HBV转基因小鼠肝脏免疫损伤高度敏感的天然免疫机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(HBV)作为一种非细胞毒性的嗜肝病毒,感染机体后将导致急慢性肝炎、肝硬化、肝癌等一系列肝脏疾病的发生,成为危害人类健康的一项严重问题。机体对病毒抗原的免疫反应是HBV引起肝脏疾病的重要机制,但目前HBV确切的致病机理仍不清楚。随着肝脏天然免疫系统的提出,肝脏内天然免疫细胞在HBV感染致病过程中的作用引起了学者们的重视,尤其是肝脏NK细胞。肝脏内聚集着大量的NK细胞,约占肝脏淋巴细胞总数的35%。NK细胞在机体抗HBV感染中起着不可忽视的作用,但是在HBV感染肝脏免疫致病过程中的作用及其可能的机制还有待于进一步的研究证实。值得注意的是人类HBV健康携带者再受到外界因素如病毒、细菌等感染、化学物质、细胞刺激剂、妊娠及免疫治疗等作用后肝细胞极易发生损伤,严重危害这一人群的健康。有研究提示NK细胞参与HBV转基因小鼠肝脏易损伤过程,但是NK细胞通过何种机制参与肝细胞敏感损伤尚未阐明。
     故本研究利用HBV转基因小鼠C57BL/6J-TgN(AlblHBV)44Bri,一种模拟人类HBsAg健康携带者的模型,深入探讨肝脏天然免疫细胞在HBV感染肝脏免疫损伤中的作用及机理。首先分析比较HBV转基因小鼠中枢及外周免疫系统中各类淋巴细胞的存在状态,尤其是肝脏NK细胞的基本特性;利用多种刺激剂如Poly I:C,Con A及CCl_4研究HBV转基因小鼠肝脏损伤情况,并进一步探索HBV转基因小鼠肝脏NK细胞的免疫应答特性及在肝脏损伤中的作用。实验过程中,采用赖氏法检测血清转氨酶ALT/AST水平、组织H-E染色观察肝脏病理学变化,并利用上述指标综合评估肝细胞损伤程度;通过细胞清除和细胞过继转输技术,研究特定淋巴细胞群在肝脏损伤过程中的作用以及细胞间相互作用关系;采用流式细胞术测定各淋巴细胞亚群的表型,活化状态以及细胞因子分泌功能;利用Western blotting方法检测肝细胞胞内信号传导;运用特异抗体中和实验观察细胞间相互作用的分子机制;运用特异性抗体阻断实验以及体外AST释放实验探索淋巴细胞与肝细胞间相互作用机制。通过上述研究方案获得如下结果:
     1.HBV转基因小鼠肝脏NK细胞特性改变
     与正常野生型小鼠相比,HBV转基因小鼠肝脏NK细胞数量明显减少;自然活化程度(CD69表达水平)明显下降;对肿瘤细胞的细胞毒活性明显受损;表面TRAIL分子的表达水平明显下降。而且,HBV转基因小鼠肝脏NK细胞对Poly I:C的免疫应答不同于正常野生型小鼠。虽然Poly I:C能够刺激HBV转基因小鼠肝脏NK细胞的聚集、活化、并提高其对肿瘤细胞的细胞毒活性,但是HBV转基因小鼠活化的肝脏NK细胞细胞毒活性仍明显低于正常野生型小鼠。
     2.HBV转基因小鼠肝脏损伤敏感性明显增加
     低剂量Poly I:C(3μg/g body weight)诱导HBV转基因小鼠血清转氨酶ALT/AST急剧升高,严重的肝细胞坏死和肝脏炎性浸润,与高剂量Poly I:C(30μg/g body weight)的作用基本相同;而在正常野生型小鼠,仅高剂量Poly I:C的作用引起血清转氨酶ALT/AST的轻度上升。
     低剂量Con A(3μg/g body weight)刺激下,正常野生型小鼠血清转氨酶ALT/AST仍在正常范围内;而HBV转基因小鼠血清转氨酶ALT/AST急剧升高,肝脏有明显的大片坏死灶及炎性浸润。足剂量Con A(15μg/g body weight)作用后HBV转基因小鼠死亡率明显高于正常野生型小鼠。
     另外,HBV转基因小鼠对于化学毒物CCl_4诱导的肝细胞损伤敏感性也显著增加。刺激24h后HBV转基因小鼠血清转氨酶ALT急剧上升,显著高于正常野生型小鼠。
     3.HBV转基因小鼠对Poly I:C诱导的肝脏损伤敏感性增加的机制:NK细胞及IFN-γ依赖途径
     细胞清除实验表明HBV转基因小鼠中,低剂量Poly I:C(3μg/g body weight)诱导的肝细胞敏感损伤依赖于NK细胞。低剂量Poly I:C刺激后,HBV转基因小鼠肝脏内活化的NK细胞分泌大量IFN-γ。中和体内IFN-γ后,低剂量Poly I:C诱导的肝脏敏感损伤明显减弱。给予外源性重组IFN-γ后血清转氨酶ALT/AST水平表明HBV转基因小鼠对IFN-γ诱导的肝细胞损伤作用更为敏感。进一步研究发现HBV转基因小鼠肝细胞表面IFN-γ受体的表达水平明显高于正常野生型小鼠,而且低剂量Poly I:C刺激明显提高其表达。在IFN-γ刺激后HBV转基因小鼠肝细胞胞内信号pSTAT1-IRF-1明显强于正常野生型小鼠肝细胞。
     另外,在HBV转基因小鼠Poly I:C诱导的肝脏敏感损伤过程中,NK细胞发挥作用不依赖于Kupffer细胞及IL-12。
     4.HBV转基因小鼠对Con A诱导肝脏损伤极度敏感的机制:NKG2D依赖途径
     细胞转输实验证明在低剂量Con A(3μg/g body weight)诱导肝细胞损伤过程中,与正常野生型小鼠相比HBV转基因小鼠肝脏淋巴细胞对肝细胞的杀伤活性明显增强,同时HBV转基因小鼠的肝细胞对淋巴细胞的杀伤作用更为敏感。低剂量ConA作用下,HBV转基因小鼠肝脏内聚集着更多的活化NK细胞,而且低剂量Con A诱导的肝脏敏感损伤依赖于NK细胞。纯化的NK细胞体内转输实验证明低剂量Con A活化的肝脏NK细胞具有肝细胞毒活性,是肝细胞损伤的效应细胞。
     Con A刺激后HBV转基因小鼠肝细胞不同于正常野生型小鼠肝细胞,其NKG2D配体(Rae-1和Mult-1)的表达明显上调。阻断HBV转基因小鼠体内NKG2D通路后,低剂量Con A诱导的肝细胞损伤明显减弱。体外纯化的NK细胞对肝细胞的杀伤实验(4-h AST释放实验)进一步证明低剂量Con A活化的NK细胞对肝细胞的细胞毒作用依赖于NK细胞与肝细胞之间NKG2D-ligand相互识别。
     另外,在低剂量Con A诱导HBV转基因小鼠肝脏敏感损伤过程中,活化的NKT细胞通过分泌细胞因子IFN-γ和IL-4对NK细胞活化发挥重要的正向调节作用。
     5.HBV下调人肝癌细胞系MHC-Ⅰ类分子的表达
     利用转染HBV的HepG2.2.15细胞系及其对照细胞系HepG2,发现HBV感染显著抑制肝癌细胞表面HLA-ABC分子的表达,HLA-E mRNA的表达;显著下调肝癌细胞膜型MICA分子及MICA mRNA的表达。
     本研究首次揭示了HBV转基因小鼠肝脏NK细胞的特性及HBV感染肝脏免疫损伤高度敏感的天然免疫机制,同时对HBV感染对人肝细胞MHC-Ⅰ类分子表达的影响进行了初步的探讨。本研究将为揭示人类HBV慢性携带者肝脏NK细胞的基本特性及肝细胞损伤敏感性增加的免疫学机理提供重要依据,对控制、治疗HBV慢性感染导致的多种肝脏疾病具有一定的指导意义。
Hepatitis B virus (HBV) as a hepatotropic, noncytopathic virus, primarily infects hepatocytes and causes a series of liver diseases such as acute and chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, which are among the most important human health problems worldwide. It has been reported that the immune responses are fundamental for viral clearance and pathogenesis during HBV infection; however, the precise pathogenesis has not been well known until now. With the new recognition that liver is a lymphoid organ with an overwhelming innate immune system, the roles of innate immune cells during HBV infection, especially the hepatic NK cells, deserve further investigating. NK cells are abundant in the normal liver, accounting for about one third of intrahepatic lymphocytes. Available evidences have indicated that hepatic NK cells play an important anti-viral role during HBV infection, but the role in the development of HBV-associated liver injury remains obscure. Noticeably, human healthy HBsAg carriers are susceptible to hepatocyte injury induced by a variety of elements such as stresses, infections, pregnancy and use or withdrawal of immunosuppressive therapies, which is a serious risk for the health of chronic HBsAg carriers. The basis for the susceptibility has not been understood yet. It has been argued that NK cells were involved in the over-sensitive liver injury in HBV transgenic mice triggered byα-GalCer, but the actual mechanisms of NK cells in hepatocyte injury remain elusive.
     In this study, we used HBV transgenic mice C57BL/6J-TgN (AlblHBV) 44Bri, which mimic human healthy chronic HBsAg carriers, to determine the functions of hepatic NK cells and the precise roles of innate immune responses in HBV-associated liver injury. The lymphocytes of central and peripheral immune organs were compared between HBV transgenic mice and wild C57BL/6 mice, especially hepatic NK cells. Poly I:C, Con A and CCl_4 were used to induce liver injury of HBV transgenic mice, and then immune responses of hepatic NK cells and precise roles of NK cells in the liver injury were investigated further. We examined the liver injury by determining serum transaminase ALT/AST level and liver pathologic changes. By cell depletion and cell transfer experiments, effects of the specific lymphocyte population and cellular interactions in the process of liver injury were investigated. The FACS analysis provided us with the precise information about lymphocyte phenotype, activation and cytokine production. Western blotting was applied to determine signals in heptocytes. Moreover, specific neutralization with antibody was applied to explore the potential mechanisms involved in cell interaction. Blocking with antibody and 4-h AST release experiments were applied to explore the molecular interaction between lymphocytes and heptocytes. Our major findings are shown as followed:
     1. Impaired function of hepatic NK cells from murine chronic HBsAg carriers
     Compared with wild C57BL/6 mice, in HBV transgenic mice the number of hepatic NK cells was decreased; natural activation (CD69 expression) of hepatic NK cells was declined; and cytotoxicity of hepatic NK cells was attenuated, which might relate to the down-regulated expression of TRAIL on hepatic NK cells. Additionally, although in the liver of HBV transgenic mice NK cells could be accumulated and activated by Poly I:C injection, the increase in anti-tumor cytotoxic activity of intrahepatic activated NK cells was markedly impaired in HBV transgenic mice compared with that in wild C57BL/6 mice.
     2. Murine chronic HBsAg carriers were over-sensitive to liver injury
     A much low dose of Poly I:C (3μg/g body weight) injection induced much higher elevations of serum ALT and AST, severe hepatocyte necrosis and inflammation in HBV transgenic mice, which was similar to a high dose of Poly I:C (30μg/g body weight) injection. However, in wild C57BL/6 mice, there were only slight elevations of serum ALT and AST after 30μg/g body weight Poly I:C injection. These results demonstrated that HBV transgenic mice were over-sensitive to Poly I:C-induced liver injury.
     The nonhepatotoxic low dose of Con A (3μg/g body weight) for wild C57BL/6 mice induced severe liver injury in HBV transgenic mice, demonstrated by high level of serum ALT/AST and liver massive necrosis and inflammation. High dose of Con A (15μg/g body weight) injection induced the peak level of serum ALT/AST hardly with death in wild C57BL/6 mice, but caused death of most HBV transgenic mice.
     CCl_4 injection also induced much more severe hepatocyte injury in HBV transgenic mice than that of wild C57BL/6 mice shown by the level of serum ALT after 24 h of injection.
     3. Murine chronic HBsAg carriers were over-sensitive to Poly I:C-induced liver injury in NK cell- and IFN-γ-dependent manner
     Poly I:C-induced over-sensitive liver injury was absolutely dependent on the presence of NK cells in HBV transgenic mice. After Poly I:C injection, intrahepatic NK cells were activated and produced IFN-γ. Neutralization of endogenous IFN-γsignificantly inhibited the over-sensitive liver injury. HBV transgenic mice were hypersensitive to IFN-γin liver injury, indicated by the results of serum ALT/AST after recombinant mIFN-γadministration. Further, much stronger IFN-γreceptor expression was observed on hepatocytes of HBV transgenic mice, which was significantly enhanced by Poly I:C injection. Treatment with IFN-γin vitro triggered much higher activation of downstream signals (pSTAT1-IRF-1) in hepatocytes of HBV transgenic mice. Depletion of Kupffer cells and neutralization of endogenous IL-12 did not affect Poly I:C-induced over-sensitive liver injury in HBV transgenic mice.
     4. Involvement of NKG2D activation in Con A-induced over-sensitive liver injury of murine chronic HBsAg carriers
     After low dose of Con A stimulation, hepatic MNCs became more cytotoxic and hepatocytes more sensitive to cytotoxicity from HBV transgenic mice compared with wild C57BL/6 mice. Low dose of Con A-induced over-sensitive liver injury was dependent on the more accumulated intraheptic NK cells in HBV transgenic mice, demonstrated by cell depletion. Adoptive transfer of purified hepatic NK cells from low dose of Con A-treated HBV transgenic mice further confirmed activated intrahepatic NK cells were cytotoxic to hepatocytes as effectors. Upon stimulation of low dose of Con A, expressions of NKG2D ligands (Rae-1 and Mult-1) in hepatocytes of HBV transgenic mice were markedly enhanced, but not in wild C57BL/6 mice. NKG2D activation of NK cells via recognition with Rae-1 or Mult-1 on hepatocytes accounted for the over-sensitive hepatocyte injury in HBV transgenic mice. Interestingly, NKT cells triggered by low dose of Con A served as regulator necessary forNK cell activation via secreting IFN-γand IL-4.
     5. HBV down-regulated expressions of MHC class I molecules on hepatoplastoma cell line
     It was found that the expressions of HLA-ABC protein, HLA-E mRNA, membrane MICA protein and MICA mRNA were much lower in HepG2.2.15 cells compared with HepG2 cells. The expressing HBV in human hepatoplastoma cell line significantly down-regulated the expressions of MHC class 1 molecules.
     Here, we for the first time demonstrated the characterization of hepatic NK cells and revealed the precise roles of NK cells in the over-sensitive liver injury of HBV transgenic mice. Additionally, the possible effect of HBV on MHC class I molecules in human hepatocytes was investigated. These findings would be helpful to interpret the immune responses of hepatic NK cells and the immunological mechanisms of hepatocyte susceptibility to injury in human chronic HBsAg carriers.
引文
1. Jung, M. C., and G. R. Pape. 2002. Immunology of hepatitis B infection. Lancet Infect Dis 2:43-50.
    2. Seeger, C., and W. S. Mason. 2000. Hepatitis B virus biology. Microbiol Mol Biol Rev 64:51-68.
    3. Lee, W. M. 1997. Hepatitis B virus infection. N Engl J Med 337:1733-1745.
    4. Chisari, F. V., and C. Ferrari. 1995. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13:29-60.
    5. Davies, S. E., B. C. Portmann, J. G. O'Grady, P. M. Aldis, K. Chaggar, G. J. Alexander, and R. Williams. 1991. Hepatic histological findings after transplantation for chronic hepatitis B virus infection, including a unique pattern of fibrosing cholestatic hepatitis. Hepatology 13:150-157.
    6. Mackay, I. R. 2002. Hepatoimmunology: a perspective, Immunol Cell Biol 80:36-44.
    7. Mehal, W. Z., F. Azzaroli, and I. N. Crispe. 2001. Immunology of the healthy liver: old questions and new insights. Gastroenterology 120:250-260.
    8. Kita, H., I. R. Mackay, J. Van De Water, and M. E. Gershwin. 2001. The lymphoid liver: considerations on pathways to autoimmune injury. Gastroenterology 120:1485-1501.
    9. Bertolino, P., G. Klimpel, and S. M. Lemon. 2000. Hepatic inflammation and immunity: a summary of a conference on the function of the immune system within the liver. Hepatology 31 : 1374-1378.
    10. Crosbie, O. M., M. Reynolds, G. McEntee, O. Traynor, J. E. Hegarty, and C. O'Farrelly. 1999. in vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 29:1193-1198.
    11. Watanabe, H., C. Miyaji, S. Seki, and T. Abo. 1996. c-kit+ stem cells and thymocyte precursors in the livers of adult mice. J Exp Med 184:687-693.
    12. Collins, C., S. Norris, G. McEntee, O. Traynor, L. Bruno, H. von Boehmer, J. Hegarty, and C. O'Farrelly. 1996. RAG1, RAG2 and pre-T cell receptor alpha chain expression by adult human hepatic T cells: evidence for extrathymic T cell maturation. Eur J Immunol 26:3114-3118.
    13. Emoto, M., and S. H. Kaufmann. 2003. Liver NKT cells: an account of heterogeneity. Trends Immunol 24:364-369.
    14. Coles, M. C., and D. H. Raulet. 2000. NK1.1+T cells in the liver arise in the thymus and are selected by interactions with class Ⅰ molecules on CD4+CD8+ cells. J Immunol 164:2412-2418.
    15. Tilloy, F., J. P. Di Santo, A. Bendelac, O. Lantz. 1999. Thymic dependence of invariant V alpha 14+ Natural Killer-T cell development. Eur J Immmunol 29: 3313-3318.
    16. Harman, B. C., E. J. Jenkinson, and G. Anderson. 2003. Entry into the thymic microenvironment triggers Notch activation in the earliest migrant T cell progenitors. J Immunol 170:1299-1303.
    17. Klugewitz, K., D. H. Adams, M. Emoto, K. Eulenburg, and A. Hamann. 2004. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 25:590-594.
    18. Koo, G. C., and J. R. Peppard. 1984. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma 3:301-303.
    19. Ortaldo, J. R., R. Winkler-Pickett, A. T. Mason, and L. H. Mason. 1998. The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J Immunol 160:1158-1165.
    20. Robertson, M. J., M. A. Caligiuri, T. J. Manley, H. Levine, and J. Ritz. 1990. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 145:3194-3201.
    21. Biron, C. A. 1997. Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol 9:24-34.
    22. Guidotti, L. G, and F. V. Chisari. 2001. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19:65-91.
    23. Norris, S., C. Collins, D. G. Doherty, F. Smith, G. McEntee, O. Traynor, N. Nolan, J. Hegarty, and C. O'Farrelly. 1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28:84-90.
    24. Biron, C. A., K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189-220.
    25. Kimura, K., K. Kakimi, S. Wieland, L. G. Guidotti, and F. V. Chisari. 2002. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol 76:10702-10707.
    26. Cavanaugh, V. J., L. G. Guidotti, and F. V. Chisari. 1997. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol 71:3236-3243.
    27. Kakimi, K., L. G. Guidotti, Y. Koezuka, and F. V. Chisari. 2000. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192:921-930.
    28. Kimura, K., K. Kakimi, S. Wieland, L. G. Guidotti, and F. V. Chisari. 2002. Activated intrahepatic antigen-presenting cells inhibit hepatitis B virus replication in the liver of transgenic mice. J Immunol 169:5188-5195.
    29. Monsalve-De Castillo, F., T. A. Romero, J. Estevez, L. L. Costa, R. Atencio, L. Porto, and D. Callejas. 2002. Concentrations of cytokines, soluble interleukin-2 receptor, and soluble CD30 in sera of patients with hepatitis B virus infection during acute and convalescent phases. Clin Diagn Lab Immunol 9:1372-1375.
    30. Kos, F. J., and E. G. Engleman. 1995. Requirement for natural killer cells in the induction of cytotoxic T cells. J Immunol 155:578-584.
    31. Andrews, D. M., A. A. Scalzo, W. M. Yokoyama, M. J. Smyth, and M. A. Degli-Esposti. 2003. Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4:175-181.
    32. Piccioli, D., S. Sbrana, E. Melandri, and N. M. Valiante. 2002. Contact-dependent Stimulation and Inhibition of Dendritic Cells by Natural Killer Ceils. J Exp Med 195:335-341.
    33. Eberl, G., and H. R. MacDonald. 2000. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985-992.
    34. Benlagha, K., A. Weiss, A. Beavis, L. Teyton, and A. Bendelac. 2000. In vivo identification of glycolipid antigen-specific T cells using fluorescent CDld tetramers. J Exp Med 191 : 1895-1903.
    35. Matsuda, J. L., O. V. Naidenko, L. Gapin, T. Nakayama, M. Taniguchi, C. R. Wang, Y. Koezuka, and M. Kronenberg. 2000. Tracking the response of natural killer T cells to a glycolipid antigen using CDld tetramers. J Exp Med 192:741-754.
    36. Karadimitris, A., S. Gadola, M. Altamirano, D. Brown, A. Woolfson, P. Klenerman, J. L. Chen, Y. Koezuka, I. A. Roberts, D. A. Price, G. Dusheiko, C. Milstein, A. Fersht, L. Luzzatto, and V. Cerundolo. 2001. Human CDld-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Aead Sci U S A 98:3294-3298.
    37. Godfrey, D. I., H. R. MacDonald, M. Kronenberg, M. J. Smyth, and L. V. Kaer. 2004. NKT cells: what's in a name? Nature Reviews Immunology 4:231-237.
    38. Lanier, L. L. 1998. NK cell receptors. Annu Rev Immunol 16:359-393.
    39. Bendelac, A., M. N. Rivera, S. H. Park, and J. H. Roark. 1997. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535-562.
    40. Kakimi, K., T. E. Lane, F. V. Chisari, and L. G. Guidotti. 2001. Cutting edge: Inhibition of hepatitis B virus replication by activated NK T cells does not require inflammatory cell recruitment to the liver. J Immunol 167:6701-6705.
    41. Baron, J. L., L. Gardiner, S. Nishimura, K. Shinkai, R. Locksley, and D. Ganem. 2002. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583-594.
    42. Guidotti, L. G., R. Rochford, J. Chung, M. Shapiro, R. Purcell, and F. V. Chisari. 1999. Viral clearance without destruction of infected cells during acute HBV infection. Science284:825-829.
    43. Doherty, D. G., S. Norris, L. Madrigal-Estebas, G. McEntee, O. Traynor, J. E. Hegarty, and C. O'Farrelly. 1999. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 163:2314-2321.
    44: Shi, J., H. Fujieda, Y. Kokubo, and K. Wake. 1996. Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 24:1256-1263.
    45. Ruzittu, M., E. C. Carla, M. R. Montinari, G. Maietta, and L. Dini. 1999. Modulation of cell surface expression of liver carbohydrate receptors during in vivo induction of apoptosis with lead nitrate. Cell Tissue Res 298:105-112.
    46. Filice, G. A. 1988. Antimicrobial properties of Kupffer cells. Infect Immun 56:1430-1435.
    47. Wardle, E. N. 1987. Kupffer cells and their function. Liver 7:63-75.
    48. Pasquetto, V., L. G. Guidotti, K. Kakimi, M. Tsuji, and F. V. Chisari. 2000. Host-virus interactions during malaria infection in hepatitis B virus transgenic mice. J Exp Med 192:529-536.
    49. Tseng, C. T., E. Miskovsky, M. Houghton, and G. R. Klimpel. 2001. Characterization of liver T-cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV) : evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 33: 1312-1320.
    50. Chen, Y. , H. Wei, B. Gao, Z. Hu, S. Zheng, and Z. Tian. 2005. Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J Viral Hepat 12: 38-45.
    51. Knolle, P. A. , G. Gerken, E. Loser, H. P. Dienes, F. Gantner, G. Tiegs, K. H. Meyer zum Buschenfelde, and A. W. Lohse. 1996. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 24: 824-829.
    52. Tiegs, G. , J. Hentschel, and A. Wendel. 1992. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90: 196-203.
    53. Kaneko, Y. , M. Harada, T. Kawano, M. Yamashita, Y. Shibata, F. Gejyo, T. Nakayama, and M. Taniguchi. 2000. Augmentation of Valphal4 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191: 105-114.
    54. Takeda, K. , Y. Hayakawa, L. Van Kaer, H. Matsuda, H. Yagita, and K. Okumura. 2000. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97: 5498-5503.
    55. Louis, H. , A. Le Moine, V. Flamand, N. Nagy, E. Quertinmont, F. Paulart, D. Abramowicz, O. Le Moine, M. Goldman, and J. Deviere. 2002. Critical role of interleukin 5 and eosinophils in concanavalin A-induced hepatitis in mice. Gastroenterology 122: 2001-2010.
    56. Jaruga, B. , F. Hong, R. Sun, S. Radaeva, and B. Gao. 2003. Crucial role of IL-4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 171: 3233-3244.
    57. Toyabe, S. , S. Seki, T. liai, K. Takeda, K. Shirai, H. Watanabe, H. Hiraide, M. Uchiyama, and T. Abo. 1997. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159: 1537-1542.
    58. Seino, K. , N. Kayagaki, K. Takeda, K. Fukao, K. Okumura, and H. Yagita. 1997. Contribution of Fas ligand to T cell-mediated hepatic injury in mice. Gastroenterology 113: 1315-1322.
    59. Mizuhara, H. , E. O'Neill, N. Seki, T. Ogawa, C. Kusunoki, K. Otsuka, S. Satoh, M. Niwa, H. Senoh, and H. Fujiwara. 1994. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 179: 1529-1537.
    60. Mizuhara, H. , M. Uno, N. Seki, M. Yamashita, M. Yamaoka, T. Ogawa, K. Kaneda, T. Fujii, H. Senoh, and H. Fujiwara. 1996. Critical involvement of interferon gamma in the pathogenesis of T-cell activation-associated hepatitis and regulatory mechanisms of interleukin-6 for the manifestations of hepatitis. Hepatology 23: 1608-1615.
    61. Wolf, D. , J. Schumann, K. Koerber, A. K. Kiemer, A. M. Vollmar, G. Sass, T. Papadopoulos, R. Bang, S. D. Klein, B. Brune, and G. Tiegs. 2001. Low-molecular-weight hyaluronic acid induces nuclear factor-kappaBdependent resistance against tumor necrosis factor alpha-mediated liver injury in mice. Hepatology 34: 535-547.
    62. Zheng, S. J. , P. Wang, G. Tsabary, and Y. H. Chen. 2004. Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest 113: 58-64.
    63. Galanos, C. , M. A. Freudenberg, and W. Reutter. 1979. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76: 5939-5943.
    64. Dong, Z. , H. Wei, R. Sun, Z. Hu, B. Gao, and Z. Tian. 2004. Involvement of natural killer cells in PolyI: C-induced liver injury. J Hepatol 41: 966-973.
    65. Ochi, M. , H. Ohdan, H. Mitsuta, T. Onoe, D. Tokita, H. Hara, K. Ishiyama, W. Zhou, Y. Tanaka, and T. Asahara. 2004. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39: 1321-1331.
    66. Schumann, J. , S. Angermuller, R. Bang, M. Lohoff, and G. Tiegs. 1998. Acute hepatotoxicity of Pseudomonas aeruginosa exotoxin A in mice depends on T cells and TNF. J Immunol 161: 5745-5754.
    67. Muhlen, K. A. , J. Schumann, F. Wittke, S. Stenger, N. Van Rooijen, L. Van Kaer, and G. Tiegs. 2004. NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J Immunol 172: 3034-3041.
    68. Wang, J. , R. Sun, H. Wei, Z. Dong, B. Gao, and Z. Tian. 2006. Poly I: C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 44:446-454.
    69. Wang, J., R. Sun, H. Wei, Z. Dong, and Z. Tian. 2006. Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury, lnt Immunopharmacol 6:800-807.
    1. Seeger, C. , and W. S. Mason. 2000. Hepatitis B virus biology. MicrobioL Mol. Biol. Rev. 64: 51-68.
    2. Jung, M. C. , and G. R. Pape. 2002. Immunology of hepatitis B infection. Lancet Infect Dis 2: 43-50.
    3. Rehermann, B. , and M. Nascimbeni. 2005. Immnology of hepatitis B virus and hepatitis C virus infection. Nature Reviews Immunology 5: 215-229.
    4. Lee, W. M. 1997. Hepatitis B virus infection. N Engl J Med 337: 1733-1745.
    5. Chisari, F. V. , and C. Ferrari. 1995. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13: 29-60.
    6. Davies, S. E. , B. C. Portmann, J. G. O'Grady, P. M. Aldis, K. Chaggar, G. J. Alexander, and R. Williams. 1991. Hepatic histological findings after transplantation for chronic hepatitis B virus infection, including a unique pattern of fibrosing cholestatic hepatitis. Hepatology 13: 150-157.
    7. Nakamoto, Y. , L. G. Guidotti, C. V. Kuhlen, P. Fowler, and F. V. Chisari. 1998. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188: 341-350.
    8. Mackay, I. R. 2002. Hepatoimmunology: a perspective, Immunol Cell Biol 80: 36-44.
    9. Mehal, W. Z. , F. Azzaroli, and I. N. Crispe. 2001. hnmunology of the healthy liver: old questions and new insights. Gastroenterology 120: 250-260.
    10. Kita, H. , I. R. Mackay, J. Van De Water, and M. E. Gershwin. 2001. The lymphoid liver: considerations on pathways to autoimmune injury. Gastroenterology 120: 1485-1501.
    11. Bertolino, P. , G. Klimpel, and S. M. Lemon. 2000. Hepatic inflammation and immunity: a summary of a conference on the function of the immune system within the liver. Hepatology 31: 1374-1378.
    12. Norris, S. , C. Collins, D. G. Doherty, F. Smith, G. McEntee, O. Traynor, N. Nolan, J. Hegarty, and C. O'Farrelly. 1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28: 84-90.
    13. Chen, Y. , H. Wei, B. Gao, Z. Hu, S. Zheng, and Z. Tian. 2005. Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J Viral Hepat 12: 38-45.
    14. Guidotti, L. G. , and F. V. Chisari. 2001. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19: 65-91.
    15. Biron, C. A. , K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17: 189-220.
    16. Liang, S. , H. Wei, R. Sun, and Z. Tian. 2003. IFNalpha regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 23: 190-199.
    17. Chisari, F. V. 2000. Rous-Whipple Award Lecture. Viruses, immunity, and cancer: lessons from hepatitis B. Am J Pathol 156: 1117-1132.
    18. McClary, H. , R. Koch, F. V. Chisari, and L. G. Guidotti. 2000. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J Virol 74: 2255-2264.
    19. Cavanaugh, V. J. , L. G. Guidotti, and F. V. Chisari. 1997. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol 71: 3236-3243.
    20. Biron, C. A. 1997. Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol 9: 24-34.
    21. Piccioli, D. , S. Sbrana, E. Melandri, and N. M. Valiante. 2002. Contactdependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195: 335-341.
    22. Kos, F. J. , and E. G. Engleman. 1995. Requirement for natural killer cells in the induction of cytotoxic T cells. J Immunol 155: 578-584.
    23. Kos, F. J. , and E. G. Engleman. 1996. Role of natural killer cells in the generation of influenza virus-specific cytotoxic T cells. Cell Immunol 173: 1-6.
    24. Mocikat, R. , H. Braumuller, A. Gumy, O. Egeter, H. Ziegler, U. Reusch, A. Bubeck, J. Louis, R. Mailhammer, G. Riethmuller, U. Koszinowski, and M. Rocken. 2003. Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19: 561-569.
    25. Schirmbeck, R. , J. Wild, D. Stober, H. E. Blum, F. V. Chisari, M. Geissler, and J. Reimann. 2000. Ongoing murine Tl or T2 immune responses to the hepatitis B surface antigen are excluded from the liver that expresses transgene-encoded hepatitis B surface antigen. J Immunol 164: 4235-4243.
    26. Kakimi, K. , L. G. Guidotti, Y. Koezuka, and F. V. Chisari. 2000. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192: 921-930.
    27. Kimura, K. , K. Kakimi, S. Wieland, L. G. Guidotti, and F. V. Chisari. 2002. Activated intrahepatic antigen-presenting cells inhibit hepatitis B virus replication in the liver of transgenic mice. J Immunol 169: 5188-5195.
    28. Pasquetto, V. , L. G. Guidotti, K. Kakimi, M. Tsuji, and F. V. Chisari. 2000. Host-virus interactions during malaria infection in hepatitis B virus transgenic mice. J Exp Med 192: 529-536.
    29. Chisari, F. V. 1997. Cytotoxic T cells and viral hepatitis. J Clin Invest 99: 1472-1477.
    30. Guidotti, L. G. , and F. V. Chisari. 1996. To kill or to cure: options in host defense against viral infection. Curt Opin Immunol 8: 478-483.
    31. Guidotti, L, G. , R. Rochford, J. Chung, M. Shapiro, R. Purcell, and F. V. Chisari. 1999. Viral clearance without destruction of infected cells during acute HBV infection. Science 284: 825-829.
    32. Liu, Z. -X. , S. Govindarajan, S. Okamoto, and G. Dennert. 2000. NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection. J Immunol 164: 6480-6486.
    33. Muhlen, K. A. , J. Schumann, F. Wittke, S. Stenger, N. Van Rooijen, L. Van Kaer, and G. Tiegs. 2004. NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J Immunol 172: 3034-3041
    34. Abe, T. , H. Kawamura, S. Kawabe, H. Watanabe, F. Gejyo, and T. Abo. 2002. Liver injury due to sequential activation of natural killer cells and natural killer T cells by carrageenan. J Hepatol 36: 614-623.
    35. Ochi, M. , H. Ohdan, H. Mitsuta, T. Onoe, D. Tokita, H. Hara, K. Ishiyama, W. Zhou, Y. Tanaka, and T. Asahara. 2004. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39: 1321-1331.
    36. Dong, Z. , H. Wei, R. Sun, Z. Hu, B. Gao, and Z. Tian. 2004. Involvement of natural killer cells in PolyI: C-induced liver injury. J Hepatol 41: 966-973.
    37. Wang, J. , R. Sun, H. Wei, Z. Dong, and Z. Tian. 2006. Pre-activation of T lymphocytes by low dose of concanavalin A aggravates toll-like receptor-3 ligand-induced NK cell-mediated liver injury. Int Immunopharmacol 6: 800-807.
    38. Takeda, K. , Y. Hayakawa, L. Van Kaer, H. Matsuda, H. Yagita, and K. Okumura. 2000. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97: 5498-5503.
    39. Toyabe, S. , S. Seki, T. Iiai, K. Takeda, K. Shirai, H. Watanabe, H. Hiraide, M. Uchiyama, and T. Abo. 1997. Requirement of IL-4 and liver NK1+T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159: 1537-1542.
    40. Nakagawa, R. , I. Nagafune, Y. Tazunoki, H. Ehara, H. Tomura, R. Iijima, K. Motoki, M. Kamishohara, and S. Seki. 2001. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosyiceramide in mice. J Immunol 166: 6578-6584.
    41. Sitia, G. , M. Isogawa, K. Kakimi, S. F. Wieland, F. V. Chisari, and L. G. Guidotti. 2002. Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 99: 13717-13722.
    42. Kakimi, K. , T. E. Lane, S. Wieland, V. C. Asensio, I. L. Campbell, F. V. Chisari, and L. G. Guidotti. 2001. Blocking Chemokine Responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med 194: 1755-1766.
    43. Zheng, B. J. , M. H. Ng, L. F. He, X. Yao, K. W. Chan, K. Y. Yuen, and Y. M. Wen. 2001. Therapeutic efficacy of hepatitis B surface antigen-antibodies-recombinant DNA composite in HBsAg transgenic mice. Vaccine 19: 4219-4225.
    44. Trobonjaca, Z. , A. Kroger, D. Stober, F. Leithauser, P. Moiler, H. Hauser, R. Schirmbeck, and J. Reimann. 2002. Activating immunity in the liver. Ⅱ. IFN-beta attenuates NK cell-dependent liver injury triggered by liver NKT cell activation. J Immunol 168: 3763-3770.
    45. Gilles, P. N. , D. L. Guerrette, R. J. Ulevitch, R. D. Schreiber, and F. V. Chisari. 1992. HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferon-gamma. Hepatology 16: 655-663.
    46. Raulet, D. H. 2003. Roles of the NKG2D immunoreceptor and its ligands. Nature Reviews Immunology 3: 781-790.
    47. Cerwenka, A. , and L. L. Lanier. 2001. Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev 181: 158-169.
    48. Groh, V. , A. Bruhl, H. El-Gabalawy, J. L. Nelson, and T. Spies. 2003. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci U S A 100: 9452-9457.
    49. Meresse, B. , Z. Chen, C. Ciszewski, M. Tretiakova, G. Bhagat, T. N. Krausz, D. H. Raulet, L. L. Lanier, V. Groh, and T. Spies. 2004. Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-aetivated killer cells in celiac disease. Immunity 21: 357-366.
    50. Ogasawara, K. , J. A. Hamerman, L. R. Ehrlich, H. Bour-Jordan, P. Santamaria, J. A. Bluestone, and L. L. Lanier. 2004. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20: 757-767.
    51. Ogasawara, K. , J. A. Hamerman, H. Hsin, S. Chikuma, H. Bour-Jordan, T. Chen, T. Pertel, C. Camaud, J. A. Bluestone, and L. L. Lanier. 2003. Impairment of NK Cell function by NKG2D modulation in NOD mice. Immunity 18: 41-51.
    52. Twilley, T. A. , L. Mason, J. E. Talmadge, and R. H. Wiltrout. 1987. Increase in liver-associated natural killer activity by polyribonucleotides. Nat Immun Cell Growth Regul 6: 279-290.
    53. Knolle, P. A. , G. Gerken, E. Loser, H. P. Dienes, F. Gantner, G. Tiegs, K. H. Meyer zum Buschenfelde, and A. W. Lohse. 1996. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 24: 824-829.
    54. Kaneko, Y. , M. Harada, T. Kawano, M. Yamashita, Y. Shibata, F. Gejyo, T. Nakayama, and M. Taniguchi. 2000. Augmentation of Valphal4 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191: 105-114.
    55. Tiegs, G. , J. Hentschel, and A. Wendel. 1992. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90: 196-203.
    56. Miyagi, T. , T. Takehara, T. Tatsumi, T. Suzuki, M. Jinushi, Y. Kanazawa, N. Hiramatsu, T. Kanto, S. Tsuji, M. Hori, and N. Hayashi. 2004. Concanavalin a injection activates intrahepatic innate immune cells to provoke an antitumor effect in murine liver. Hepatology 40: 1190-1196.
    57. Wang, J. , R. Sun, H. Wei, Z. Dong, B. Gao, and Z. Tian. 2006. Poly I: C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J Hepatol 44: 446-454.
    58. Chen, Y. , H. Wei, R. Sun, and Z. Tian. 2005. Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. Int Immunopharmacol 5: 1839-1852.
    59. Hammond, K. J. , S. B. Pelikan, N. Y. Crowe, E. Randle-Barrett, T. Nakayama, M. Taniguchi, M. J. Smyth, I. R. van Driel, R. Scollay, A.G. Baxter, D. I. Godfrey. 1999. NKT cells are phenotypically and functionally diverse. Eur J Immunol 29: 3768-3781.
    60. Babinet, C. , H. Farza, D. Morello, M. Hadchouel, and C. Pourcel. 1985. Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice. Science 230: 1160-1163.
    61. Carson, W. , and M. Caligiuri. 1996. Natural killer cell subsets and development. Methods 9: 327-343.
    62. Colucci, F. , M. A. Caligiuri, and J. P. Di Santo. 2003. What dose it take to make a natural killer? Nature Reviews Immunology 3: 413-425.
    63. Tseng, C. T. , and G. R. Klimpel. 2002. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med 195: 43-49.
    64. Monsalve-De Castillo, F. , T. A. Romero, J. Estevez, L. L. Costa, R. Atencio, L. Porto, and D. Callejas. 2002. Concentrations of cytokines, soluble interleukin-2 receptor, and soluble CD30 in sera of patients with hepatitis B virus infection during acute and convalescent phases. Clin Diagn Lab Immunol 9: 1372-1375.
    65. Echevarria, S. , F. Casafont, M. Miera, J. L. Lozano, F. de la Cruz, G. San Miguel, and F. Pons Romero. 1991. Interleukin-2 and natural killer activity in acute type B hepatitis. Hepatogastroenterology 38: 307-310.
    66. Trippler, M. , K. H. Meyer zum Buschenfelde, and G. Gerken. 1999. HBV viral load within subpopulations of peripheral blood mononuclear cells in HBV infection using limiting dilution PCR. J Virol Methods 78: 129-147.
    67. Chemin, I. , C. Vermot-Desroches, I. Baginski, J. C. Saurin, F. Laurent, F. Zoulim, J. Bernaud, J. P. Lamelin, O. Hantz, D. Rigal, and et al. 1994. Selective detection of human hepatitis B virus surface and core antigens in peripheral blood mononuclear cell subsets by flow cytometry. J Viral Hepat 1: 39-44.
    68. Cretney, E. , K. Takeda, H. Yagita, M. Glaccum, J. J. Peschon, and M. J. Smyth. 2002. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168: 1356-1361.
    69. Sedger, L. M. , M. B. Glaccum, J. C. Schuh, S. T. Kanaly, E. Williamson, N. Kayagaki, T. Yun, P. Smolak, T. Le, R. Goodwin, and B. Gliniak. 2002. Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 32: 2246-2254.
    70. Yagita, H. , K. Takeda, Y. Hayakawa, M. J. Smyth, and K. Okumura. 2004. TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95: 777-783.
    71. Tanaka, S. , K. Sugimachi, K. Shirabe, M. Shimada, and J. R. Wands. 2000. Expression and antitumor effects of TRAIL in human cholangiocarcinoma. Hepatology 32: 523-527.
    72. Yamanaka, T. , K. Shiraki, K. Sugimoto, T. Ito, K. Fujikawa, M. Ito, K. Takase, M. Moriyama, T. Nakano, and A. Suzuki. 2000. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32: 482-490.
    73. Pham-Nguyen, K. B. , W. Yang, R. Saxena, S. N. Thung, S. L. Woo, S. H. Chen. 1999. Role of NK and T cells in IL-12-induced anti-tumor response against hepatic colon carcinoma. Int J Cancer 81: 813-819.
    74. Miyagi, T. , T. Takehara, T. Tatsumi, T. Kanto, T. Suzuki, M. Jinushi, Y. Sugimoto, Y. Sasaki, M. Hori, and N. Hayashi. 2003. CDld-mediated stimulation of natural killer Y cells selectively activates hepatic natural killer cells to eliminate experimentally disseminated hepatoma cells in murine liver. Int J Cancer 106: 81-89.
    75. Kimura, K. , K. Kakimi, S. Wieland, L. G. Guidotti, and F. V. Chisari. 2002. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol 76: 10702-10707.
    76. Baron, J. L. , L. Gardiner, S. Nishimura, K. Shinkai, R. Locksley, and D. Ganem. 2002. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16: 583-594.
    77. Sugahara, S. , T. Ichida, S. Yamagiwa, T. Ishikawa, K. Uehara, Y. Yoshida, X. -H. Yang, M. Nomoto, H. Watanabe, T. Abo, and H. Asakura. 2002. Thymosin-alphal increases intrahepatic NKT cells and CTLs in patients with chronic hepatitis B. Hepatol Res 24: 346-354.
    78. Honda, A. , Y. Arai, N. Hirota, T. Sato, J. Ikegaki, T. Koizumi, M. Hatano, M. Kohara, T. Moriyama, M. Imawari, K. Shimotohno, T. Tokuhisa. 1999. Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol 59: 281-289.
    79. Chisari, F. V. , P. Filippi, J. Buras, A. McLachlan, H. Popper, C. A. Pinkert, R. D. Palmiter, and R. L. Brinster. 1987. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic Mice. Proc Natl Acad Sci U S A 84: 6909-6913.
    80. Osman, Y. , T. Kawamura, T. Naito, K. Takeda, L. Van Kaer, K. Okumura, T. Abo. 2000. Activation of hepatic NKT cells and subsequent liver injury following administration of alpha-galactosylceramide. Eur J Immunol 30: 1919-1928.
    81. Arase, H. , E. S. Mocarski, A. E. Campbell, A. B. Hill, and L. L. Lanier. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK Cell receptors. Science 296: 1323-1326.
    82. Smith, H. R. , J. W. Heusel, I. K. Mehta, S. Kim, B. G. Dorner, O. V. Naidenko, K. lizuka, H. Furukawa, D. L. Beckman, J. T. Pingel, A. A. Scalzo, D. H. Fremont, and W. M. Yokoyama. 2002. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99: 8826-8831.
    83. Voigt, V. , C. A. Forbes, J. N. Tonkin, M. A. Degli-Esposti, H. R. C. Smith, W. M. Yokoyama, and A. A. Scalzo. 2003. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA 100: 13483-13488.
    84. Krmpotic, A. , D. H. Busch, I. Bubic, F. Gebhardt, H. Hengel, M. Hasan, A. A. Scalzo, U. H. Koszinowski, and JonjicStipan. 2002. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3: 529-535.
    85. Lodoen, M. B. , G. Abenes, S. Umamoto, J. P. Houchins, F. Liu, and L. L. Lanier. 2004. The Cytomegalovirus m155 Gene Product Subverts Natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 200: 1075-1081.
    86. Krmpotic, A., M. Hasan, A. Loewendorf, T. Saulig, A. Halenius, T. Lenac, B. Polio, I. Bubic, A. Kriegeskorte, E. Pernjak-Pugel, M. Messerle, H. Hengel, D. H. Busch, U. H. Koszinowski, and S. Jonjic. 2005. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201:211-220.
    87. Hasan, M., A. Krmpotic, Z. Ruzsics, I. Bubic, T. Lenac, A. Halenius, A. Loewendorf, M. Messerle, H. Hengel, S. Jonjic, and U. H. Koszinowski. 2005. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m 155 glycoprotein. J Virol 79:2920-2930.
    88. Kusters, S., F. Gantner, G. Kunstle, and G. Tiegs. 1996. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111:462-471.
    89. Tagawa, Y., K. Sekikawa, and Y. Iwakura. 1997. Suppression of concanavalin A-induced hepatitis in IFN-gamma(-/-) mice, but not in TNF-alpha(-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. J Immunol 159:1418-1428.
    90. Car, B. D., V. M. Eng, B. Schnyder, L. Ozmen, S. Huang, P. Gallay, D. Heumann, M. Aguet, and B. Ryffel. 1994. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179:1437-1444.
    91. Jaruga, B., F. Hong, W.-H. Kim, and B. Gao. 2004. IFN-gamma/STATI acts as a proinflammatory signal in T cell-mediated hepatitis via induction of multiple chemokines and adhesion molecules: a critical role of IRF-1. Am J Physiol Gastrointest Liver P hysiol 287 :G1044-1052.
    92. Gao, B. 2005. Cytokines, STATs and liver disease. Cell Mol Immunol 2:92-100.
    93. Hong, F., B. Jaruga, W. H. Kim, S. Radaeva, O. N. El-Assal, Z. Tian, V.-A. Nguyen, and B. Gao. 2002. Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS. J Clin Invest 110:1503-1513.
    94. Kim, W.-H., F. Hong, S. Radaeva, B. Jaruga, S. Fan, and B. Gao. 2003. STAT1 plays an essential role in LPS/D-galactosamine-induced liver apoptosis and injury. Am J Physiol Gastrointest Liver Physiol 285 :G761-768.
    95. Siebler, J., S. Wirtz, S. Klein, M. Protschka, M. Blessing, P. R. Galle, M. F. Neurath. 2003. A key pathogenic role for the STAT1/T-bet signaling pathway in T-cell-mediated liver inflammation. Hepatology 38: 1573-1580.
    96. Mizuhara, H. , E. O'Neill, N. Seki, T. Ogawa, C. Kusunoki, K. Otsuka, S. Satoh, M. Niwa, H. Senoh, and H. Fujiwara. 1994. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 179: 1529-1537.
    97. Ksontini, R. , D. B. Colagiovanni, M. D. Josephs, C. K. Edwards, Ⅲ, C. L. Tannahill, C. C. Solorzano, J. Norman, W. Denham, M. Clare-Salzler, S. L. D. MacKay, and L. L. Moldawer. 1998. Disparate roles for TNF-alpha and Fas ligand in Concanavalin A-induced hepatitis. J Immunol 160: 4082-4089.
    98. Verdijk, R. M. , T. Mutis, B. Esendam, J. Kamp, C. J. M. Melief, A. Brand, and E. Goulmy. 1999. Polyriboinosinic polyribocytidylic acid (Poly(I: C)) induces stable maturation of functionally active human dendritic cells. J Immunol 163: 57-61.
    99. Fogler, W. E. , K. Volker, M. Watanabe, J. M. Wigginton, P. Roessler, M. J. Brunda, J. R. Ortaldo, and R. H. Wiltrout. 1998. Recruitment of hepatic NK cells by IL-12 is dependent on IFN-gamma and VCAM-1 and is rapidly down-regulated by a mechanism involving T cells and expression of Fas. J Immunol 161: 6014-6021.
    100. Nicoletti, F. , R. Di Marco, P. Zaccone, A. Salvaggio, G. Magro, K. Bendtzen, P. Meroni. 2000. Murine concanavalin A-induced hepatitis is prevented by interleukin 12 (IL-12) antibody and exacerbated by exogenous IL-12 through an interferon-gamma-dependent mechanism. Hepatology 32: 728-733.
    101. Hue, S. , J. -J. Mention, R. C. Monteiro, S. Zhang, C. Cellier, J. Schmitz, V. Verkarre, N. Fodil, S. Bahram, N. Cerf-Bensussan, and S. Caillat-Zucman. 2004. A Direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21: 367-377.
    102. Dandekar, A. A. , K. O'Malley, and S. Perlman. 2005. Important roles for gamma interferon and NKG2D in gammadelta T-cell-induced demyelination in T-cell receptor beta-deficient mice infected with a coronavirus. J Virol 79: 9388-9396.
    103. Lodoen, M. , K. Ogasawara, J. A. Hamerman, H. Arase, J. P. Houchins, E. S. Mocarski, and L. L. Lanier. 2003. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197: 1245-1253.
    104. Lanier, L. L. 2005. NK cell recognition. Annu Rev Immunol 23: 225-274.
    105. Eberi, G. , and H. R. MacDonald. 2000. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30: 985-992.
    106. Carnaud, C. , D. Lee, O. Donnars, S. -H. Park, A. Beavis, Y. Koezuka, and A. Bendelac. 1999. Cutting Edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163: 4647-4650.
    107. Smyth, M. J. , M. E. Wallace, S. L. Nutt, H. Yagita, D. I. Godfrey, and Y. Hayakawa. 2005. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 201: 1973-1985.
    108. Hayakawa, Y. , K. Takeda, H. Yagita, S. Kakuta, Y. Iwakura, L. Van Kaer, I. Saiki, K. Okumura. 2001. Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31: 1720-1727.
    109. Bui, J. D. , L. N. Carayannopoulos, L. L. Lanier, W. M. Yokoyama, and R. D. Schreiber. 2006. IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J Immunol 176: 905-913.
    110. Bigger, J. E. , C. A. Thomas, Ⅲ, and S. S. Atherton. 1998. NK cell modulation of murine cytomegalovirus retinitis. J Immunol 160: 5826-5831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700