镍掺杂对MgB_2相的形成及超导性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对掺杂MgB2超导体研究的不断深入,掺杂元素对MgB2的成相过程及超导性能的影响具有越来越重要的指导意义。本文首先采用传统的固相反应法对纯MgB2进行烧结并确定最佳的工艺参数。在此基础上,选取不同粒度的金属Ni作为掺杂对象,结合显微组织观察、差热分析技术、粉末烧结理论,热力学和动力学分析手段,系统研究了Ni的颗粒大小对MgB2相的形成、微观形貌以及超导电性的影响。另外,以金属Ni纳米颗粒作为催化剂,在B基体上沉积单质碳并掺入MgB2超导体,试图通过纳米相的引入来增加磁通钉扎中心,以提高MgB2的临界电流密度值。上述研究包含的主要内容及获得的结论有:
     利用高精度差热分析仪对Mg和B的混合粉末进行烧结处理,并分析不同升温速率(5、10、20和30 K/min)对MgB2相的形成过程产生的影响。临界电流密度测试结果表明,以5 K/min的加热速率烧结可以促进MgB2在低温下的反应过程,进而提高MgB2晶粒间的连接性,改善高磁场下MgB2的临界电流密度值。然而,高的升温速率(30K/min)容易导致孔隙率的增加和MgB2晶粒间连接性的恶化,从而使得MgB2样品的超导性降低。
     同样采用热分析手段,进一步研究了Ni掺杂对MgB2体系成相过程的影响,结果表明:在Ni掺杂的MgB2体系烧结过程中,Mg和Ni在506℃下形成共晶液相,大大提高了Mg和B原子的扩散速率,使大部分MgB2颗粒在固相阶段形成。Mg-Ni-B体系的反应模型表明,MgNi2.5B2相的析出是从MgB2晶粒边界处转至晶粒内部。
     实验选取不同粒度的金属镍粉对MgB2超导体进行掺杂,通过研究粒度对MgB2的成相过程以及化学成分的影响,进一步比较不同条件下超导性能的变化,以研究第二相颗粒大小在其中所起作用。结果表明:小尺寸镍颗粒可以促进第二相MgNi2.5B2在更低的温度下形成。在镍粒度为10μm的掺杂样品中,MgNi2.5B2相颗粒呈螺旋状沿MgB2晶粒内部析出,进一步揭示了MgB2晶体的生长符合螺旋位错的生长机制。临界电流密度测试表明,临界电流密度大小与第二相颗粒的大小相关,较大的MgNi2.5B2相颗粒更容易导致临界电流密度值的降低。
     利用还原法在B基体上成功制备出金属Ni纳米颗粒,通过与Mg粉的混合烧结制得了掺杂Ni纳米颗粒的MgB2超导体。对前驱体粉末和MgB2样品进行透射电镜观察、X-射线衍射以及超导性能测试后发现:在B基体上形成了平均晶粒直径为5纳米的Ni纳米颗粒,与大颗粒Ni掺杂相比,更能够改善MgB2晶粒间的连接性,提高低磁场下MgB2超导体的临界电流密度值。
     以Ni纳米颗粒作为催化剂,利用化学气相沉积法在500℃下将甲烷分解并在B基体上沉积生成碳洋葱及碳纳米管。经过与Mg粉混合烧结得到碳掺杂的MgB2超导体,并获得了具有较高临界电流密度的超导试样,结果表明:B基体中沉积的碳含量随着通甲烷时间的延长逐渐增多,但是在1.5小时达到一个饱和值,此后的碳含量维持不变。由于碳原子层的包裹,使得Ni无法与Mg/B反应生成第二相MgNi2.5B2。但是提高的临界电流密度表明,碳包覆Ni纳米颗粒可以作为有效的磁通钉扎中心。
The effect of doping elements on the formation mechanism and the superconducting properties of MgB2 sample have become more and more important for guiding the preparation of high quality MgB2 superconductors. In the present paper, the appropriate experimental parameters were firstly defined by traditional solid-state sintering method. Based on the analysis, the in-situ sintering mechanism, microstructure and superconducting properties of Ni-doped MgB2 samples were systematically explored by means of metallographic analysis, differential thermal analysis, powders sintering theory, thermodynamic and kinetics analysis. Additionally, the MgB2 samples doped with carbon were successfully obtained by deposition of carbon on B matrix, which was expected to enhance the critical current density ( J c) by inducing Ni nanoparticles as pinning centers.
     A high-resolution Differential Thermal Analysis apparatus was employed to sinter the mixture of Mg and B powder and analyze the kinetics of MgB2 phase formation with the different heating rates (5, 10、20 and 30 K/min).The measured results of the critical current density suggested that the 5 K/min sample had the best performance in high-field because of the better connectivity in MgB2 grain formed at low temperature. However, more vacancy in the sample and the worse grain connectivity will be generated by the fast heating rate (30 K/min), which is the main reason for the degeneration of superconducting properties in magnetic field.
     The effect of Ni doping on the formation of MgB2 was investigated by the thermal analysis. It shows that the low-melting eutectic liquid firstly formed by Mg-Ni at 506°C in the Ni-doped MgB2 sample, which could provide a favorable area for the further diffusion between Mg and B atoms and promote the reaction between Mg and B at solid state. The sintering model of Mg-Ni-B system indicated that the precipitation of MgNi2.5B2 phase vary from grain boundaries to MgB2 intra-grains as the sintering temperature increases.
     The different grain sizes of Ni were adopted to detect the influence of the grain size on the formation process of MgB2 phase and the variety of the superconducting properties. It is found that the smaller grain size of Ni will promote the formation of the secondary MgNi2.5B2 phase at low temperature. The microstructure shows that the precipitation of the MgNi2.5B2 phase is from the MgB2 intra-grains, the morphology of secondary phase further reveal the screw dislocation mechanism of the formation of MgB2 crystalline. The value of J c have the strong correlation with the secondary phase, the large grain size may lead to the degeneration of J cas impurities.
     Ni nanoparticles were successfully introduced for preparing polycrystalline MgB2 samples by a novel reduction method. The microstructure and magnetization measurements of the precursor powders and MgB2 samples were explored. It was found that the obtained Ni nanoparticles with average grain size of 5 nm are distributed in the B matrix without agglomeration. The sample doped with Ni nanoparticles has better critical current density ( J c) with respect to the commercial Ni-doped sample because of the improvement of grain connectivity.
     The carbon onions and carbon nanotubes were prepared on the B matrix at 500°C using Chemical vapor deposition (CVD) method by decomposition of methane. The carbon doped MgB2 sample with high critical current density ( J c) was obtained by sintering the mixture of Mg and precursor powders.The content of the carbon on the B matrix will increase with the reaction time, but cease when the reaction time exceeding 1.5 hours. The Ni could not react with Mg/B forming the secondary MgNi2.5B2 phase because of the carbon wrap. However, the Ni nanoparticles covered by carbon can act as effective pinning center to enhance the J cat magnetic field.
引文
[1] J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Superconductivity at 39K in magnesium diboride, Nature, 2001, 410: 63~64
    [2] W. Meissner,R. Ochsenfeld, Einneuer effect bei eintrit der supraleifahigheit, Nature Wissenschaften, 1933,21:787
    [3] E. Maxwell, Isotope effect in superconductivity of Mercury, Phys. Rev., 1950, 78: 477
    [4] C. A. Reynolds, B. Serin, W. H. Wright, et al., Superconductivity of isotopes of Mercury, Phys. Rev., 1950, 78: 487
    [5]章立源,张金龙,崔广霁,超导物理学,北京:电子工业出版社, 1995. 3~4
    [6]章立源,超越自由-神奇的超导体,北京:科学出版社, 2005.16~27
    [7]杨遇春,稀土在高温超导材料中的应用,稀有金属材料与工程, 2000, 29 (2):78
    [8] J. G. Bednorz, K. A. Müller,Z. Physik, High-temperature superconductivity in cuprate oxides,Nature,1986,64:189
    [9]赵忠贤,陈立泉,崔长庚,等,近期超导电性研发亮点,科学通报, 1987, 32: 177
    [10] M. K. Wu,J. R. Ashburn,C. J. Torng,et al.,Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., 1987, 58: 908~910
    [11] C. Michel, M. Hervieu, M. M. Borel, et al., Heat and heat flow rate calibration of differential scanning calorimeters, Thermochim. Acta., 2000, 347: 9
    [12] H. Maeda, Y. Tanaka, M. Fukitomi, et al., A new high-T(c) oxide superconductor without a rare earth element, App. Phys., 1988, 27 (2): L209~L210
    [13] Z. Z. Sheng, A. M. Hermann, Bulk superconductivity at 120 K in the Ti–Ca/Ba–Cu–O system, Nature, 1988, 332: 138~139
    [14] C. W. Chu, Evidence for novel polaronic Fermi-liquid in doped oxides, Physica C, 2000, 25: 341~34
    [15]冯瑞华,姜山,超导材料的发展与研究现状,超导技术, 2007, 35 (6): 520~526
    [16] J. D. Jorgensen, D. G. Hinks, S. Short, Lattice properties of MgB2 versus temperature and pressure, Phys. Rev. B, 2001, 63 (22): 224522 (5pp)
    [17] A. G. Joshi, C. G. S. Pillai, P. Raj, et a1., Magnetization studies on superconducting MgB2 lower and upper critical fields and current density, Solid. State. Commun., 2001, 118 (9): 445~448
    [18] F. Bouquet, R. A. Fisher, N. E. Phillips, et al., Specific heat of Mgl1B2:evidence for a second energy gap, Phys. Rev. Lett., 2001, 87 (4): 047001(4pp)
    [19] Y. Kong, O. V. Dolgov, O. Jepsen, et a1., Electron-phonon interaction in the normal and superconducting states of MgB2, Phys. Rev. B,2001, 64 (2): 020501 (4pp)
    [20]戴闻,更快,更高,更强-2001年的超导研究,现代物理知识, 2001, 15 (3):11-14
    [21] D. C. Larbalestier, M. O. Rikel, L. D. Cooley, et al., Strongly linked current flow in polycrystalline forms of the superconductor MgB2, Nature, 2001, 410 (6825): 186~189
    [22] M. Dhallé, P. Toulemonde, C. Beneduce, et al., Transport and inductive critical current densities in superconducting MgB2, 2001, 363 (3):155~165
    [23] K. Kawano, J. S. Abell, M. Kamnara, et al., Evidence for high inter-granular current flow in single-phase polycrystalline MgB2 superconductor. Appl. Phys. Lett., 2001, 79 (14): 2216~2218
    [24] Y. Takano, N. Oguro, Y. Kaieda, et al., Superconducting properties of combustion synthesized MgB2, Physica C, 2004, 412–414: 125~129
    [25] M. D. Lan, P. L. Tsai, Y. L. Chang, et al., Thermal fluctuation and upper critical field of MgB2 superconductor, Solid. State. Commun., 2002 (121): 575~578
    [26] Y. Takano, H. Takeya, H. Fujii, et al., Superconducting properties of MgB2 bulk materials prepared by high pressure sintering, Appl. Phys. Lett., 2001, 78 (19): 2914~2916
    [27] Y. Bugoslavski, L. F. Cohen, G. K. Perkins, et al., Enhancement of the high-field critical current density of superconducting MgB2 by proton irradiation, Nature., 2001, 411 (6837):561~563
    [28] M. Kambara, N. H. Babu, E. S. Sadki, et a1., High intergranular critical currents in metallic MgB2 superconductor, Supercond. Sci. Technol., 2001, 14(4): L5~L7
    [29] Y. Bugoslavsky, G. K. Perkins, X. Qi et al., Vortex dynamics in superconducting MgB2 and prospects for applications, Nature, 2001, 410: 563~565
    [30] A. Serquis, L. Civale, J. Y. Coulter, et a1., Large field generation with a hot isostatically pressed powder-in-tube MgB2 coil at 25 K, Supercond. Sci. Technol.,2004, 17 (10): L35~L37
    [31]吴怡芳,二硼化镁超导体的组织结构与性能研究: [硕士学位论文],西安:西北工业大学, 2005
    [32]闻海虎,新型超导体二硼化镁(MgB2)基础研究及其应用展望,前沿进展,2003, 32 (5):325~326
    [33] Z.-K. Liu, D. G. Schlom, Q. Li et al., Thermodynamics of the Mg-B system: Implications for the deposition of MgB2 thin films, Appl. Phys. Lett., 2001, 78 (23): 3678~3680
    [34]朱嘉林,李绍春, MgB2的高压高温合成及其超导电性,科学通报, 2001, 46 (15): 1254~1255
    [35]李绍春,朱嘉林,禹日成,等, MgB2超导体块材的高压合成,高压物理学报, 2001, 15 (3): 226~228
    [36] A. Gümbel, J. Eckert, G. Fuchs,K. et al., Improved superconducting properties in nanocrystalline bulk MgB2, Appl. Phys. Letts., 2002, 80 (15): 2725~2727
    [37] Y. D. Gao, J. Ding, G. V. S. Rao, et al., Magnetic properties and superconductivity of mechanically alloyed (Mg1-xFex )B2 samples with =0.0, 0.4, J. Appl. Phys., 2003, 93 (10): 8656~8658
    [38] H. Abe, M. Naito, K. Nogi, et al., Low temperature formation of superconducting MgB2 phase from elements by mechanical milling, Physica C, 2003, 391 (2): 211~216
    [39] N. A. Frederick, S. Li, M. B. Maple, et a1., Improved superconducting properties of MgB2, Physica C, 2001, 363: 1~5
    [40] V. F. Nesterenko, Y. Gu, Elastic properties of hot isostatically-pressed magnesium diboride, Appl. Phys. Letts., 2003, 82 (23): 4104~4106
    [41] A. Serquis, X. Z. Liao, Y. T. Zhu, et al., Influence of microstructures and crystalline defects on the superconductivity of MgB2, J. Appl. Phys., 2002, 92 (1): 351~356
    [42]冯建情, MgB2超导线材的机械性能, 2007, 26 (12): 43
    [43]吴怡芳,冯勇,李金山,等,高能球磨Mg/B复合粉体的反应烧结致密行为,稀有金属材料与工程, 2006, 35 (10): 1673~1676
    [44] Q. Li, G. D. Gu, Y. Zhu, High critical-current density in robust MgB2/Mg nanocomposites, Appl. Phys. Letts., 2003, 82(13): 2103~2105
    [45] D. C. Dunand, Synthesis of superconducting Mg/MgB2 composites, Appl. Phys. Letts., 2001, 79 (25): 4186~4188
    [46]刘春芳,低温合成MgB2超导体成功,稀有金属快报, 2005, 3 (4): 12
    [47] A. Yamamoto, Improved critical current properties observed in MgB2 bulks synthesized by low-temperature solid-state reaction, Supercond. Sci. Technol., 2005 (18):116~121
    [48] C. P. Chen, Z. J. Zhou, Phase formation of polycrystalline MgB2 at low temperature using nanometer Mg powder, Solid. State. Commun., 2004, (31):275~278
    [49] The Materials Information Society, Binary Alloy Phase Diagram 2nd edn plus updates,1996, (Metals Park, OH: ASM International)
    [50] J. Shimoyama, K. Hanafusa, A. Yamamoto, et a1., Catalytic effect of silver addition on the low temperature phase formation of MgB2, Supercond. Sci. Technol., 2007, 20: 307~311
    [51] Z. Q. Ma, Y. C. Liu, Q. Z. Shi, et a1., The accelerated formation of MgB2 bulks with high critical current density by low-temperature Cu-doping sintering, Supercond. Sci. Technol., 2008, 21: 065004(7pp)
    [52] Z. Q. Ma, Y. C. Liu, Q. Z. Shi, et al., The mechanism of accelerated phase formation of MgB2 by Cu-doping during low-temperature sintering, Mater. Res. Bull, 2009, 44 (3): 531~537
    [53] Z. Q. Ma, Y. C. Liu, Y. J. Han, et al., Variation of the enhancement mechanism in the critical current density of Cu-doped MgB2 samples sintered at different temperatures, J. Appl. Phys., 2008, 104: 063917 (5pp)
    [54] P. C. Canfield, D. K. Finnemore, S. L. Budko, et a1., Superconductivity in Dense MgB2 Wires, Phys. Rev. Lett., 2001, 86: 2423~2426
    [55] B. Q. Fu,Y. Feng,G. Yan,et a1., High critical current density in Ti-doped MgB2/Ta/Cu tape by powder-in-tube process, J. Appl. Phys., 2002, 92(12): 7341~7344
    [56] Y. Feng, G. Yan, Y. Zhao, et a1., Superconducting properties of MgB2 wires and tapes with different metal sheaths, Physica C, 2003, 386: 598~602
    [57] V. Braccini, D. Nardelli, R. Penco, et a1., Development of ex situ processed MgB2 wires and their applications to magnets, Physica C, 2007, 456: 209~217
    [58] M. Tomsic, M. Rindfleisch, J. Y. Yue, et a1., Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method, Physica C, 2007, 456: 203~208
    [59] M. Hanna, H. Fang, Y. X. Zhou, et a1., Mechanical properties of superconducting MgB2 wire, J. Mater. Process. Technol., 2007, 181: 44~47
    [60] C. E. Cunningham, C. Petrovic, G. Lapertot, et a1., Synthesis and processing of MgB2 powders and wire, Physica C, 2001, 353: 5~10
    [61] H. Kumakura, A. Matsumoto, H. Fujii, et a1., High transport critical current density obtained for powder-in-tube processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes, Appl. Phys. Letts., 2001, 79 (15): 2435~2437
    [62] E. Martinez ,L. A. Angurel, R. Navarro, Study of Ag and Cu/MgB2 powder-in-tube composite wires fabricated by in situ reaction at low temperatures, Supercond. Sci. Technol., 2002, 15: 1043~1047
    [63] W. goldacker,S. I. Schlachter, Development and performance of thin steelreinforced MgB2 wires and low-temperature in situ processing for further improvements, Supercond. Sci. Technol., 2004, 17: S363~S368
    [64] M. Vignolo, G. Romano, A. Malagoli, Development of MgB2 Powders and Study of the Properties and Architecture of Ex-Situ PIT Wires, IEEE Trans. Appl. Supercond. , 2008, 18 (2): 1175-1178
    [65] K. J. Tachikawa, Y. Yamada, O. Suzuki, et a1., Effects of metal powder addition on the critical current in MgB2 tapes, Physica C, 2002, 382: 108~112
    [66] S. Soltanian, X. L. Wang, A. H. Li, et a1., Solid State Commun., 2002, 124 (1-2): 59-62
    [67] V. Neson, K. Vinod, R. G. Abhilash Kumar, et a1., Influenceof reactivity of sheath materials with Mg/B on superconducting properties of MgB2, J. Appl. Phys., 2007, 102, 043914(3pp)
    [68] W. goldacker, S. I. Schlachter, Development and performance of thin steel reinforced MgB2 wires and low-temperature in situ processing for further improvements, Supercond. Sci. Technol., 2004, 17: S363~S368
    [69] S. Lee, Crystal growth of MgB2, Physica C, 2003, 385 (1-2): 31~41
    [70] M. D. Sumption, M. Bhatia, S. X. Dou, et a1., Irreversibility field and flux pinning in MgB2 with and without SiC additions, Supercond. Sci. Technol., 2004, 17: 1180~l184
    [71] Z. Q. Ma, Y. C. Liu, Z. Z. Dong, et a1., The effect of Cu addition on the sintering process and superconductive properties ofμm-SiC-doped MgB2 bulks, Appl. Phys. A, 2009, 96: 975~978
    [72] S. H. Moon, J. H. Yun, H. N. Lee, et a1., High critical current densities in superconducting MgB2 thin films, Appl. Phys. Lett., 2001, 79 (15): 2429~2431
    [73] A. Saito, A. Kawakami, H. Shimkage, et a1., As-grown MgB2 thin films deposited on Al2O3 substrates with different crystal planes, Supercond. Sci. Technol., 2002, 15: l325~1329
    [74] W. Jo, J-U. Huh, T. Ohnishi, et a1., In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy, Appl. Phys. Lett., 2002, 80 (19): 3563~3565
    [75] S. Q. Zhao, Y. L. Zhou, K. Zhao, et a1., Laser-induced thermoelectric voltage in normal state MgB2 thin films, Appl. Surf. Sci., 2006, 253: 2671~2673
    [76]王淑芳,朱亚斌,张芹,等,利用电泳法在金属基底上制备MgB2超导厚膜,物理学报, 2003, 52 (6): 1505~1508
    [77]郭建栋,徐小林,一种新发现的二元金属化合物超导体-MgB2,世界有色金属, 2004, 10: 46
    [78] Q. Li, B. T. Liu, Y. F. Hu, et a1., Large anisotropic normal-state magnetoresistance in clean MgB2 thin films,Phys. Rev. Lett., 2006, 96:167003 (4pp)
    [79] X. X. Xi, A. V. Pogrebnyakov, S. Y. Xu, et a1.,MgB2 thin films by hybrid physical-chemical vapor deposition,Physica C, 2007, 456: 22~37
    [80] D. R. Lamborna, D. W. Snyderb, X.X. Xi, et a1., Modelingstudies of the chemical vapor deposition of boron films from B2H6, J. Cryst. Growth., 2007, 299: 358~364
    [81] F. Li, T. Guo, K.C. Zhang, C.P. Chen, Q.R. Feng, Progress in depositing MgB2 films on stainless steel substrate, Physica C, 2007, 452: 6~10
    [82]姚丹,庄承钢,张开成,等,混合物理化学气相沉积法制备Mg衬底MgB2薄膜,北京大学学报:自然科学, 2006, 42 (3): 357~360
    [83] X. X. Xi, X. H. Zeng, A.V. Pogrebnyakov, et a1., In situ growth of MgB2 thin films by hybrid physical-chemical vapor deposition, IEEE Trans. Appl. Supercond. , 2003, 13 (2) 3233~3237
    [84] P. Kovac, I. Husek, T. Melisek, et a1., The role of MgO content in ex-situ MgB2 wires. Supercond. Sci. Technol., 2004, 17 (10): L41~L46
    [85] A. Gurevich, S. Patnaik, V. Braccini et a1., Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering, Supercond. Sci. Technol., 2004, 17: 278~286
    [86] G. Yan, Y. Feng, B. Q. Fu, et a1., Effect of synthesis temperature on density and microstructure of MgB2 superconductor at ambient pressure, J. Material. Sci., 2004, 39: 4893-4898
    [87] S. J. Balaselvi, N. Gayathri, A. Bharathi, et a1., Stoichiometric carbon substitution in MgB2, Supercond. Sci. Technol., 2004, 17 (12): 1401~1405
    [88] X. L. Wang, P. R. Munroe, P. Yao, et a1., Effect of nano-Y-ZrO2 and SiO2 additions on the microstructure and critical current density of MgB2 superconductors, J. Matastable and Nanocrystalline Material, 2003, 15-16: 721~726
    [89] Y. W. Ma, X. P. Zhang, A. X. Xu, et a1., The effect of ZrSi2 and SiC doping on the microstructure and Jc-B properties of PIT processed MgB2 tapes, Supercond. Sci. Technol., 2006, 19 (1): 133~137
    [90] A. Berenov, A. Serquis, X. Z. Liao, et a1., Enhancement of critical current density in low level Al-doped MgB2, Supercond. Sci. Technol., 2004, 17: 1093~1096
    [91] Y. G. Zhao, X. P. Zhang, P. T. Qiao, et a1.,Effect of Li doping on structure and superconducting transition temperature of Mg1-x LixB2, Physica C, 2001, 361: 91~94
    [92] A. Tampieri, G. Cellotti, S. Sprio, et a1., Effects of cooper doping in MgB2 superconductor, Solid. State. Commun., 2002, 121: 497~500
    [93] R. J. Cava, H. W. Zandbergen, K. Inumaru, The substitutional chemistry of MgB2, Physica C, 2003, 385: 8~15
    [94] L. Shi, H.R. Zhang, S.M. Zhou, et a1., Superconductivity and the disorder effect in Ag and Al double doped MgB2,J. Appl. Phys. 2006, 100: 023905(3pp)
    [95] J. S. Slusky, N. Rogado, K. A. Regan, et a1., Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-x AlxB2, Nature, 2001, 410: 343
    [96] J. Y. Xiang, D. N. Zheng, J. Q. Li, et a1., Effects of Al doping on the superconducting and structural properties of MgB2, Physica C, 2003, 386: 611~615
    [97] D. umar, S. J. Pennycook, J. Narayan, et a1., Role of silver addition in the synthesis of high critical current density MgB2 bulk superconductors, Supercond. Sci. Technol., 2003, 16: 455~458
    [98] C. Shekhar, R. Giri, R. S. Tiwari, et a1., High critical current density and improved flux pinning in bulk MgB2 synthesized by Ag addition, J. Appl. Phys., 2007, 101: 043906 (3pp)
    [99] Y. Hishinuma, A. Kikuchi, Y. Iijima, et a1.,Microstructure and superconductivity of Cu addition MgB2 wires using Mg2Cu compound as additional source material, Supercond. Sci. Technol., 2006, 19: 1269~1273.
    [100] S. F. Wang, S. Y. Dai, Y. L. Zhou, et a1., Effect of Cd doping on structure and superconductivity in Mg0.5Cd0.5B2, J. Supercond., 2004, 17 (3): 397~400
    [101] C. Shekhar, R. Giri, R. S Tiwari, et a1., Effect of La doping on microstructure and critical current density of MgB2, Supercond. Sci. Technol., 2005, 18: 1210~1214
    [102] A. Agostino, M. Panetta, P. Volpe, et a1.,Na substitution effects on MgB2 synthesized with a microwave-assisted technique, IEEE. Trans. Appl. Supercond., 2007, 17: 2774~2777
    [103] Y. X. Sun, D. L. Yu, Z. Y. Liu, et a1., Structural and superconducting properties of Ca-doped MgB2 superconductors, Supercond. Sci. Technol., 2007, 20: 261~266
    [104] P. Jiji Thomas Joseph, P. P. Singh, Mn and Fe impurities in MgB2, Solid. State. Commun., 2007, 141: 390~393
    [105] P. Toulemonde, N. Musolino, R. Flükiger, High-pressure synthesis of pure and doped superconducting MgB2 compounds, Supercond. Sci. Technol., 2003, 16: 231~236
    [106] S. X. Dou, S. Soltanian, Y. Zhao, et a1., The effect of nanoscale Fe doping on the superconducting properties of MgB2,Supercond. Sci. Technol., 2005,18:710~715
    [107] S. X. Dou, S. Soltanian, W. K. Yeoh, et a1., Effect of nano-particle doping on the upper critical field and flux pinning in MgB2, IEEE. Trans. Appl. Supercond., 2005, 15 (2): 3219~3222
    [108] C. Shekhar, R. Giri, R. S. Tiwari, O. N. Srivastava,On the synthesis and characterization of La doped MgB2 superconductor,Cryst. Res. Technol. 2004, 39 (8): 718~725
    [109] Y. Zhao, Y. Feng, D.X. Huang, et a1., Doping effect of Zr and Ti on the critical current density of MgB2 bulk superconductors prepared under ambient pressure, Physica C, 2002, 378: 122~126
    [110] Y. Zhao, Y. Feng, C. H. Cheng, et a1., High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure, Appl. Phys. Lett , 2001, 79: 1154~1156
    [111] Y. Zhao, D. X. Huang, Y. Feng, et a1., Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries, Appl. Phys. Lett,2002, 80: 1640~1642
    [112] S. K. Chen, Z. Lockman, M. Wei, et a1., Improved current densities in MgB2 by liquid-assisted sintering, Appl. Phys. Lett., 2005, 86: 242501(3pp)
    [113] O. V. Shcherbakova, D. I. dos Santos, S. X. Dou, Effect of Mg-Ga powder addition on the superconducting properties of MgB2 samples, Physica C, 2007, 460–462: 583~584
    [114] W. K. Yeoh, J. H. Kim, J. Horvat, et a1., Control of nano carbon substitution for enhancing the critical current density in MgB2, Supercond. Sci. Technol., 2006, 19: 596~599
    [115] C. Shekhar, R. Giri, R. S. Tiwari, et a1., Enhancement of flux pinning and high critical current density in graphite doped MgB2 superconductor, J. Appl. Phys., 2007, 102: 093910 (3pp)
    [116] X. P. Zhang, D. L. Wang, Z. S. Gao, et a1., The doping effect of activated carbon on the superconducting properties of MgB2 tapes
    [117] W. X. Li, Y. Li, R. H. Chen, et a1., Raman study of element doping effects on the superconductivity of MgB2, Phys. Rev. B, 2008, 77: 094517 (7pp)
    [118] Y. Katsura , A. Yamamoto, S. Ueda, et a1., Flux pinning properties of undoped and C-doped MgB2 bulks with controlled grain sizes, Physica C, 2007 460–462: 572~573
    [119] W. K. Yeoh, J. Horvat, J. H. Kim, et a1., Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB2, Appl. Phys. Lett., 2007, 90: 122502
    [120] Y. Zhao, C. H. Cheng, X. F. Rui, et a1., Improved irreversibility behavior and critical current density in MgB2-diamond nanocomposites, Appl. Phys. Lett.,2003,83 (14): 2916~2918
    [121] S. X. Dou, W. K. Yeoh, J. Horvat, et a1., Effect of carbon nanotube doping on critical current density of MgB2 superconductor, Appl. Phys. Lett., 2003, 83: 4996~4998
    [122] W. K. Yeoh, J. Horvat, S. X. Dou, et a1., Strong pinning and high critical current density in carbon nanotube doped MgB2, Supercond. Sci. Teehnol., 2004, 17 (9): S572~S577
    [123] J. H. Kim, W. K. Yeoh, M. J. Qin, et a1., The doping effect of multiwall carbon nanotube on MgB2/Fe superconductor wire, J. Appl. Phys., 2006, 100: 013908 (6pp)
    [124] J. H. Kim, W. K. Yeoh, M. J. Qin, et a1., Enhancement of in-field Jc in MgB2 /Fe wire using single-and multiwalled carbon nanotubes, Appl. Phys. Lett., 2006, 89: 122520 (3pp)
    [125] S. X. Dou, W. K. Yeoh, O. Shcherbakova, et a1., Magnetic field processing to enhance critical current densities of MgB2 superconductors,Appl. Phys. Lett. 2006, 89: 202504
    [126] G. Q. Yuana, X. N. Xua, Z. H. Wanga, et a1., Pinning mechanism in carbon nanotube doping of MgB2 superconductor, Solid State Commun., 2005, 135: 352~355
    [127] W. X. Li , Y. Li, R. H. Chen, et a1., Effect of magnetic field processing on the microstructure of carbon nanotubes doped MgB2, Physica C, 2007, 460–462: 570~571
    [128] W. K. Yeoh, J. Horvat, S. X. Dou, et a1., Effect of carbon nanotube size on superconductivity properties of MgB2, IEEE Trans. Appl. Supercond., 2005, 15: 3284~3287
    [129] C. N. He, N. Q. Zhao, C. S. Shi, et a1., An Approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-Matrix composites, Adv. Mater., 2007, 19: 1128~1132
    [130]张子立,索红莉,马麟,等, MgB2超导体含碳掺杂研究进展,低温物理学报, 2008, 30 (3) : 188~193
    [131] S. X. Dou, A. V. Pan, S. Zhou, et a1., Superconductivity, critical current density, and flux pinning in MgB2-XSiCx/2 superconductor after SiC nanoparticle doping, J. Appl. Phys., 2003, 94 (3) : 1850~1856
    [132] S. Keshavarzi, M. J. Qin, S. Soltanian, et a1., Vortex dynamics in pure and SiC-doped MgB2, Physica C, 2004, 408–410: 601~602
    [133] S. Soltanian, X. L. Wang, J. Horvat, et a1., High transport critical current density and large Hc2 and Hirr in nanoscale SiC doped MgB2 wires sintered at low temperature, Supercond. Sci. Technol., 2005, 18: 658~666
    [134] S. X. Dou, A. V. Pan, S. Zhou, et a1., Substitution-induced pinning in MgB2 superconductor doped with SiC nano-particles,Supercond. Sci. Technol., 2002,15: 1587~1591
    [135] S. X. Dou, O. Shcherbakova, W. K. Yeoh, et a1., Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC doping, Phys. Rev. Lett., 2007, 98: 097002 (4pp)
    [136] Z. Q. Ma, Y. C. Liu, Q. Zhao, et a1., Mechanism analysis for the enhanced electromagnetic properties in nano-SiC-doped MgB2 based on the discussion of the sintering process, Supercond. Sci. Technol., 2009, 22: 085015 (4pp)
    [137] M. S. A. Hossain, J. H. Kim, X. Xu, et a1., Significant enhancement of Hc2 and Hirr in MgB2 + C4H6O5 bulks at a low sintering temperature of 600℃, Supercond. Sci. Technol., 2007, 20: L51~L54
    [138] B. H. Jun, C. J Kim, The effect of heat-treatment temperature on the superconducting properties of malic acid-doped MgB2/Fe wire, Supercond. Sci. Technol., 2007, 20: 980~985
    [139] R. Zeng, L. Lu, S. X. Dou, Significant enhancement of the superconducting properties of MgB2 by polyvinyl alcohol additives, Supercond. Sci. Technol., 2008, 21: 085003 (5pp)
    [140] J. H. Kim, S. Zhou, M. S. A. Hossain, et a1., Carbohydrate doping to enhance electromagnetic properties of MgB2 superconductors, Appl. Phys. Lett., 2006, 89: 142505 (3pp)
    [141] S. H. Zhou, A. V. Pan, D. Wexler, et a1., Sugar coating of boron powder for efficient carbon doping of MgB2 with enhanced current-carrying performance, Adv. Mater. 2007, 19:1373~1376
    [142] Z. S. Gao, Y. W. Ma, X. P. Zhang, et a1., Influence of oxygen contents of carbohydrate dopants on connectivity and critical current density in MgB2 tapes, Appl. Phys. Lett., 2007, 91: 162504 (3pp)
    [143] P. Mikheenko, S. K. Chen, J. L. MacManus-Driscoll,Minute pinning and doping additions for strong, 20K, in-field critical current improvement in MgB2, Appl. Phys. Lett., 2007, 91: 202508 (3pp)
    [144] S. Ueda, J. I. Shimoyama, A. Yamamoto, et a1., Enhanced critical current properties observed in Na2CO3-doped MgB2, Supercond. Sci. Technol., 2004,17: 926~930
    [145] S. Ueda, J. I. Shimoyama, A. Yamamoto, et a1., Flux pinning properties of impurity doped MgB2 bulks synthesized by diffusion method, Physica C, 2005, 426: 1225~1230.
    [146] A. Yamamoto, J. I. Shimoyama, S. Ueda, et a1., Doping effects on critical current properties of MgB2 bulks synthesized by modified powder-in-tubemethod, IEEE. Trans. Appl. Supercond., 2005, 15: 3292~3295
    [147] A. Yamamoto, J. I. Shimoyama, S. Ueda, et a1., Effects of B4C doping on critical current properties of MgB2, Supercond. Sci. Technol., 2005, 18: 1323~1328.
    [148] X. Z. Liao, A. Serquis, Y. T. Zhu,et a1., Mg(B, O)2 precipitation in Mg, J. Appl. Phys., 2003, 93 (10): 6208~6215
    [149] X. Z. Liao,A. Serquis, Y. T. Zhu,et a1., Controlling flux pinning precipitates during MgB2 synthesis, Appl. Phys. Letts., 2002, 80 (23): 4398~4400
    [150] S. Vyazovkin, Kinetic concepts of thermally stimulated react-ions in solids: a view from a historical perspective, In-t. Rev. in Phys. Chem., 2000, 19 (1): 45~60
    [151] J. H. Flynn, Thermal analysis kinetics-past, present and future, Thermochim. Acta., 1992, 203 (1): 519~526
    [152] T. P. Prasad, S. B. Kanungo, H. S. Ray, Non-isothermal kinetics: some merits and limitations, Thermochim. Acta, 1992, 203 (1): 503~514
    [153]史庆志,二硼化镁的形成机理及其成相控制, [博士学位论文],天津:天津大学, 2007
    [154]闫果,实用化MgB2超导材料的制备与性能研究, [博士学位论文],沈阳:东北大学, 2005
    [155] C. X. Cui, D. B. Liu, J. B. Sun, et a1., Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics, Acta Mater., 2004, 52 (20): 5757~5760
    [156] Q. Z. Shi, Y. C. Liu, Z. M. Gao, et a1., In situ formation process and mechanism of bulk MgB2 before Mg melting, J. Mater. Res, 2008, 23 (7):1840~1848
    [157] J. W. Seo, A. Magrez, M. Milas, et a1., Catalytically grown carbon nanotubes: from synthesis to toxicity, J. Phys. D: Appl. Phys., 2007, 40: R109~R120
    [158]刘志存,微小电阻测量方法及关键技术,物理测试, 2005, 23 (1) :34~36
    [159] A. Matsumoto, H. Kumakura, H. Kitaguchi, et a1., Evaluation of connectivity, flux pinning, and upper critical field contributions to the critical current density of bulk pure and SiC-alloyed MgB2, Appl. Phys. Lett., 2006, 89: 32508 (3pp)
    [160] S. K. Chen, K. S. Tan, B. A. Glowacki, et a1., Effect of heating rates on superconducting properties of pure MgB2, carbon nanotube- and nano-SiC-doped in situ MgB2/Fe wires, Appl. Phys. Lett. 2005, 87: 182504 (3pp)
    [161] J. M. Rowell, The widely variable resistivity of MgB2 samples, Supercond. Sci. Technol., 2003, 16: R17~R27
    [162] A. Matsumoto, H. Kumakura, H. Kitaguchi, et a1., Effect of impurity additionson the microstructures and superconducting properties of in situ-processed MgB2 tapes, Supercond. Sci.Technol. 17 (2004) S319~S323
    [163] C. P. Bean, Magnetization of Hard Superconductors, Phys. Rev. Lett., 1962, 8: 250~253
    [164]刘永长,马宗青, MgB2超导体的成相与掺杂机理,北京:科学出版社, 2009. 10
    [165] C. Tarantini, H. U. Abersold, V. Braccini, et a1., Effects of neutron irradiation on polycrystalline MgB2, Phys. Rev. B, 2006, 73: 134518 (7pp)
    [166] S. X. Dou, S. Soltanian, J. Horvat, et a1., Enhancemen t of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping, Appl. Phys. Lett., 2002, 81(18): 3419~3421
    [167] A. Gümbel, J. Eckert, G. Fuchs, et a1., Improved superconducting properties in nanocrystalline bulk MgB2, Appl. Phys. Lett., 2002, 80(15): 2725~2727
    [168] I. A. Ansari, M. Shahabuddin, K. A. Ziq, The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors, Supercond. Sci. Technol., 2007, 20: 827~831
    [169] R. H. T. Wilke, S. L. Bud’ko, P. C. Canfield, et a1., Systematic effects of carbon doping on the superconducting properties of Mg(B1-xCx)2, Phys. Rev. Lett., 2004, 92: 217003 (4pp)
    [170] S. K. Chen, M. Wei, J. L. MacManus-Driscoll, Strong pinning enhancement in MgB2 using very small Dy2O3 additions, Appl. Phys. Lett., 2006, 88: 192512 (3pp)
    [171] A. Snezhko, T. Prozorov, R. Prozorov, Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors, Phys. Rev. B., 2005, 71: 024527 (6pp)
    [172] B. J. Senkowicz, R. J. Mungall, Y. Zhu, et a1., Nanoscale grains, high irreversibility field and large critical current density as a function of high-energy ball milling time in C-doped magnesium diboride, Supercond. Sci. Technol., 2008, 21: 035009 (10pp)
    [173] N. Varghese, K. Vinod, R. G. Abhilash Kumar, et a1., Influence of reactivity of sheath materials with Mg/B on superconducting properties of MgB2, J. Appl. Phys., 2007, 102: 043914 (4pp)
    [174] R. G. Abhilash Kumar, K. Vinod, N. Varghese, et a1., Reactivity of sheath materials with Mg/B in MgB2 conductor fabrication, Supercond. Sci. Technol., 2007 20 (3): S222~227
    [175] F. V. Lenel, Powder metallurgy principle and applications, metal powder industries federation, 1980: 285
    [176] W. Du, D. Xu, H. J. Zhang. Single crystal growth of MgB2 by usingMg-self-flux method at ambient pressure, J. Cryst. Growth., 2004, 268: 123
    [177] E. Bellingeri, A. Malagoli, M. Modica, et a1., Neutron scattering studies of superconducting MgB2 tapes, Supercond. Sci. Technol., 2003, 16: 276~280
    [178]胡荣祖,史启祯.热分析动力学,北京:科学出版社, 2001. 46~67
    [179] S. Arrhenius, On the dissociation of substances dissolved in water, Z. Phys. Chem. 1887, 1: 631
    [180] C. D. Doyle, Kinetic analysis of thermogravimetric data, Appl. Polymer. Sci., 1961, 5(15): 285~292
    [181]路承杰,张振忠,周剑秋,等,高能球磨法制备纳米晶Ni粉的研究,铸造技术, 2007, 28 (6) : 775~778
    [182]吕超君,谈定生,刘书祯,片状金属粉末的制备及研究进展,上海有色金属, 2009, 30 (2) : 89~93
    [183]肖骁,潘炳,曾子高,等,湿法机械球磨制备片状镍粉研究,中国粉体技术, 2007, 3: 1~4
    [184]练绵炎,沈以赴,顾冬冬,机械高能球磨法制备表面多孔金属铝,金属功能材料, 2009, 16(1): 20~24
    [185]王珩,胡连喜,陈先觉,等,高能球磨制备纳米晶镁合金粉末的研究,粉末冶金技术, 2008, 26 (6) : 403~406
    [186]郝保红,晶体生长机理的研究综述,北京石油化工学院报, 2006, 14 (2) : 58
    [187]李武,无机晶须,北京:化学工业出版社, 2005. 4~6
    [188] F. C. Frank, The influence of dislocations on crystal growth, Disc. Far. Soc., 1949, 5: 48~54
    [189]利用纳米碳粉掺杂有效提高MgB2超导材料的的临界电流密度,中国基础科学研究简讯, 2006, 2: 61
    [190]杨烨,朱晓彤,崔雅静,等,碳纳米管掺杂MgB2的磁通钉扎特性,低温物理学报, 2005, 27 (5) : 877~881
    [191] J. L. Kang, J. J. Li, X. W. Du, et a1., Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper, J. Alloys Compd., 2008, 456: 290~296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700