. Journal of the Physical Society of Japan, 2002. 71(2): p. 397-400.
    95.Harima, H., Energy band structures of MgB_2 and related compounds. Physica C-Superconductivity and Its Applications, 2002. 378: p. 18-24.
    96.Yildirim, T., et al., Giant anharmonicity and nonlinear electron-phonon coupling in MgB_2: A combined first-principles calculation and neutron scattering study. Physical Review Letters, 2001. 8703(3): p. 037001
    97.Yamaji, K., Two-band-type superconducting instability in MgB_2. Journal of the Physical Society of Japan, 2001. 70(6): p. 1476-1479.
    98.Okatov, S.V., et al., The electronic band structures of superconducting MgB_2 and related borides CaB_2, MgB_6 and CaB_6. Physica Status Solidi B-Basic Research, 2001. 225(1): p. R3-R5.
    99.Loa, I. and K. Syassen, Calculated elastic and electronic properties of MgB_2 at high pressures. Solid State Communications, 2001.118(6): p. 279-282.
    100.Kortus, J., et al, Superconductivity of metallic boron in MgB_2. Physical Review Letters, 2001. 86(20): p. 4656-4659.
    101.Kobayashi, K. and K. Yamamoto, Electronic structures of MgB_2 under uniaxial and hydrostatic compression. Journal of the Physical Society of Japan, 2001. 70(7): p. 1861-1864.
    102.Ivanov, V.A., M. van den Broek, and F.M. Peeters, Strongly interacting sigma-electrons and MgB_2 superconductivity. Solid State Communications, 2001. 120(2-3): p. 53-57.
    103.Ivanov, O.V. and N.F. Efremov, Optimal basis set for band calculations. Physics of Metals and Metallography, 2001. 92: p. S169-S174.
    104.Islam, F.N., A.K.M.A. Islam, and M.N. Islam, Electronic structure and electric field gradient in MgB_2 under pressure: an ab initio study. Journal of Physics-Condensed Matter, 2001. 13(50): p. 11661-11667.
    105.Imada, M., Superconductivity driven by the interband Coulomb interaction and implications for the superconducting mechanism of MgB_2. Journal of the Physical Society of Japan, 2001. 70(5): p. 1218-1221.
    106.Gerashenko, A.P., et al., Electronic states of boron in superconducting MgB_2 studied by B-11 NMR. Applied Magnetic Resonance, 2001. 21(2): p. 157-163.
    107.Bouquet, R, et al., Phenomenological two-gap model for the specific heat of MgB. Europhysics Letters, 2001. 56(6): p. 856-862.
    108.Belashchenko, K.D., M. van Schilfgaarde, and V.P. Antropov, Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB_2. Physical Review B,2001. 64(09): p. 2503.
    109.Ivanovskii, A.L. and N.I. Medvedeva, Interatomic interactions and electronic structure of hexagonal magnesium, aluminum, and silicon diborides: Ab initio full-potential LMTO calculations. Russian Journal of Inorganic Chemistry, 2000. 45(8): p. 1234-1240.
    110.Suhl H., et al, Physical Review Letters, 1959. 3: p. 552.
    111.Shen L., Phillips E., Physical Review Letters, 1965.14: p. 1025.
    112.Binning G., et al, Physical Review Letters, 1980. 45: p. 1352.
    113.Radebaugh R,., Physical Review, 1996.149: p. 209.
    114.Shulga S. V., et al, Physical Review Letters, 1998. 80: p. 1730.
    115.Golubov, A.A., et al., Specific heat of MgB_2 in a one- and a two-band model from first-principles calculations. Journal of Physics-Condensed Matter, 2002. 14(6): p. 1353-1360.
    116.Iavarone, M., et al., MgB_2: directional tunnelling two-band superconductivity. Superconductor Science & Technology, 2003.16(2): p. 156-161.
    117.Chen, X.K., et al., Evidence for two superconducting gaps in MgB_2. Physical Review Letters, 2001. 8715(15): p.157002.
    118.Askerzade, I.N. and A. Gencer, London penetration depth lambda(T) in two-band Ginzburg-Landau theory: application to MgB_2 Solid State Communications, 2002. 123(1-2): p. 63-67.
    119.Uchiyama, H., et al., Electronic structure of MgB_2 from angle-resolved photoemission spectroscopy. Physical Review Letters, 2002. 88(15): p. 157002
    120.Uchiyama, H., et al., Photoemission studies in MgB_2. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 85-90.
    121.Gonnelli, R.S., et al., Evidence for single-gap superconductivity in Mg(B_(1-x)C_x)_2 single crystals with x=0.132 from point-contact spectroscopy. Physical Review B, 2005. 71(6): p.060503.
    122.Canfield, PC, S.L. Bud'ko, and D.K. Finnemore, An overview of the basic physical properties of MgB2. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 1-7.
    123.Bud'ko, S.L., P.C. Canfield, and V.G. Kogan, Magnesium, diboride: basic physical properties and high upper critical field anisotropy. Physica C-Superconductivity and Its Applications, 2002. 382(1): p. 85-92.
    124.Lee, S., et al., Growth, structure analysis and anisotropic superconducting properties of MgB_2 single crystals. Journal of the Physical Society of Japan, 2001. 70(8): p. 2255-2258.
    125.Xu, M., et al., Anisotropy of superconductivity from MgB_2 single crystals. Applied Physics Letters, 2001. 79(17): p. 2779-2781.
    126.Klein, N., et al., Microwave properties of MgB2 thin films. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3253-3256.
    127.Panagopoulos, C., et al., Penetration depth measurements in MgB_2: Evidence for unconventional superconductivity. Physical Review B, 2001. 64 (9): p. 094514.
    128.Pronin, A.V., et al., Optical conductivity and penetration depth in MgB_2. Physical Review Letters, 2001. 8709(9): p. art. no.-097003.
    129.Jin, R., et al., Unusual Hall effect in superconducting MgB_2 films. Physical Review B, 2001. 64(22):p.200506.
    130.Marsiglio, F., Implications of reflectance measurements on the mechanism for superconductivity in MgB_2. Physical Review Letters, 2001. 87 (24): p. 247001.
    131.Hinks, D.G., H. Claus, and J.D. Jorgensen, The complex nature of superconductivity in MgB_2 as revealed by the reduced total isotope effect. Nature, 2001. 411(6836): p. 457-460.
    132.Hirsch, J.E. and F. Marsiglio, Electron-phonon or hole superconductivity in (MgB_2). Physical Review B, 2001. 6414(14): p. 144523.
    133.Hirsch, J.E., Hole superconductivity in MgB2: a high T-c cuprate without Cu. Physics Letters A, 2001. 282(6): p. 392-398.
    134.Yamamoto, A., et al., Improved critical current properties observed in MgB_2 bulks synthesized by low-temperature solid-state reaction. Superconductor Science & Technology, 2005. 18(1): p. 116-121.
    135.Dong, C., et al., Rapid preparation of MgB_2 superconductor using hybrid microwave synthesis. Superconductor Science & Technology, 2004. 17(12): p. L55-L57.
    136.Ribeiro, R.A., et al., Effects of boron purity, Mg stoichiometry and carbon substitution on properties of polycrystalline MgB_2. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 16-23.
    137.Soltanian, S., et al., Effect of grain size and doping level of SiC on the superconductivity and critical current density in MgB_2 superconductor. Ieee Transactions on Applied Superconductivity, 2003.13(2): p. 3273-3276.
    138.Kitaguchi, H., et al., MgB_2 films with very high critical current densities due to strong grain boundary pinning. Applied Physics Letters, 2004. 85(14): p. 2842-2844.
    139.Song, X.Y., et al., Anisotropic grain morphology, crystallographic texture and their implications for flux pinning mechanisms in MgB_2 pellets, filaments and thin films. Superconductor Science & Technology, 2002.15(4): p. 511-518.
    140.Cooley, L., X.Y. Song, and D. Larbalestier, Improving flux pinning at high fields in intermetallic superconductors: Clues from MgB_2 and MgCNi_3. Ieee Transactions on Applied Superconductivity, 2003.13(2): p. 3280-3283.
    141.Yamamoto, A., et al., Universal relationship between crystallinity and irreversibility field of MgB_2. Applied Physics Letters, 2005. 86(21): p.212502.
    142.Serquis, A., et al., Effect of lattice strain and defects on the superconductivity of MgB_2. Applied Physics Letters, 2001. 79(26): p. 4399-4401.
    143.Ribeiro, R.A., et al., Effects of stoichiometry, purity, etching and distilling on resistance of MgB_2 pellets and wire segments. Physica C-Superconductivity and Its Applications, 2002. 382(2-3): p. 194-202.
    144.Xiao, H., et al., Influence of Mg deficiency on the properties of MgB_2. Physica C-Superconductivity and Its Applications, 2003. 386: p. 648-652.
    145.Franco, C.M., et al., Influence of Mg deficiency in the superconducting critical temperature of MgB_2. Physica C-Superconductivity and Its Applications, 2004. 408-10: p. 130-131.
    146.Zhou, S.H., et al., Effects of precursor powders and sintering processes on the superconducting properties of MgB_2. Superconductor Science & Technology, 2004. 17(9): p. S528-S532.
    147.Lezza, P., et al., Transport properties and exponential n-values of Fe/MgB_2 tapes with various MgB_2 particle sizes. Physica C-Superconductivity and Its Applications, 2004. 401(1-4): p. 305-309.
    148.Yamada, H., et al., Critical current densities of powder-in-tube MgB_2 tapes fabricated with nanometer-size Mg powder. Applied Physics Letters, 2004. 84(10): p. 1728-1730.
    149.Yamada, H., et al., Superconducting properties of powder-in-tube MgB_2 tapes prepared with fine powders. Ieee Transactions on Applied Superconductivity, 2005. 15(2): p. 3337-3340.
    150.Fang, H., et al., High critical current density in iron-clad MgB_2 tapes. Applied Physics Letters, 2003. 82(23): p. 4113-4115.
    151.Fischer, C., et al., Preparation of MgB_2 tapes using a nanocrystalline partially reacted precursor. Applied Physics Letters, 2003. 83(9): p. 1803-1805.
    152.Chen, S.K., et al., Strong influence of boron precursor powder on the critical current density of MgB_2. Superconductor Science & Technology, 2005. 18(11): p. 1473-1477.
    153.Xun, X., et al., Effect of boron powder purity on superconducting properties of MgB2. Superconductor Science and Technology, 2006(6): p. 466.
    154.Horvat, J., et al., Superconducting screening on different length scales in high-quality bulk MgB_2 superconductor. Journal of Applied Physics, 2004. 96(8): p. 4342-4351.
    155.Yamamoto, A., et al., Effects of sintering conditions on critical current properties and microstructures of MgB_2 bulks. Physica C-Superconductivity and Its Applications, 2005. 426: p. 1220-1224.
    156.Kumakura, H., et al., Critical current densities of powder-in-tube (PIT)-processed MgB_2 tapes. Materials Transactions, 2004. 45(10): p. 3056-3059.
    157.Chen, S.K., et al., Improved current densities in MgB_2 by liquid-assisted sintering. Applied Physics Letters, 2005. 86(24): p. 242501.
    158.Serquis, A., et al., Influence of microstructures and crystalline defects on the superconductivity of MgB_2. Journal of Applied Physics, 2002. 92(1): p. 351-356.
    159.Li, S.C., et al., High-pressure synthesis of MgB_2 superconductor with T-c above 39 K. Chinese Physics, 2001.10(4): p. 338-339.
    160.Jung, C.U., et al., Effect of sintering temperature under high pressure on the superconductivity of MgB_2. Applied Physics Letters, 2001. 78(26): p. 4157-4159.
    161.Gumbel, A., et al., Improved superconducting properties in nanocrystalline bulk MgB_2. Applied Physics Letters, 2002. 80(15): p. 2725-2727.
    162.Gumbel, A., et al., High density nanocrystalline MgB_2 bulk superconductors with improved pinning. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3064-3067.
    163.Abe, H., et al., Low temperature formation of superconducting MgB_2 phase from elements by mechanical milling. Physica C-Superconductivity and Its Applications, 2003. 391(2): p. 211-216.
    164.Hassler, W., et al., Low temperature preparation of MgB_2 tapes using mechanically alloyed powder. Superconductor Science & Technology, 2003.16(2): p. 281-284.
    165.Perner, O., et al., Enhanced critical current density in nanocrystalline mechanically alloyed MgB_2 bulk and Fe sheathed tapes. Ieee Transactions on Applied Superconductivity, 2005.15(2): p. 3192-3195.
    166.Gao, Y.D., et al., Structure, superconductivity and magnetic properties of mechanically alloyed Mg_(1-x)Fe_xB_2 powders with x=0-0.4. Acta Materialia, 2004. 52(6): p. 1543-1553.
    167.Strickland, N.M., R.G. Buckley, and A. Otto, High critical current densities in Cu-sheathed MgB_2 formed from a mechanically-alloyed precursor. Applied Physics Letters, 2003. 83(2): p. 326-328.
    168.Goldacker, W. and S.I. Schlachter, Influence of mechanical reinforcement of MgB_2 wires on the superconducting properties. Physica C-Superconductivity and Its Applications, 2002. 378: p. 889-893.
    169.Zhou, S.H., et al., Effect of the processing parameters of MgB_(1.8)(SiC)_((0.1))/Fe tapes on the critical current density. Physica C-Superconductivity and Its Applications, 2003. 387(3-4): p. 321-327.
    170.Jiang, Q.C., et al., Fabrication of B_4C particulate reinforced magnesium matrix composite by powder metallurgy. Journal of Alloys and Compounds, 2005. 386(1-2): p. 177-181.
    171.Baharvandi, H.R., et al., Investigation on addition of talc on sintering behavior and mechanical properties of B_4C. Journal of Materials Engineering and Performance, 2006. 15(3): p. 280-283.
    172.Takenobu, T., et al., Intralayer carbon substitution in the MgB_2 superconductor. Physical Review B, 2001. 6413(13): p. 134513.
    173.Ribeiro, R.A., et al., Carbon doping of superconducting magnesium diboride. Physica C-Superconductivity and Its Applications, 2003. 384(3): p. 227-236.
    174.Avdeev, M., et al., Crystal chemistry of carbon-substituted MgB_2. Physica C-Superconductivity and Its Applications, 2003. 387(3-4): p. 301-306.
    175.Balaselvi, S.J., et al., Stoichiometric carbon substitution in MgB_2. Superconductor Science & Technology, 2004.17(12): p. 1401-1405.
    176.Kazakov, S.M., et al., Carbon substitution in MgB_2 single crystals: Structural and superconducting properties. Physical Review B, 2005. 71(2): p.024533.
    177.Gonnelli, R.S., et al., Evidence for one-gap superconductivity in Mg(B_(1-x)C_x)_2 single crystals at x=0.132 by point-contact spectroscopy. Journal of Superconductivity, 2005. 18(5-6): p. 681-685.
    178.Wang, X.L., et al., Significant improvement of critical current density in coated MgB_2/Cu short tapes through nano-SiC doping and short-time in situ reaction. Superconductor Science & Technology, 2004.17(3): p. L21-L24.
    179.Soltanian, S., et al., High transport critical current density and large H_(c2) and H_(irr) in nanoscale SiC doped MgB_2 wires sintered at low temperature. Superconductor Science & Technology, 2005.18(5): p. 658-666.
    180.Dou, S.X., et al., Substitution-induced pinning in MgB_2 superconductor doped with SiC nano-particles. Superconductor Science & Technology, 2002.15(11): p. 1587-1591.
    181.Dou, S.X., et al., Transport critical current density in Fe-sheathed nano-SiC doped MgB_2 wires. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3199-3202.
    182.Dou, S.X., et al., Nanoscale-SiC doping for enhancing J_c and H_(c2) in superconducting MgB_2. Journal of Applied Physics, 2004. 96(12): p. 7549-7555.
    183.Di Castro, D., et al., Infrared properties of Mg_(1-x)Al_x(B_(1-y)C_y)_2 single crystals in the normal and superconducting state. Physical Review B, 2006. 73(17): p.174509.
    184.Samuely, P., et al., Intraband scattering studies in carbon- and aluminium-doped MgB_2. Physica C-Superconductivity and Its Applications, 2006. 435(1-2): p. 71-73.
    185.Angst, M., et al, Difference between Al and C doping in anisotropic upper critical field development in MgB_2. Physical Review B, 2005. 71(14): p. -.
    186.Wu, X.S. and J. Gao, Heat of formation in (Mg, X)B_2 (X = Li, Na, Ca, Al). Physica C-Superconductivity and Its Applications, 2005. 418(3-4): p. 151-159.
    187.Ummarino, G.A., et al., Two-band Eliashberg equations and the experimental T_c of the diboride Mg_(1-x)Al_xB_2. Physica C-Superconductivity and Its Applications, 2004. 407(3-4): p. 121-127.
    188.Ponomarev, Y.G., et al., Investigation of a superconducting Mg_(1-x)Al_xB_2 system by tunneling and microjunction (Andreev) spectroscopies. Jetp Letters, 2004. 79(10): p. 484-488.
    189.Yokoo, T., et al., Evidence of electron-phonon interaction in Al-substituted Mg_(1-x)Al_xB_2. Journal of Superconductivity, 2004.17(2): p. 199-203.
    190.Ivanovskaya, V.V., A.N. Enyashin, and A.L. Ivanovskii, Structure, electronic spectrum, and chemical bonding of fullerene-like nanoparticles based on MB_2 (M = Mg, Al, Sc, Ti) layered diborides. Inorganic Materials, 2004. 40(2): p. 134-143.
    191.Xiang, J.Y., et al., Investigation of structure, specific heat and superconducting transition in Mg_(1-x)Al_xB_2 (x similar to 0.5). Physica C-Superconductivity and Its Applications, 2004. 402(4): p. 335-340.
    192.Profeta, G, A. Continenza, and S. Massidda, Phonon and electron-phonon renormalization in Al-doped MgB_2. Physical Review B, 2003. 68(14): p. -.
    193.Yang, H.D., et al., X-ray absorption and optical spectroscopy studies of (Mg_(1-x)Al_x)B_2. Physical Review B, 2003. 68(9): p. -.
    194.Xiang, J.Y., et al., Superconducting properties and c-axis superstructure of Mg_(1-x)Al_xB_2. Physical Review B, 2002. 65(21): p. -.
    195.Kotegawa, H., et al., Evidence for high-frequency phonon mediated S-wave superconductivity: B-11 NMR study of Al-doped MgB_2. Physical Review B, 2002. 66(6): p.-.
    196.de la Pena, O., A. Aguayo, and R. de Coss, Effects of Al doping on the structural and electronic properties of Mg_(1-x)Al_xB_2. Physical Review B, 2002. 66(1): p.012511
    197.Pissas, M., et al., Magnetization and B-11 NMR study of Mg_(1-x)Al_xB_2 superconductors. Physical Review B, 2002. 65(18): p. -.
    198.Luo, H., et al., Study of Al doping effect on superconductivity of Mg_(1-x)Al_xB_2. Journal of Applied Physics, 2002. 91(10): p. 7122-7124.
    199.Nakamura, J., et al., Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M = Mg, Al, Ta, andNb). Physical Review B, 2001. 6417(17): p. -.
    200.Sharoni, A., et al., Spatial variations of the superconductor gap structure in MgB2/Al composite. Journal of Physics-Condensed Matter, 2001.13(22): p. L503-L508.
    201.Di Gennaro, E., et al., Observation of multiband effects in the microwave complex conductivity of pure and Al-doped MgB_2 samples. Physica C-Superconductivity and Its Applications, 2004. 408-10: p. 125-126.
    202.Mattila, A., et al., Electron-hole counts in Al-substituted MgB_2 superconductors from x-ray Raman scattering. Physical Review B (Condensed Matter and Materials Physics), 2008. 78(6): p. 064517.
    203.Li, W.X., et al., Raman study of element doping effects on the superconductivity of MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2008. 77(9): p. 094517.
    204.Bernardi, E., et al., Superconducting fluctuating diamagnetism in neutron irradiated MgB_2 in relation to precursor diamagnetism in Al-doped MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2008. 77(6): p. 064502.
    205.Giubileo, F., et al., Local tunneling study of three-dimensional order parameter in the pi band of Al-doped MgB_2 single crystals. Physical Review B (Condensed Matter and Materials Physics), 2007. 76(2): p. 024507.
    206.Szabo, P., et al., Point-contact spectroscopy of Al- and C-doped MgB_2: Superconducting energy gaps and scattering studies. Physical Review B (Condensed Matter and Materials Physics), 2007. 75(14): p. 144507.
    207.Samuely, P., et al., Development of Two Superconducting Energy Gaps in the Aluminum Doped MgB_2. AIP Conference Proceedings, 2006. 850(1): p. 597-598.
    208.Castro, D.D., et al., Raman spectra of neutron-irradiated and Al-doped MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2006. 74(10): p. 100505.
    209.Lei, S., et al., Superconductivity and the disorder effect in Ag and Al double doped MgB_2. Journal of Applied Physics, 2006.100(2): p. 023905.
    210.Sologubenko, A.V., et al., Thermal conductivity of Al-doped MgB_2: Impurity scattering and the validity of the Wiedemann-Franz law. Physical Review B (Condensed Matter and Materials Physics), 2006. 74(18): p. 184523.
    211.Cappelluti, E., Electron-phonon effects on the Raman spectrum in MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2006. 73(14): p. 140505.
    212.Heon-Jung, K., et al., Comparison of temperature and angular dependence of the upper critical field in Mg_(1-x)AI_xB_2 single crystals in dirty-limit two-gap theory. Physical Review B (Condensed Matter and Materials Physics), 2006. 73(6): p. 064520.
    213.Klie, R.F., et al., Electron doping in MgB_2 studied by electron energy-loss spectroscopy. Physical Review B (Condensed Matter and Materials Physics), 2006. 73(1): p. 014513.
    214.Berenov, A., et al., Enhancement of critical current density in low level Al-doped MgB_2. Superconductor Science & Technology, 2004.17(10): p. 1093-1096.
    215.Fabio, B. and M. Sandro, Anomalous effect of Li-Al codoping in MgB_2: A simple explanation. Physical Review B (Condensed Matter and Materials Physics), 2006. 74(1): p. 014513.
    216.Monni, M., et al., Role of charge doping and lattice distortions in codoped Mg_(1-x)AIL_xB_2 compounds. Physical Review B (Condensed Matter and Materials Physics), 2006. 73(21): p. 214508.
    217.Wilke, R.H.T., et al., Superconductivity in MgB_2 doped with Ti and C. Physica C-Superconductivity and Its Applications, 2005. 418(3-4): p. 160-167.
    218.Anderson, N.E., et al., Titanium additions to MgB_2 conductors. Physica C-Superconductivity and Its Applications, 2003. 390(1): p. 11-15.
    219.Wilson, J.A., et al., Reaction of magnesium boride particles in mechanically alloyed Ti-4wt%MgB_2. Journal of Materials Science, 2001. 36(1): p. 67-75.
    220.Prikhna, T.A., et al., High-pressure synthesis of MgB_2 with addition of Ti. Physica C-Superconductivity and Its Applications, 2004. 402(3): p. 223-233.
    221.Milman, V. and M.C. Warren, Elastic properties of TiB_2 and MgB_2. Journal of Physics-Condensed Matter, 2001. 13(24): p. 5585-5595.
    222.Haigh, S., et al., Chemical interactions in Ti doped MgB_2 superconducting bulk samples and wires. Superconductor Science & Technology, 2005.18(9): p. 1190-1196.
    223.Alessandrini, M., et al., High critical current of Ti-sheathed MgB_2 wires for AC and weight-critical applications. Superconductor Science & Technology, 2006. 19(1): p. 129-132.
    224.Chamberlin, R.V., et al., Saturation and intrinsic dynamics of fluxons in NbTi and MgB_2. Applied Physics Letters, 2007. 90(13): p. 132504.
    225.Zhao, Y., et al., Cooperative doping effects of Ti and C on critical current density and irreversibility field of MgB_2. Journal of Applied Physics, 2006. 100(12): p. 123902.
    226.Goto, D., et al., Improvement of critical current density in MgB_2 by Ti, Zr and Hf doping. Physica C-Superconductivity and Its Applications, 2003. 392: p. 272-275.
    227.Zhao, G.M., Unconventional phonon-mediated superconductivity in MgB_2. New Journal of Physics, 2002. 4: p. 31-37.
    228.Zhao, Y., et al., Enhancement of critical current density in MgB_2 bulk superconductor by Ti doping. Europhysics Letters, 2002. 57(3): p. 437-443.
    229.Zhao, Y, et al., Doping effect of Zr and Ti on the critical current density of MgB_2 bulk superconductors prepared under ambient pressure. Physica C-Superconductivity and Its Applications, 2002. 378: p. 122-126.
    230.Zhao, Y, et al., Improved chemical stability of Ti-doped MgB_2 in water. Applied Physics Letters, 2002. 80(13): p. 2311-2313.
    231.Fu, B.Q., et al., High critical current density in Ti-doped MgB_2/Ta/Cu tape by powder-in-tube process. Journal of Applied Physics, 2002. 92(12): p. 7341-7344.
    232.Finnemore, D.K., et al., CVD routes to MgB_2 conductors. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 278-285.
    233.Jin, S., et al., High critical currents in iron-clad superconducting MgB_2 wires. Nature, 2001. 411(6837): p. 563-565.
    234.Dou, S.X., et al., The effect of nanoscale Fe doping on the superconducting properties of MgB_2. Superconductor Science & Technology, 2005.18(5): p. 710-715.
    235.Kuroda T., et al., Doping effects of nanoscale Fe particles on the superconducting properties of powder-in itube processed MgB_2 tapes. Superconductor Science & Technology, 2006.19: p. 1152.
    236.Bhasker, G., et al., Effects of Fe substitution on the transport properties of the superconductor MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2007. 75(18): p. 184513.
    237.Martinez, E., et al., Study of MgB_2 powders and Cu/MgB_2 powder-in-tube composite wires with Zn addition. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3210-3213.
    238.Forzani, E. and K. Winzer, Experimental study of electron-phonon properties in ZrB_2. European Physical Journal B, 2006. 51(1): p. 29-40.
    239.Gasparov, V.A., N.S. Sidorov, and I.I. Zver'kova, Two-gap superconductivity in ZrB_(12): Temperature dependence of critical magnetic fields in single crystals. Physical Review B,2006. 73(9): p. 094510
    240.Islam, F.N. and A.K.M.A. Islam, Occurrence of superconductivity in diboride of Zr. Physica C-Superconductivity and Its Applications, 2005. 426: p. 464-468.
    241.Kalavathi, S. and C. Divakar, Superconductivity in dense Mg_(1-x)M_xB_2 (M =Zr, Nb, Mo; x=0.05) materials sintered under pressure. Bulletin of Materials Science, 2005. 28(3): p. 249-252.
    242.Gasparov, V.A., et al., On electron transport in ZrB_(12), ZrB_2, and MgB_2 in normal state. Jetp Letters, 2004. 80(5): p. 330-334.
    243.Tsuda, S., et al., X-ray absorption and resonant photoemission spectroscopy of ZrB_2. Physica C-Superconductivity and Its Applications, 2003. 392: p. 259-262.
    244.Shein, I.R., N.I. Medvedeva, and A.L. Ivanovskii, Effect of metal vacancies on the band structure of Nb, Zr, and Y diborides. Physics of the Solid State, 2003. 45(9): p. 1617-1621.
    245.Fisher, B., et al., Electronic transport in MgB_2,AlB_2 and ZrB_2 - a comparative study. Physica C-Superconductivity and Its Applications, 2003. 384(1-2): p. 1-10.
    246.de la Mora, P., M. Castro, and G. Tavizon, Comparative study of the electronic structure of alkaline-earth borides (MeB_2; Me = Mg, Al, Zr, Nb, and Ta) and their normal-state conductivity. Journal of Solid State Chemistry, 2002.169(2): p. 168-175.
    247.Muzzy, L.E., et al., Structure and superconductivity in Zr-stabilized, nonstoichiometric molybdenum diboride. Physica C-Superconductivity and Its Applications, 2002. 382(2-3): p. 153-165.
    248.Rosner, H., et al., Fermi surfaces of diborides: MgB_2 and ZrB_2. Physical Review B, 2002. 66(2): p. -.
    249.Chen, X.L., et al., The bond ionicity of MB_2 (M = Mg, Ti, V, Cr, Mn, Zr, Hf, Ta, Al and Y). Journal of Physics-Condensed Matter, 2001.13(29): p. L723-L727.
    250.Yanson, I.K., et al., Study of the electron-phonon interaction in metal diborides MeB_2 (Me - Zr, Nb, Ta, Mg) by point-contact spectroscopy. Modern Physics Letters B, 2003. 17(10-12): p. 657-666.
    251.Jariwala, C, et al., Comparative study of the electronic structure of MgB_2 and ZrB_2. Physical Review B, 2003. 68(17): p. 174506
    252.Gasparov, V.A., et al., Electron transport, penetration depth, and the upper critical magnetic field in ZrB_(12) and MgB_2. Journal of Experimental and Theoretical Physics, 2005.101(1): p. 98-106.
    253.Feng, Y., et al., Improvement of critical current density in MgB_2 superconductors by Zr doping at ambient pressure. Applied Physics Letters, 2001. 79(24): p. 3983-3985.
    254.Feng, Y, et al., Enhanced flux pinning in Zr-doped MgB_2 bulk superconductors prepared at ambient pressure. Journal of Applied Physics, 2002. 92(5): p. 2614-2619.
    255.Kimishima, Y., et al., La-doping effects on pinning properties of MgB_2 Physica C-Superconductivity and Its Applications, 2004. 412-14: p. 402-406.
    256.Shekhar, C, et al., Effect of La doping on microstructure and critical current density of MgB_2. Superconductor Science & Technology, 2005. 18(9): p. 1210-1214.
    257.Prikhna, T.A., et al., High pressure synthesis and sintering of MgB_2. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3506-3509.
    258.Wang, S.F., et al., Effect of cd doping on structure and superconductivity in Mg_(0.5)Cd_(0.5)B_2. Journal of Superconductivity, 2004. 17(3): p. 397-400.
    259.Tachikawa, K., et al., Effects of metal powder addition on the structure and critical current of Ni-sheathed PIT MgB_2 tapes. Ieee Transactions on Applied Superconductivity, 2003.13(2): p. 3269-3272.
    260.Tachikawa, K., et al., Effects of metal powder addition on the critical current in MgB_2 tapes. Physica C-Superconductivity and Its Applications, 2002. 382(1): p. 108-112.
    261.Kovac, P., et al., Structure, grain connectivity and pinning of as-deformed commercial MgB_2 powder in Cu and Fe/Cu sheaths. Superconductor Science & Technology, 2002. 15(7): p. 1127-1132.
    262.Kovac, P., et al., The effect of shape and deformation in ex situ MgB_2-W/Fe composite wires. Superconductor Science & Technology, 2005.18(5): p. 615-622.
    263.Kovac, P., et al., I-c anisotropy and I-c hysteresis in MgB_2/Fe/Cu tape. Superconductor Science & Technology, 2002.15(7): p. 1037-1039.
    264.Kovac, P., et al., The effect of Fe-magnetization on I-c(B) and I-c(alpha) characteristics of iron-sheathed MgB_2 composite wires. Superconductor Science & Technology, 2003. 16(7): p. 793-798.
    265.Matsumoto, A., et al., Effect of SiO_2 and SiC doping on the powder-in-tube processed MgB_2 tapes. Superconductor Science & Technology, 2003.16(8): p. 926-930.
    266.Delfany, A., et al., Nano-sized A1_2O_3 doping effects on the critical current density of MgB_2 superconductors. Ceramics International, 2004. 30(7): p. 1581-1583.
    267.Shen, T.M., et al., Magnetic properties and critical current density of bulk MgB2 polycrystalline with Bi-2212 addition. Superconductor Science & Technology, 2005. 18(8): p. L49-L52.
    268.Cheng, C. and Y. Zhao, Enhancement of critical current density of MgB_2 by doping Ho_2O_3. Applied Physics Letters, 2006. 89(25): p. 252501.
    269.Chen, S.K., M. Wei, and J.L. MacManus-Driscoll, Strong pinning enhancement in MgB2 using very small Dy2O3 additions. Applied Physics Letters, 2006. 88(19): p. 36951.
    270.Matsumoto, A., et al., Evaluation of connectivity, flux pinning, and upper critical field contributions to the critical current density of bulk pure and SiC-alloyed MgB_2. Applied Physics Letters, 2006. 89(13): p. 132508.
    271.Ma, Y.W., et al., The effect of ZrSi_2 and SiC doping on the microstructure and J_c-B properties of PIT processed MgB_2 tapes. Superconductor Science & Technology, 2006. 19(1): p. 133-137.
    272.Ma, Y.W., et al., Microstructure and high critical current density of in situ processed MgB_2 tapes made by WSi_2 and ZrSi_2 doping. Applied Physics Letters, 2003. 83(6): p. 1181-1183.
    273.Ma, Y.W., et al., Superconducting properties of powder-in-tube MgB_2 tapes without and with WSi_2 addition. Physica C-Superconductivity and Its Applications, 2004. 408-10: p. 138-139.
    274.Ma, Y.W., et al., Improvement of critical current density in Fe-sheathed MgB_2 tapes by ZrSi_2. ZrB_2 and WSi_2 doping. Superconductor Science & Technology, 2003. 16(8): p. 852-856.
    275.Haruta, M., et al., Critical current density of MgB_2 thin film with pinning centres introduced by deposition in oxygen atmosphere. Superconductor Science & Technology, 2005.18(11): p. 1460-1463.
    276.Kim, J.H., et al., Carbohydrate doping to enhance electromagnetic properties of MgB_2 superconductors. Applied Physics Letters, 2006. 89(14): p. 142505.
    277.Kim, J.H., et al., Systematic study of a MgB_2+C_4H_6O_5 superconductor prepared by the chemical solution route Superconductor Science and Technology, 2007(7): p. 715.
    278.Hossain, M.S.A., et al., Effect of sintering temperature on structural defects and superconducting properties in MgB_2 + C_4H_6O_5 Journal of Physics: Conference Series, 2008:p.012066.
    279.Hossain, M.S.A., et al., Significant enhancement of Hc_2 and Hirr in MgB_2+C_4H_6O_5 bulks at a low sintering temperature of 600. Superconductor Science and Technology, 2007(8): p. L51.
    280.Hossain, M.S.A., et al., Enhancement of flux pinning in a MgB_2 superconductor doped with tartaric acid. Superconductor Science and Technology, 2007(1): p. 112.
    281.Wang, X.L., Z.X. Cheng, and S.X. Dou, Silicon oil: A cheap liquid additive for enhancing in-field critical current density in MgB_2. Applied Physics Letters, 2007. 90(4): p. 042501.
    282.Gao Z. S., et al., Influence of oxygen contents of carbohydrate dopants on connectivity and critical current density in MgB_2 tapes. Applied Physics Letters, 2007. 91(16): p. 162504.
    283.de la Mora, P., M. Castro, and G. Tavizon, Anisotropic normal-state properties of the MgB_2 superconductor. Journal of Physics-Condensed Matter, 2005. 17(6): p. 965-978.
    284.Souvatzis, P., et al., Elastic properties of Mg_(1-x)Al_xB_2 from first principles theory. Journal of Physics-Condensed Matter, 2004. 16(29): p. 5241-5250.
    285.Slusky, J.S., et al., Loss of superconductivity with the addition of Al to MgB_2 and a structural transition in Mgl-xAlx. Nature, 2001. 410(6826): p. 343-345.
    286.Birajdar, B., et al., Al-alloyed MgB_2: correlation of superconducting properties, microstructure, and chemical composition. Superconductor Science & Technology, 2005.18(4): p. 572-581.
    287.Kruchinin, S.P. and H. Nagao, Two-gap superconductivity in MgB_2. Physics of Particles and Nuclei, 2005. 36: p. S128-S131.
    288.Dolgov, O.V., et al., Thermodynamics of two-band superconductors: The case of MgB_2. Physical Review B, 2005. 72(2): p.024504
    289.Angilella, G.G.N., A. Bianconi, and R. Pucci, Multiband superconductors close to a 3D-2D electronic topological transition. Journal of Superconductivity, 2005. 18(5-6): p. 619-623.
    290.Ferrando, V., et al., Effect of two bands on critical fields in MgB_2 thin films with various resistivity values. Physical Review B, 2003. 68(9): p.094517
    291.Daghero, D., et al., Point-contact spectroscopy in MgB_2 single crystals in magnetic field. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 255-263.
    292.Angst, M., et al., Anisotropy of the superconducting state properties and phase diagram of MgB_2 by torque magnetometry on single crystals. Physica C-Superconductivity and Its Applications, 2003. 385(1-2): p. 143-153.
    293.Ord, T. and N. Kristoffel, Modeling MgB_2 two-gap superconductivity. Physica C-Superconductivity and Its Applications, 2002. 370(1): p. 17-20.
    294.Ohashi, Y., Bound state and order parameter mixing effect by nonmagnetic impurity scattering in two-band superconductors. Journal of the Physical Society of Japan, 2002. 71(8): p. 1978-1992.
    295.Liu, A.Y., I.I. Mazin, and J. Kortus, Beyond Eliashberg superconductivity in MgB_2: Anharmonicity, two-phonon scattering, and multiple gaps. Physical Review Letters, 2001. 8708(8): p.-.
    296.An, J.M. and W.E. Pickett, Superconductivity of MgB_2: Covalent bonds driven metallic. Physical Review Letters, 2001. 86(19): p. 4366-4369.
    297.Kong, Y., et al., Electron-phonon interaction in the normal and superconducting states of MgB_2. Physical Review B, 2001. 6402(2): p. -.
    298.Choi, H.J., et al., The origin of the anomalous superconducting properties of MgB_2. Nature, 2002. 418(6899): p. 758-760.
    299.Pissas, M., et al., Influence of aluminum substitution on the vortex matter properties of MgB_2. Physical Review B (Condensed Matter and Materials Physics), 2007. 75(18): p. 184533.
    300.Masui, T., et al., Carbon-substitution effect on superconducting properties in MgB_2 single crystals. Physica C-Superconductivity and Its Applications, 2004. 412-14: p. 303-306.
    301.Wilke, R.H.T., et al., Synthesis and optimization of Mg(B_(1-x)C_x)_2 wire segments. Physica C-Superconductivity and Its Applications, 2005. 424(1-2): p. 1-16.
    302.Wei, J.Q., et al., Structure and superconductivity of MgB_2-carbon nanotube composites. Materials Chemistry and Physics, 2003. 78(3): p. 785-790.
    303.Ummarino, G.A., et al., Carbon substitutions in MgB_2 within the two-band Eliashberg theory. Physical Review B, 2005. 71(13): p. -.
    304.Kasinathan, D., K.W. Lee, and W.E. Pickett, On heavy carbon doping of MgB_2. Physica C-Superconductivity and Its Applications, 2005. 424(3-4): p. 116-124.
    305.Ban, E., et al., Carbon nanohorn doping in MgB_2 wire prepared by suspension spinning. Physica C-Superconductivity and Its Applications, 2005. 426: p. 1249-1253.
    306.Holanova, Z., et al., Energy gaps in carbon-substituted MgB_2 Physica C-Superconductivity and Its Applications, 2004. 408-10: p. 610-611.
    307.Arvanitidis, J., et al., Raman spectroscopic study of carbon substitution in MgB_2. Journal of Physics and Chemistry of Solids, 2004. 65(1): p. 73-77.
    308.Samuely, P., et al., Two-band/two-gap superconductivity in carbon-substituted MgB_2 evidenced by point-contact spectroscopy. Physical Review B, 2003. 68(2): p.020505
    309.Lee, S., et al., Carbon-substituted MgB_2 single crystals. Physica C-Superconductivity and Its Applications, 2003. 397(1-2): p. 7-13.
    310.Yan, Y.F. and M.M. Al-Jassim, Carbon impurities in MgB_2. Journal of Applied Physics, 2002. 92(12): p. 7687-7689.
    311.Bharathi, A., et al., Carbon solubility and superconductivity in MgB_2. Physica C-Superconductivity and Its Applications, 2002. 370(4): p. 211-218.
    312.Kortus, J., et al., Band filling and interband scattering effects in MgB_2: Carbon versus aluminum doping. Physical Review Letters, 2005. 94(2): p.027002
    313.Canfield, P.C. and S.L. Bud'ko, Magnesium diboride: one year on. Physics World, 2002. 15(1): p. 29-34.
    314.Ueda, S., et al., High critical current properties of MgB_2 bulks prepared by a diffusion method. Applied Physics Letters, 2005. 86(22): p. 242507
    315.Dou, S.X., et al., Effect of carbon nanotube doping on critical current density of MgB_2 superconductor. Applied Physics Letters, 2003. 83(24): p. 4996-4998.
    316.Eom, C.B., et al., High critical current density and enhanced irreversibility field in superconducting MgB_2 thin films. Nature, 2001. 411(6837): p. 558-560.
    317.Serquis, A., et al., The influence of structural defects on intra-granular critical currents of bulk MgB_2. Ieee Transactions on Applied Superconductivity, 2003. 13(2): p. 3068-3071.
    318.Yuan, G.Q., et al., Pinning mechanism in carbon nanotube doping of MgB_2 superconductor. Solid State Communications, 2005.135(6): p. 352-355.
    319.Wilke, R.H.T., et al., Systematic effects of carbon doping on the superconducting properties of Mg(B_(1-x)C_x)_2. Physical Review Letters, 2004. 92(21). p.217003
    320.Zhao, Y, et al, Nanoparticle structure of MgB_2 with ultrathin TiB_2 grain boundaries. Applied Physics Letters, 2002. 80(9): p. 1640-1642.
    321.Qin, M.J., Yao,X.X., ac susceptibility of high-temperature superconductors. Physical Review B 1996. 54(10):p. 7536.
    322.Gurevich, A., et al., Very high upper critical fields in MgB_2 produced by selective tuning of impurity scattering. Superconductor Science & Technology, 2004. 17(2): p. 278-286.
    323.Kovac, P., et al., The role of MgO content in ex situ MgB_2 wires. Superconductor Science & Technology, 2004.17(10): p. L41-L46.
    324.Cheng, Z.H., et al., Superconductivity of Mg(B_(1-x)C_x)_2 ternary compounds. Journal of Applied Physics, 2002. 91(10): p. 7125-7127.
    325.Kim, J.H., et al., Systematic study of a MgB_2+C_4H_6O_5 superconductor prepared by the chemical solution route. Superconductor Science and Technology, 2007(7): p. 715.
    326.Wenzel, T., et al., Electron probe microanalysis of Mg-B compounds: stoichiometry and heterogeneity of superconductors. Physica Status Solidi a-Applied Research, 2003. 198(2): p. 374-386.
    327.Pemer, O., et al., Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB_2. Journal of Applied Physics, 2005. 97(5): p.056105
    328.Ken-ichiro, T, K. Hitoshi, and D. Toshiya, Artificial pinning enhancement by multilayer nanostructures in MgB2/Ni thin films. Applied Physics Letters, 2008. 92(10): p. 102510.
    329.Eisterer, M., Calculation of the volume pinning force in MgB_2 superconductors. Physical Review B (Condensed Matter and Materials Physics), 2008. 77(14): p. 144524.
    330.Kusevic, I., et al., Correlated vortex pinning in Si-nanoparticle doped MgB_2. Solid State Communications, 2004.132(11): p. 761-765.
    331.Choi, E.M., et al., Critical current density of MgB_2 thin IMP films and the effect of interface pinning. Superconductor Science & Technology, 2004.17(9): p. S524-S527.
    332.Cheng, C.H., et al., Doping effect of nano-diamond on superconductivity and flux pinning in MgB_2. Superconductor Science & Technology, 2003.16(10): p. 1182-1186.
    333.Masui, T., et al., Carbon-substitution effect on superconducting properties in MgB_2 single crystals. Physica C, 2004. 45(12): p. 303-304.
    334.Yamamoto, H., et al., Relationship between flux pinning and microstructure in MgB[sub 2] thin films with columnar grains formed by molecular beam epitaxy. Applied Physics Letters, 2007. 90(14): p. 142516.
    335.Zhao, Y., et al., Ti doping on the flux pinning and chemical stability against water of MgB_2 bulk material. Physica C-Superconductivity and Its Applications, 2003. 386: p. 581-587.
    1.Yang Y., Zhao D., Shen T. M., Li G., Zhang Y., Feng Y., Cheng C. H., Zhang Y. P., Zhao Y., Flux pinning behaviors of Ti and C co-doped MgB_2 superconductors. Physica C: Superconductivity, 468: (2008)1202-1205.
    2.Yang Y., Zhou J. D., Pan X. F., Zhang Y., Zhao Y. Cooperative doping effect of Carbon and Aluminium on superconductivity of MgB_2 RARE METAL MATERIALS AND ENGINEERING, (稀有金属材料与工程) 37 (2009) 87. (SCI)
    3.Y. Yang, J. D. Zhou, Y. Zhang, Y. Zhao, Effect of citric acid doping on flux pinning in Bulk MgB_2 prepared by chemical solution route J. Appl. Phys. (submitted)
    4.Y. Yang, J. D. Zhou , C. Ke, X. F. Pan, Y. Zhang, and Y. Zhao, The effects of nano-scale iron doping on superconductivity and microstructure of MgB_2 bulk. Superconductor Science Technology (submitted)
    5.Zhao Y., Yang Y., Cheng, C. H., and Zhang, Y. 2007. Doping and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700