Sn和Ce对Mg-Zn-Mn高强变形镁合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以开发高性能变形镁合金为研究背景,为了提高Mg-Zn-Mn系高锌变形镁合金的强韧性,扩大其应用范围,在已有研究成果和存在问题的基础上,从组织和性能的控制上着手,作者采用合金化改性的方法在Mg-Zn-Mn合金中单独添加Sn和Ce。首先全面研究了Mg-Zn-Mn-Sn合金的热变形行为、时效行为、显微组织及力学性能,表征了各种时效析出相的形态和晶体学特征,并揭示了时效过程中组织的演变进程;然后系统研究了Ce含量及热处理对Mg-Zn-Mn合金组织和力学性能的影响,确定了稀土相特性和种类;最后探讨了Mg-Zn-Mn-Sn和Mg-Zn-Mn-Ce系合金中Mn元素的作用。
     铸态Mg-Zn-Mn合金添加Sn后,其铸态组织由(α-Mg+Mn+Mg7Zn3)组成变为由(α-Mg+Mn+Mg7Zn3+Mg2Sn)组成,Mg2Sn相作为共晶相分布于晶界,此外Sn的添加对铸态组织有一定的细化作用。均匀化处理(330℃/12h+420℃/2h)对Mg-Zn-Mn-Sn合金中的Mg7Zn3共晶相的均匀化溶解很有效,但是对于Mg2Sn共晶化合物的溶解几乎没有作用。Sn添加后,挤压态组织由均匀的再结晶晶粒转变为混晶组织,并且Sn能明显细化挤压态晶粒,因此随着Sn含量增加,挤压态合金的抗拉强度σb和屈服强度σ0.2增加,当Sn添加量达到6%以后,σb和σ0.2才开始略有下降,同时延伸率呈现先增后减的规律,其中当添加1%Sn后,延伸率最优(13.19%)。
     合金元素Sn的添加对时效态合金的力学性能有明显影响。随着Sn含量的增加,σb和σ0.2总体呈抛物线式增加,δ逐渐降低,其中当Zn含量为6%时,“固溶+双级时效态”Mg-6Zn-1Mn-4Sn(ZMT614)合金具有最佳的力学性能,即σb、σ0.2和δ分别为390MPa、378MPa和4.16%;当Zn含量为8%,“固溶+双级时效态”Mg-8Zn-1Mn-4Sn(ZMT814)合金具有最佳的力学性能,σb、σ0.2和δ分别为416MPa、393MPa和4.1%。通过组织观察可知Mg-Zn-Mn-Sn合金在时效过程中主要析出三种析出相:β'1(MgZn2)杆状相、β'2(MgZn2)盘状相和不规则形状的Mg2Sn相,因此析出强化是时效态合金的主要强化方式。此外,相比单级时效,双级时效态的析出相更加细小弥散,因此双级时效态合金力学性能更优。
     通过采用优化的热处理工艺,150℃双级峰时效态(20h)ZMT614合金的σb和σ0.2高达411MPa和401MPa;240℃双级峰时效态(40min)ZMT614合金的力学性能与180℃双级峰时效(8h)态ZM61合金的力学性能相差不大。
     ZMT614合金在180℃等温时效过程中先后析出四类析出相:①在双级预时效阶段析出平行于0001基面的G.P.区,其只作为β'1杆状相的异质形核核心;②垂直于基体0001基面的β'1杆状相;③平行于基体0001基面的β'2盘状相;④不规则的β'(Mg2Sn)相,其直接均匀形核于基体中,大部分β'相析出相惯习面为基体0001基面,小部分β'相与0001基面成一定的角度,可能惯习面为基体锥面。根据时效显微组织的演变过程,可以得出Mg-Zn-Mn-Sn合金在180℃等温时效过程中可能的析出序列,即①在富Mn区(固溶时已析出α-Mn区域): α-Mn→β'1(MgZn2)→β (MgZn);②在富Zn和Sn区(固溶时未析出α-Mn区域): SSSS→GP zones→β'1(MgZn2)→β'2(MgZn2)→β'(Mg2Sn)→(β (MgZn) and β (Mg2Sn))。
     利用Gleeble热模拟试验机对ZMT814镁合金进行了等温压缩试验,研究发现试验合金在等温压缩变形试验过程中存在稳态流变特征,并计算出合金在热变形过程中的材料常数为:变形激活能Q=251.67KJ/mol,应力指数n=13.91,平均应力因子α=0.00665MPa-1,A=3.4289×1024s-1,最后建立了合金的流变应力方程。
     此外研究了Ce含量对ZM71合金的显微组织和力学性能的影响。研究结果表明:①在合金中加入Ce之后,生成了Mg-Zn-Ce稀土相τ2相,具体为τ2(Ce(Mg0.5Zn0.5)10.1)和τ2(Ce2Mg53Zn45);随着Ce含量的增加,τ2相的衍射峰强度不断增加,Mg7Zn3相的衍射峰强度不断减小,当Ce含量增加到2%时,Mg7Zn3相衍射峰几乎没有,说明此时合金主要由α-Mg基体、Mn相和τ2相组成;②Ce的添加对铸态组织有明显的细化作用;热挤压过程中,稀土τ2相能阻碍再结晶晶粒长大,细化晶粒;③Ce元素能够明显细化挤压态合金的组织,所以能提升力学性能,但添加量应控制在1%以内,其中ZM71-0.5Ce具有最佳的综合力学性能,σb、σ0.2和δ分别为318MPa、250MPa和13.6%;④稀土τ相的形成一方面严重降低了合金的MgZn相的时效强化效果,另一方面在拉伸过程中成为裂纹源,所以高锌含量的Mg-Zn-Mn-Ce元素不适合用时效处理来提升挤压态合金的力学性能。
     最后还研究了Mn元素对Mg-Zn-Mn-Sn和Mg-Zn-Mn-Ce的影响,发现Mn元素在两种合金中的存在形式和作用机制基本一致。结果表明:①Mn主要以单质相存在,对原有物相组成没有影响;②Mn的添加能细化合金组织;③均匀化、挤压和固溶处理时会析出α-Mn相,形貌主要有球状、棒状和规则多边形三类;④Mn的添加能显著提高挤压态和时效态的力学性能;⑤Mn元素在合金中的作用主要有:改善铸造性能、细化晶粒和异质形核核心等。
In order to improve the strengthening and toughening of the high zinc Mg-Zn-Mnwrought magnesium alloy, Sn and Ce were added separately into the base alloy by usingalloy modification method. Firstly, hot deformation behavior, aging behavior,microstructure and mechanical properties of Mg-Zn-Mn-Sn alloy were investigatedcomprehensively. And the morphology, crystallography, formation mechanism andprecipitation sequence of the precipitates were characterized as well. Secondly, theeffects of Ce content on the microstructure and mechanical properties of Mg-Zn-Mnalloy were studied systematically. At last, the function of Mn element on theMg-Zn-Mn-Sn and Mg-Zn-Mn-Ce alloys was discussed thoroughly.
     Sn addition to the Mg-Zn-Mn alloy changed the as-cast microstructure of thealloys from being composed of (α-Mg matrix+Mn+Mg7Zn3) to being composed of(α-Mg matrix+Mn+Mg7Zn3+Mg2Sn), with the FCC structured Mg2Sn distributing at thegrain boundaries as an eutectic phase. In addition, the Sn addition could refine themicrostructure of the as-cast alloys. With the increasing Sn content, the homogenizationeffect was more difficult due to that Mg2Sn eutectic phase could not be effectivelydissolved into the matrix after the homogenization treatment at330℃for12h and420℃for2h. Sn element had an obvious effect on refining the microstructure of as-extrudedalloys by restricting the occurrence of dynamic recrystallization and restraining thegrain growth during extrusion, and improved the mechanical properties. With theincreasing Sn content, the strengths and elongation presented the trend of first increaseand then decrease, and the alloy containing6%Sn had the best strength while the alloycontaining1%Sn had the best elongation.
     The Sn addition had a beneficial effect on the mechanical properties of thepeak-aged Mg-Zn-Mn alloy. On one hand, with the increasing of Sn content, theelongation decreased gradually while the ultimate tensile strength (UTS) and yieldstrength (YS) significantly increased, and the maximum was obtained for the alloycontaining4%Sn. Further increasing of Sn content resulted in a slight reduction of thestrengths. On the other hand, the strengths of the double aged samples were higher thanthat of the single aged ones, while the elongations were slightly lower. The mechanicalproperties of the double aged Mg-6Zn-1Mn-4Sn(ZMT614) alloy were the UTS of390MPa, the YS of378MPa and the elongation of4.16%, while those of the double aged Mg-8Zn-1Mn-4Sn(ZMT814) alloy were the UTS of416MPa, the YS of393MPaand the elongation of4.1%. The high-strengths of the aged Mg-Zn-Mn-Sn wroughtalloy were mainly determined by the precipitation strengthening. The high-strengths ofthe peak-aged Mg-Zn-Mn-Sn were mainly determined by the combined precipitationstrengthening of the β1′(MgZn2), β2′(MgZn2) and Mg2Sn precipitates. Moreover, due tothe much finer and far more homogeneously distributed precipitates, the strengths of thedouble aged samples were higher than that of the single aged ones.
     The UTS and YS of ZMT614alloy in the double peak-aged at150℃were411MPa and401MPa respectively, which was attained by the optimized heat treatment.In addition, the mechanical properties of ZMT614alloy in the double peak-age at240℃for40min were comparable to that of ZM61alloy in the double peak-aged at180℃for6h.
     During the isothermal aging at180℃, the four categories of precipitated phaseswere successively formed. Firstly, the G.P. zones parallel to0001were formedduring the pre-aging stage of double aging, which could only act as the hetergeneousnuclei towards the rod-like β'1phase. Secondly, the0001β'1precipitates wereformed, which were all rod-like with their axis perpendicular to the basal plane0001.Thirdly, the disc-like hexagonal β'2phases with the plate face parallel to the basal plane0001were formed. At last, the Mg2Sn precipitates with common morphology wereformed. Some of the Mg2Sn phase had a orientation relationship of001′1120,110′0001. The crystallographic features of the above four typesof aged precipitates were characterized, and their formation mechanisms were discussedon the basis of the crystallographic features.
     Based on the aging precipitation and microstructure evolution, the possibleprecipitation sequence at180℃of Mg-Zn-Mn-Sn alloy could be obtained. Theprecipitation sequence in the Mn-rich region (i.e. the region with α-Mn precipitated inthe solution treated condition) was proposed as follows: α-Mn→β'1(MgZn2)→β(MgZn). And the precipitation sequence in the Zn-rich and Sn-rich region(i.e. the regionfree of α-Mn in the solution treated condition) was proposed as follows: Super saturatedsolid solution(SSSS)→GP zones→β'1(MgZn2)→β'2(MgZn2)→β'(Mg2Sn)→(β (MgZn)and β (Mg2Sn)).
     The hot simulation was conducted on ZMT814alloy to investigate its hotdeformation behavior. The results showed that the test alloy had a typical feature ofcontinuous dynamic recrystallization. Then the material constants of the test alloy in the hot deformation were calculated, i.e., Q=251.67KJ/mol, n=13.91, α=0.00665MPa-1,A=3.4289×10~24s~(-1). At last, the flow stress equation was established.
     In addition, the effect of Ce content on the microstructure and mechanicalproperties of Mg-7Zn-1Mn alloy were investigated. The results were as follows:①Aternary τ phase was identified in studied alloys, which distributed at grain boundariesand interdendritic, refined the microstructure of as-cast alloys. The τ phase wasidentified as τ2(Ce(Mg0.5Zn0.5)10.1) and τ2(Ce2Mg53Zn45);②Ce element had an obviouseffect on refining the microstructure of as-extruded alloys by restricting the occurrenceof dynamic recrystallization and restraining the grain growth during extrusion andimproved the mechanical properties, but the Ce addition should be no more than1%.Among them, ZM71-0.5Ce alloy had better overall mechanical properties, with the UTSof318MPa, YS of250MPa and elongation of13.6%;③Solution and aging treatmentwas not available for improving mechanical properties of as-extruded Mg-Zn-Mn-Cewith high Zn content.
     At last, the effect of Mn on the Mg-Zn-Mn-Sn and Mg-Zn-Mn-Ce alloys wereinvestigated, and found that the existence form and acting mechanism of Mn element inthe both alloys were basically the same. The functions of Mn element in the test alloyswere summarized as follows: improving casting properties, grain refinement andheterogeneous nucleation.
引文
[1]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [2]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2006.
    [3]黄伯云,中国机械工程学会,中国材料研究学会.中国材料工程大典:有色金属材料工程[M].化学工业出版社,2006.
    [4] Pike TJ, Nuttall PA, Noble B. Precipitation in the Mg-Th and Mg-Th-Zr Systems [J]. J INSTMETALS, AUG.1972,100,249-254,1972.
    [5] Yu K., Li W.X., Wang R.C., Ma Z.Q. Research, development and application of wroughtmagnesium alloys [J]. Chinese Journal of Nonferrous Metals,2003,13(2):277-288.
    [6] Gao X., Nie J. F. Structure and thermal stability of primary intermetallic particles in anMg-Zn casting alloy [J]. Scripta Materialia,2007,57(7):655-658.
    [7]张丁非,齐福刚,赵霞兵,石国梁,戴庆伟. Mg-Zn系高强度镁合金的研究进展[J].重庆大学学报,2010(11):53-61.
    [8] Saunders WP, Strieter FP. Alloying zirconium to magnesium [J]. Trans. Am. Foundryman'sSoc,1952,60:581.
    [9] Doan JP, Ansel G. Some Effects of Zirconium on Extrusion Properties of Magnesium-baseAlloys Containing Zinc [J]. Trans. AIME,1947,171:286-305.
    [10]董国振.高强度变形镁合金组织及性能研究[D].重庆大学,2005.
    [11] Prytherch W.E. MAGNESIUM ALLOTS CONTAINING CERIUM [J].1938.
    [12] Wei L. Y., Dunlop G. L., Westengen H. The Intergranular microstructure of cast Mg-Zn andMg-Zn-rare earth alloys [J]. Metallurgical and Materials Transactions a-Physical Metallurgyand Materials Science,1995,26(8):1947-1955.
    [13] Wei L. Y., Dunlop G. L., Westengen H. PRECIPITATION HARDENING OF MG-ZN ANDMG-ZN-RE ALLOYS [J]. Metallurgical and Materials Transactions a-Physical Metallurgyand Materials Science,1995,26(7):1705-1716.
    [14] Bae D. H., Kim S. H., Kim W. T., Kim D. H. High strength Mg-Zn-Y alloy containingquasicrystalline particles [J]. Materials Transactions,2001,42(10):2144-2147.
    [15] Unsworth W., King JF. Magnesium technology [J]. The Inst. of Metal,1987:25.
    [16] Unsworth William. NEW MAGNESIUM ALLOY FOR AUTOMOBILE APPLICATIONS [J].Light Metal Age,1987,45(7-8):10-13.
    [17] Jun J. H., Kim J. M., Park B. K., Kim K. T., Jung W. J. Effects of rare earth elements onmicrostructure and high temperature mechanical properties of ZC63alloy [J]. Journal ofMaterials Science,2005,40(9-10):2659-2661.
    [18] Avedesian M.M., Baker H. ASM specialty handbook: magnesium and magnesium alloys [J].1999.
    [19] Gao X., Nie J. F. Characterization of strengthening precipitate phases in a Mg–Zn alloy [J].Scripta Materialia,2007,56(8):645-648.
    [20] Clark J. B. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy[J]. Acta Metallurgica,1965,13(12):1281-1289.
    [21] Chun JS, Byrne JG. Precipitate strengthening mechanisms in magnesium zinc alloy singlecrystals [J]. Journal of Materials Science,1969,4(10):861-872.
    [22] Rokhlin LL, Oreshkina A. Structural Investigation of the Metastable Phase That FormsDuring Decomposition of the Supersaturated Solid Solutions in Magnesium--Zinc Alloys [J].Phys. Met. Metallogr.(USSR),1988,66(3):130-134.
    [23] SINGH A., TSAI AP. Structural characteristics of β1precipitates in Mg-Zn-based alloys [J].Scripta Materialia,2007,57(10):941-944.
    [24]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状[J].重庆大学学报(自然科学版),2004(09):80-85.
    [25]麻彦龙,左汝林,汤爱涛,张静,潘复生.时效ZK60镁合金中的合金相探索[J].重庆大学学报(自然科学版),2004(12):91-94.
    [26]吕新宇,王国军,刚建伟.提高MB15合金挤压型材力学性能的研究[J].轻合金加工技术,2000(06):22-24.
    [27]陶春虎,张少卿,鲁立奇. Mg-Zn-Zr-RE系镁合金中的稀土相分析[J].中国稀土学报,1990(01):52-57.
    [28]罗治平,张少卿,汤亚力.稀土镁合金中的W相及其有序结构W'相的TEM研究[J].中国有色金属学报,1993(02):62-66.
    [29]张少卿,罗治平. MB25镁合金中的准晶体与晶体相的研究[J].分析测试学报,1994(06):35-37.
    [30] Huang Ming-li, Li Hong-xiao, Ding Hua, Bao Li, Ma Xiao-bin, Hao Shi-ming. Intermetallicsand phase relations of Mg-Zn-Ce alloys at400degrees C [J]. Transactions of NonferrousMetals Society of China,2012,22(3):539-545.
    [31] Yang W. P., Guo X. F., Lu Z. X. Crystal structure of the ternary Mg-Zn-Ce phase in rapidlysolidified Mg-6Zn-1Y-1Ce alloy [J]. Journal of Alloys and Compounds,2012,521:1-3.
    [32] Zhou T., Xia H., Chen Z. H. Effect of Ce on microstructures and mechanical properties ofrapidly solidified Mg-Zn alloy [J]. Materials Science and Technology,2011,27(7):1198-1205.
    [33] Bae D. H., Kim S. H., Kim D. H., Kim W. T. Deformation behavior of Mg–Zn–Y alloysreinforced by icosahedral quasicrystalline particles [J]. Acta Materialia,2002,50(9):2343-2356.
    [34] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto. Rapidly solidified powder metallurgyMg97Zn1Y2alloys with excellent tensile yield strength above600MPa [J]. MaterialsTransactions,2001,42(7):1172-1176.
    [35] Yi S., Park E. S., Ok J. B., Kim W. T., Kim D. H.(Icosahedral phase+α-Mg) two phasemicrostructures in the Mg–Zn–Y ternary system [J]. Materials Science and Engineering: A,2001,300(1–2):312-315.
    [36] Huang Hua, Kato Hidemi, Chen Chunlin, Wang Zhongchang, Yuan Guangyin. The effect ofnanoquasicrystals on mechanical properties of as-extruded Mg-Zn-Gd alloy [J]. MaterialsLetters,2012,79:281-283.
    [37] Liu Yong, Shao Shuang, Xu Chunshui, Yang Xiangjie, Lu Deping. Enhancing wear resistanceof Mg-Zn-Gd alloy by cryogenic treatment [J]. Materials Letters,2012,76:201-204.
    [38] Wu D., Chen R. S., Tang W. N., Han E. H. Influence of texture and grain size on theroom-temperature ductility and tensile behavior in a Mg-Gd-Zn alloy processed by rolling andforging [J]. Materials&Design,2012,41:306-313.
    [39] Singh A., Tsai AP. On the cubic W phase and its relationship to the icosahedral phase inMg–Zn–Y alloys [J]. Scripta Materialia,2003,49(2):143-148.
    [40] Luo S.Q., Tang A.T., Pan F.S., Song K., Wang W.Q. Effect of mole ratio of Y to Zn on phaseconstituent of Mg-Zn-Zr-Y alloys [J]. Transactions of Nonferrous Metals Society of China,2011,21(4):795-800.
    [41]张新平,袁广银,刘勇,丁文江.合金元素对Mg-Zn-Gd合金组织和力学性能的影响[J].特种铸造及有色合金,2008(11):882-885+819.
    [42] Yamasaki Michiaki, Sasaki Minami, Nishijima Masahiko, Hiraga Kenji, Kawamura Yoshihito.Formation of14H long period stacking ordered structure and profuse stacking faults inMg-Zn-Gd alloys during isothermal aging at high temperature [J]. Acta Materialia,2007,55(20):6798-6805.
    [43] Buha J., Ohkubo T. Natural aging in Mg-Zn (-Cu) alloys [J]. Metallurgical and MaterialsTransactions A,2008,39(9):2259-2273.
    [44] Jayalakshmi S., Kailas S.V., Seshan S., Fleury E. Properties of squeeze cast Mg-6Zn-3Cualloy and its saffil alumina short fibre reinforced composites [J]. Journal of Materials Science,2006,41(12):3743-3752.
    [45]李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报,2006,42(7):733-738.
    [46] Maeng DY, Kim TS, Lee JH, Hong SJ, Seo SK, Chun BS. Microstructure and strength ofrapidly solidified and extruded Mg-Zn alloys [J]. Scripta Materialia,2000,43(5):385-390.
    [47] Tsai AP, Niikura A., Inoue A., Masumoto T. Stoichiometric icosahedral phase in the Zn-Mg-Ysystem [J]. Journal of Materials Research,1997,12(6):1468.
    [48]徐春杰.细晶Mg-Zn-Y合金的制备,组织,性能及强化机理[D][D].西安理工大学,2007.
    [49]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状[J].重庆大学学报(自然科学版),2004.
    [50]郗雨林,柴东朗,张文兴,席生歧,周敬恩.粉末冶金法制备SiC晶须增强MB15镁基复合材料[J].稀有金属材料与工程,2005,34(7):1131-1134.
    [51] Buha J. Mechanical properties of naturally aged Mg–Zn–Cu–Mn alloy [J]. Materials Scienceand Engineering: A,2008,489(1):127-137.
    [52] Novy Frantisek, Janecek Milos, Skorik Viktor, Mueller Julia, Wagner Lothar. Very high cyclefatigue behaviour of as-extruded AZ31, AZ80, and ZK60magnesium alloys [J]. InternationalJournal of Materials Research,2009,100(3):288-291.
    [53] Fouad Y., Mhaede M., Wagner L. Effects of mechanical surface treatments on fatigueperformance of extruded ZK60alloy [J]. Fatigue&Fracture of Engineering Materials&Structures,2011,34(6):403-407.
    [54] Thirumurugan M., Thirugnasambandam G. M., Kumaran S., Rao T. Srinivasa. Microstructuralrefinement and mechanical properties of direct extruded ZM21magnesium alloys [J].Transactions of Nonferrous Metals Society of China,2011,21(10):2154-2159.
    [55] Thirumurugan M., Kumaran S., Suwas Satyam, Rao T. Srinivasa. Effect of rollingtemperature and reduction in thickness on microstructure and mechanical properties of ZM21magnesium alloy and its subsequent annealing treatment [J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2011,528(29-30):8460-8468.
    [56]张丁非,石国梁,戴庆伟,袁炜,段红玲. Microstructures and mechanical properties of highstrength Mg-Zn-Mn alloy [J]. Transactions of Nonferrous Metals Society of China,2008(S1):59-63.
    [57]戴庆伟,张丁非,袁炜,石国梁,段红玲.新型Mg-Zn-Mn变形镁合金的挤压特性与组织性能研究[J].材料工程,2008(04):38-42.
    [58]袁炜.新型Mg-6Zn-1Mn变形镁合金组织与性能研究[D].重庆大学,2007.
    [59]樊世波,李权,彭建.稀土元素Ce对ZM21镁合金组织和性能的影响[C]. In:Proceedings of the加速功能材料自主创新,促进西部战略性新兴产业发展——2011中国功能材料科技与产业高层论坛,中国重庆,2011.6.
    [60]彭建,樊世波,佘欢,潘复生. Ce对Mg-2Zn-Mn合金组织和变形性能的影响[J].材料工程,2010(08):67-71.
    [61]樊世波. Ce元素对ZM21镁合金组织和性能的影响[D].重庆大学,2010.
    [62]吴伟,党振乾,吴崴,陈立佳. ECAP对Mg-Mn-Zn-Ce合金显微组织及拉伸性能的影响[J].沈阳工业大学学报,2008,30(3):304-307.
    [63] Kim IJ, Bae DH, Kim DH. Precipitates in a Mg–Zn–Y alloy reinforced by an icosahedralquasicrystalline phase [J]. Materials Science and Engineering: A,2003,359(1):313-318.
    [64] Guo X., Remennik S., Xu C., Shechtman D. Development of Mg–6.0%Zn–1.0%Y–0.6%Ce–0.6%Zr magnesium alloy and its microstructural evolution during processing [J].Materials Science and Engineering: A,2008,473(1):266-273.
    [65] Katsuyoshi K., Ritsuko T., Du WB. Devising high property magnesium alloy by grain refining
    [C]. In: Proceedings of. Tokyo: The Japan Institute of Materials,2004.
    [66] Katsuyoshi K., Ritsuko T. Du W B. Manufacturing high property magnesium alloy byrepeated plastic working and solidifying molding [J]. Materia,2004,43(4):275-280.
    [67]彭渝丽,郭永春.等通道挤压后镁合金的微观结构研究[J].热加工工艺,2007,36(17):46-48.
    [68]段红玲. ZM61镁合金均匀化与热变形行为的研究[D].重庆大学,2008.
    [69]张丁非,方霖,段红玲,戴庆伟. Mg-6wt%Zn-1wt%Mn镁合金均匀化处理研究[J].热加工工艺,2011(02):148-152.
    [70]彭建,张丁菲,杨棒楣,丁培道. ZK60镁合金铸坯均匀化退火研究[J].材料工程,2004(008):32-35.
    [71]彭建,樊世波,张丁非,宋成猛.均匀化退火工艺对ZM21镁合金热变形行为的影响[J].金属热处理,2009(6):72-76.
    [72] Peng J., Pan F.S., Zhou M., Ding P.D. Effects of Homogenization on the Formability of ZM21Alloy [C]. In: Proceedings of. Trans Tech Publ,2007.355-359.
    [73]尹冬松,张二林,曾松岩. Mg-3Zn-Mn合金均匀化处理工艺研究[J].铸造技术,2009,29(12):1647-1650.
    [74]袁武华,张召春,郭强,夏伟军,吉喆,陈振华.固溶处理对ZK60合金组织及性能的影响[J].热加工工艺,2006,35(2):22-24.
    [75]彭建,樊世波,宋成猛.固溶处理对Mg-2.0%Zn-0.7%Mn合金热变形过程及变形组织的影响[J].热加工工艺,2009(14):8-11.
    [76] Mukai T., Yamanoi M., Watanabe H., Ishikawa K., Higashi K. Effect of grain refinement ontensile ductility in ZK60magnesium alloy under dynamic loading [J]. Materialstransactions-JIM,2001,42(7):1177-1181.
    [77] Park S.C., Lim J.D., Eliezer D., Shin K.S. Microstructure and mechanical properties ofMg-Zn-Ag alloys [C]. In: Proceedings of. Trans Tech Publ,2003.159-164.
    [78] Park SS, Bae GT, Kang DH, Jung I.H., Shin KS, Kim N.J. Microstructure and tensileproperties of twin-roll cast Mg–Zn–Mn–Al alloys [J]. Scripta Materialia,2007,57(9):793-796.
    [79] Park S.S., Oh Y.S., Kang D.H., Kim N.J. Microstructural evolution in twin-roll strip castMg–Zn–Mn–Al alloy [J]. Materials Science and Engineering: A,2007,449:352-355.
    [80] Jan B., Dietmar L., Ulrich K.K. Influence of process parameters on the mechanical propertiesof rolled magnesium ZM21-sheets [J]. Metals and Materials Society,2007,5:95-100.
    [81]张丁非,丁培道,袁炜,彭建,石国梁.高含锌量的镁-锌-锰系镁合金材料[P] PatentCN101020981,2007.
    [82]潘复生,彭建,丁培道,张丁非.高含锌量的镁-锌-锰-铈系镁合金材料[P] PatentCN102031433A,2008.
    [83]张丁非,丁培道,袁炜.镁-锌-锰系变形镁合金的热处理工艺[P] Patent CN101135031,2007.
    [84]张丁非,齐福刚,石国梁,戴庆伟. Mn含量对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2010(12):2205-2210.
    [85]张丁非,石国梁,赵霞兵,齐福刚. Mg-x%Zn-1%Mn(x=4,5,6,7,8,9)变形镁合金的组织演变和力学性能(英文)[J]. Transactions of Nonferrous Metals Society of China,2011(01):15-25.
    [86]张丁非,赵霞兵,石国梁,齐福刚. Zn含量及热处理对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2011(03):418-423.
    [87] Yin D.S., Zhang E.L., Zeng S.Y. Effect of Zn on mechanical property and corrosion propertyof extruded Mg-Zn-Mn alloy [J]. Transactions of Nonferrous Metals Society of China,2008,18(4):763-768.
    [88] Oh-ishi K., Hono K., Shin K. S. Effect of pre-aging and Al addition on age-hardening andmicrostructure in Mg-6wt%Zn alloys [J]. Materials Science and Engineering A,2008,496(1-2):425-433.
    [89]辛光善,朴舜赞.高强度镁合金及其制备方法[P] Patent CN1469937,2004.
    [90] Ben-Hamu G., Eliezer D., Shin KS. The role of Mg2Si on the corrosion behavior of wroughtMg–Zn–Mn alloy [J]. Intermetallics,2008,16(7):860-867.
    [91] Ben-Hamu G., Eliezer D., Shin KS. The role of Si and Ca on new wrought Mg–Zn–Mn basedalloy [J]. Materials Science and Engineering: A,2007,447(1):35-43.
    [92]刘红梅,陈云贵,唐永柏,黄德明,涂铭旌,赵敏,李益国.铸态Mg-Sn二元合金的显微组织与力学性能[J].四川大学学报(工程科学版),2006(02):90-94.
    [93] Villars P., Calvert L.D. Pearson's handbook of crystallographic data for intermetallic phases[J].1985.
    [94]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999(01):59-64.
    [95] Chen Jihua, Chen Zhenhua, Yan Hongge, Zhang Fuquan, Liao Kun. Effects of Sn addition onmicrostructure and mechanical properties of Mg-Zn-Al alloys [J]. Journal of Alloys andCompounds,2008,461(1-2):209-215.
    [96] Massalski TB, Okamoto H. Binary alloy phase diagrams [M]. ASM International, MaterialPark, OH,1990.
    [97]刘楚明,朱秀荣,周海涛.镁合金相图集[M],长沙:中南大学出版社,2006.
    [98] Derge G., Kommel A.R., Mehl RF. Studies upon the Widmanstatten Structure IX—TheMg-Mg2Sn and Pb-Sb Systems [J]. Trans. AIME,1937,124:367-378.
    [99] Planken J. Precipitation hardening in magnesium-tin alloys [J]. Journal of Materials Science,1969,4(10):927-929.
    [100] Sasaki T. T., Ju J. D., Hono K., Shin K. S. Heat-treatable Mg-Sn-Zn wrought alloy [J]. ScriptaMaterialia,2009,61(1):80-83.
    [101] Sasaki T. T., Oh-ishi K., Ohkubo T., Hono K. Effect of double aging and microalloying on theage hardening behavior of a Mg-Sn-Zn alloy [J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2011,530:1-8.
    [102] Sasaki T. T., Oh-ishi K., Ohkubo T., Hono K. Enhanced age hardening response by theaddition of Zn in Mg-Sn alloys [J]. Scripta Materialia,2006,55(3):251-254.
    [103] Sasaki T. T., Yamamoto K., Honma T., Kamado S., Hono K. A high-strength Mg-Sn-Zn-Alalloy extruded at low temperature [J]. Scripta Materialia,2008,59(10):1111-1114.
    [104] Nie J. F., Gao X., Zhu S. M. Enhanced age hardening response and creep resistance of Mg-Gdalloys containing Zn [J]. Scripta Materialia,2005,53(9):1049-1053.
    [105]余琨,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程,2005,34(7):1013-1016.
    [106] Yang M.B., Ma Y.L., Pan F.S. Effects of little Ce addition on as-cast microstructure and creepproperties of Mg-3Sn-2Ca magnesium alloy [J]. Transactions of Nonferrous Metals Society ofChina,2009,19(5):1087-1092.
    [107]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004.
    [108] Khan S. A., Miyashita Y., Mutoh Y., Bin Sajuri Z. Influence of Mn content on mechanicalproperties and fatigue behavior of extruded Mg alloys [J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2006,420(1-2):315-321.
    [109] Skjerpe P. M., Simensen C. J. PRECIPITATION IN MG-MN ALLOYS [J]. Metal Science,1983,17(8):403-407.
    [110] Zhang M. X., Kelly P. M. Edge-to-edge matching and its applications-Part II. Application toMg-Al, Mg-Y and Mg-Mn alloys [J]. Acta Materialia,2005,53(4):1085-1096.
    [111]袁炜.新型Mg-6Zn-1M变形镁合金组织与性能研究[D].重庆大学,2007.
    [112]黄伯云,李成功,石力开,邱冠周,左铁镛.中国材料工程大典有色金属材料工程[M].北京:化学工业出版社,2005:167-168.
    [113]李春胜,黄德彬.金属材料手册[M].北京:化学工业出版社,2004:72.
    [114] Porter D.A., Easterling K.E. Phase transformations in metals and alloys [M]. Chapman&Hall,London,1992.
    [115] Effenberg G., Aldinger F., L. Rokhlin. Ternary Alloys. Vol.16[M]. MSI, Stuttgart,1999.
    [116]刘红梅. Mg-5wt%Sn合金固溶时效机理和价电子结构的研究[D].四川大学,2007.
    [117] Smith William F., Hashemi J. Foundations of materials science and engineering [M].McGraw-Hill Higher Education,2006.
    [118]赵乃勤.合金固态相变[M].长沙:中南大学出版社,2008.
    [119] Patterson A. L. The Scherrer formula for x-ray particle size determination [J]. PhysicalReview,1939,56(10):978-982.
    [120] Bariani P. F., Dal Negro T., Cirp. Material response to continuously varying rate of strainingduring hot forging operations [M],1999.
    [121]丁汉林. AZ91镁合金高温变形行为的实验研究与数值模拟[D].上海交通大学,2007.
    [122]高维林,白光润,周志敏. An evolution model of dislocation patterns in plastic deformationand its applications [J]. Science in China,Ser.A,1995(07):875-883.
    [123]毛萍莉,杨柯,苏国跃.铸态奥氏体不锈钢的热变形行为[J].金属学报,2001(01):39-41.
    [124] McQueen H. J., Ryan N. D. Constitutive analysis in hot working [J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2002,322(1-2):43-63.
    [125] Mwembela A., Konopleva E. B., McQueen H. J. Microstructural development in Mg alloyAZ31during hot working [J]. Scripta Materialia,1997,37(11):1789-1795.
    [126] Spigarelli S., Cabibbo M., Evangelista E., Talianker M., Ezersky V. Analysis of the creepbehaviour of a thixoformed AZ91magnesium alloy [J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2000,289(1-2):172-181.
    [127] Sellars CM, Tegart WJ. McG.,1972,“La Relation Entre La Résistance et la Structure Dans laDéformation a Chaud,”[J]. Mem. Sci. Rev. Met,23:731-746.
    [128] Sivakesavam O., Rao I. S., Prasad Yvrk. PROCESSING MAP FOR HOT-WORKING OF ASCAST MAGNESIUM [J]. Materials Science and Technology,1993,9(9):805-810.
    [129] Chang T. C., Wang J. Y., O C. M., Lee S. Grain refining of magnesium alloy AZ31by rolling[J]. Journal of Materials Processing Technology,2003,140:588-591.
    [130]俞冰. Gleeble-2000热/力模拟试验机应用[J].钢铁研究,1995(05):39-43.
    [131] Galiyev A., Kaibyshev R., Gottstein G. Correlation of plastic deformation and dynamicrecrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49(7):1199-1207.
    [132]朱红梅. Mg-6Zn-xCu-0.6Zr (x=0-2.0)铸造镁合金的时效行为,显微组织及力学性能研究[D].华南理工大学,2011.
    [133] Marth PE, Aaronson HI, Lorimer GW, Bartel TL, Russell KC. Application of heterogeneousnucleation theory to precipitate nucleation at GP zones [J]. Metallurgical and MaterialsTransactions A,1976,7(10):1519-1528.
    [134] Hornbogen E. Discussion of “application of heterogeneous nucleation theory to precipitatenucleation at gp zones”[J]. Metallurgical and Materials Transactions A,1978,9(1):134-137.
    [135] Clark JB, Rhines FN. Central region of the magnesium–zinc phase diagram [J]. Journal ofMetals,1957,9:425-430.
    [136] Buha J. Reduced temperature (22–100°C) ageing of an Mg–Zn alloy [J]. Materials Scienceand Engineering: A,2008,492(1):11-19.
    [137] Bettles CJ, Gibson MA, Venkatesan K. Enhanced age-hardening behaviour in Mg–4wt.%Znmicro-alloyed with Ca [J]. Scripta Materialia,2004,51(3):193-197.
    [138] Mendis C. L., Bettles C. J., Gibson M. A., Hutchinson C. R. An enhanced age hardeningresponse in Mg-Sn based alloys containing Zn [J]. Materials Science and Engineeringa-Structural Materials Properties Microstructure and Processing,2006,435:163-171.
    [139]周如松.金属物理(下册)[M].北京:高等教育出版社,1992.
    [140]余琨.稀土变形镁合金组织性能及加工工艺研究[D].中南大学,2002.
    [141]吴安如.含稀土镁合金细晶化、塑性变形再结晶、时效脱溶及焊接性研究[D].中南大学,2006.
    [142] Villars P., Prince A., Okamoto H. Handbook of ternary alloy phase diagrams [M]. ASMInternational (Materials Park, OH)1994
    [143] Chiu Chen-nan, Groebner Joachim, Kozlov Artem, Schmid-Fetzer Rainer. Experimental studyand thermodynamic assessment of ternary Mg-Zn-Ce phase relations focused on Mg-richalloys [J]. Intermetallics,2010,18(4):399-405.
    [144] Kolitsch U., Bellen P., Kaesche S., Macciò D., Bochvar N., Liberov Y., Rogl P., Effenberg G.,Petzow G. Cerium–Magnesium–Zinc [J]. EFFENBERG G, PETZOW G. Ternary Alloys--AComprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams.Weinheim, Stuttgart, Germany: VCH Verlagsgesellscahft MSI Gmbh,2000:168-176.
    [145] Kevorkov D., Pekguleryuz M. Experimental study of the Ce-Mg-Zn phase diagram at350degrees C via diffusion couple techniques [J]. Journal of Alloys and Compounds,2009,478(1-2):427-436.
    [146] Drits M. E., Drozdova E. I., Korolkova I. G., Kinzhibalo V. V., Tyvanchuk A. T.INVESTIGATION OF POLYTHERMAL SECTIONS OF THE MG-ZN-CE SYSTEM INTHE MG-RICH REGION [J]. Russian Metallurgy,1989(2):195-197.
    [147] Pavlyuk Volodymyr, Solokha Pavlo, Dmytriv Grygorij, Marciniak Bernard, Paul-BoncourValerie. The Heusler-type alloy MgZn2Ce [J]. Acta Crystallographica Section E-StructureReports Online,2007,63: I161-U180.
    [148]张丁非,石国梁,赵霞兵,齐福刚. Mn元素在Mg-Zn-Mn合金中演变形式和作用的研究[J].材料导报,2011(18):1-5+10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700