抗日本血吸虫感染表位PDDV疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血吸虫病(schis tosomiasis)是全球第二大严重危害人类健康的寄生虫病,我国有现症患者80余万,受威胁人口达1亿。虽然经过半个多世纪的控制努力,血吸虫病的人群感染和流行已大大降低,但是作为一种严重的人兽共患病,仍有许多问题尚未解决。
     控制血吸虫病的传播和流行需采取以吡喹酮反复群体化疗,辅以灭螺等的综合防治手段。但随着血吸虫的感染和反复再感染,以及吡喹酮耐药性的出现,血吸虫病疫苗的发展提到日程上来。有效的抗血吸虫疫苗不仅能长期控制血吸虫病,甚至可能消灭它。而阐明血吸虫病免疫保护的机制是研制血吸虫病疫苗的前提条件。目前,有关抗血吸虫保护力的相关免疫学机制仍不明确。
     本研究拟从诱导宿主保护性免疫应答为出发点,用生物信息学工具从不同疫苗候选分子中筛选T/B细胞表位,以粒细胞一巨噬细胞集落刺激因子(GM-CSF)为佐剂,利用阳离子肽技术制备表位肽-核酸双疫苗(PDDV),并观察单个及混合表位PDDV在小鼠体内诱导的免疫应答,及其对小鼠抗日本血吸虫感染、抗病理的作用,为探索日本血吸虫病疫苗研制的新途径和探讨日本血吸虫感染的保护性免疫机制提供有益的实验研究资料。为此,本文进行了以下几个方面的研究。
     一、生物信息学分析、预测日本血吸虫抗原分子表位
     为了优化疫苗的设计,分析预测日本血吸虫病疫苗候选抗原分子中的T/B细胞表位,应用多种在线数据库和软件分析10个日本血吸虫潜在疫苗候选抗原分子(Sj14,Sj97,sj14-3-3,sj22.6,sj23,sj26,Sj28,sj338,sj62,sjTPI),预测人类基因型HLA-DRB1*0401、HLA-A*0201以及C57BL/6小鼠基因型H-2b(H-2Kb、H-2Db)的对应细胞表位,包括MHCⅠ类分子相关的CTL表位、MHCⅡ类分子相关的Th表位和抗体相关的B细胞表位。并进行蛋白酶体水解位点预测,以剔除表位递呈至体内可能被水解的片段。再用BLAST比对与研究对象(人/小鼠)相应蛋白分子的同源性,剔除同源性高的表位以避免自身免疫反应。最终根据10个抗原分子的T/B细胞表位的表位分析结果,表位蛋白酶体水解位点预测以及同源性比对的结果,综合后得到小鼠基因型的日本血吸虫抗原分子CTL、Th和B细胞表位各3个,用于后续研究。
     二、抗日本血吸虫感染表位PDDV疫苗的构建
     为了更好的提高抗日本血吸虫感染疫苗的效果,采取了PDDV的形式。根据研究一中预测所得的9个表位序列,在每个表位的N端加上18个赖氨酸的阳离子肽作为连接桥,合成相应的肽段,并合成带有酶切位点的互补的表位相应DNA正负链。将互补DNA正负链退火后的片段插入双酶切过的载体PUMVC1-mGM-CSF,构建含抗原表位肽编码基因的重组真核表达载体,并通过双酶切实验和DNA测序鉴定。测序结果显示构建的载体中含有相应表位肽编码基因序列。同时构建不同组合的CTL、Th和B表位肽编码基因串联的表达载体。再将含抗原表位肽DNA的质粒与相应肽段通过正负电荷作用连接成纳米大小的颗粒,构建成Peptide-DNA Dual Vaccine(PDDV)。并对不同制备条件下的PDDV通过电泳阻滞试验、DNaseⅠ保护性试验和电镜观察对其理化特性进行鉴定,选取最优化的条件(NaC1的浓度为150mmol/L,肽与质粒DNA比值为4)制备表位PDDV。在这个优化的条件下制备出的PDDV可以保护DNA不被核酸酶降解,电镜下观察颗粒大小均匀,直径约15nm左右,符合抗原递呈的要求。最终制备的含有不同表位的PDDV,用于小鼠模型的进一步研究。
     三、表位PDDV在小鼠模型上的免疫学特性及免疫保护性的实验研究
     为研究表位PDDV在小鼠模型上的免疫学特性,以及在抗日本血吸虫感染和抗病理方面的作用。将小鼠分为29组,制备好的单表位PDDV或CTL、Th、B混合表位PDDV按照每只小鼠每次100μl进行免疫,注射PBS作为对照,每2周免疫一次,共3次,末次免疫后1周剖杀6只小鼠/组,取淋巴结和脾脏细胞进行~(51)Cr释放试验检测细胞杀伤力、~3H掺入法检测细胞增殖以及ELISA检测细胞因子IFN-γ和IL-4的检测;取血清进行ELISA检测抗体IgG及其亚类IgGl和IgG2a水平。在CTL表位PDDV小鼠组可见显著的细胞杀伤效应;在Th表位PDDV组可见增高的细胞因子及细胞增殖反应;而B表位PDDV组产生了高水平抗体的免疫应答。其中Th表位T3和B细胞表位B3制备的PDDV的免疫应答尤为显著。这表明PDDV可以在体内诱导出抗原特异性的细胞免疫应答和抗体免疫应答。不同类型的表位PDDV混合后免疫小鼠的各种免疫反应并不如单表位PDDV显著。末次免疫2周后用40条尾蚴攻击感染,感染6周后剖杀小鼠,回收小鼠体内成虫进行计数;消化肝脏在显微镜下计数肝内虫卵数目,并将肝脏组织制成病理切片,观察肝脏虫卵肉芽肿的数目和大小。根据减虫率、减卵率,以及病理切片观察结果,CTL表位组PDDV未显示出有效保护力,T3表位与B3表位PDDV可诱导小鼠产生部分免疫保护力。这表明Th/B表位PDDV具有抗日本血吸虫感染和病理损害的作用。
     综上,本研究中利用生物信息学工具从不同疫苗候选分子中筛选了T/B细胞表位,以GM-CSF为佐剂,构建了含预测表位编码基因的真核表达载体。将载体与合成表位肽利用阳离子肽技术在最优化的条件下制备表位肽一核酸双疫苗(PDDV),并观察了单个及混合表位PDDV在小鼠体内诱导的免疫应答,及其对小鼠抗日本血吸虫感染、抗病理的作用。其中单个T3和B3表位PDDV免疫小鼠产生较高的抗血吸虫感染的免疫保护力。这表明,血吸虫抗原分子的表位PDDV具有一定的抗血吸虫感染的作用,而如何提高混合或者复合表位PDDV的免疫保护效果尚有待进一步研究。
Schistosomiasis, the second major parasitic disease in the worldafter malaria, affects mainly developing countries. There are 200 mil-lion people worldwide infected with schistosomes, resulting in morethan 250,000 deaths annually. Although the last half-century of schisto-somiasis control programs have brought down the overall prevalence ofhuman infection with Schistosoma japonicum, the parasitic disease re-mains a serious zoonosis with many problems unsolved, especially re-infection and reemergence of prevalence. An efficacious vaccine againstSchistosomiasis japonica would represent a significant addition to thecurrent arsenal of control tools, particularly in the framework of an in-tegrated control approach. However, the fact remains that after manyyears of trying, a rationally designed effective anti-schistosome vaccinehas yet to be developed. As a prophylactic measure, using vaccinewould be the ideal method for sustainable control of schistosomiasis,alone or in combination with anthelmintic drugs and the development ofan efficient vaccine is required to make the elimination of schistosomi-asis achievable
     In the past years, many laboratories have attempted to identifythe schistosome antigens that induce the partially protective immuneresponse. Vaccinations with synthetic or recombinant antigens havesuccessfully induced partial protection and/or reduced female fecundityin animal models. However, epitope-based vaccine offers the prospectof targeted immunity resulting in safer and more effective anti-gen-specific immune responses. The host's immunity against schisto-some infection is mainly cellular and humoral immune response, whichis mediated by the specific T cells and B cells. Consequently, identifica-tion of these T/B-cell epitopes as safe effective immunogens representsa pivotal step for the study of pathogenesis and immunity and especiallyfor the development of vaccine against schistosomiasis
     To optimize the vaccine design, we undertook studies to identifyT/B epitope on ten protective antigens by bioinformatics in order toidentify the potential protective epitopes, including Sj14, Sj97, Sj14-3-3,Sj22.6, Sj23, Sj26, Sj28, Sj338, Sj62 and SjTPI. Several online T/B cell-related databases and analysis tools were chosen according to the hu-man allele HLA-DRB1*0401, HLA-A*0201 or C57BL/6 mouse H-2b(H-2Kb、H-2Db). And the proteasomal cleavage sites were predictedand excluded to protect the epitope from being digested. The epitopespredicted above were screened on BLAST to exclude the homologousones. Eventually, three epitopes of CTL, Th and B cell, respectively were chosen for further study.
     To improve the efficacy of the vaccine, peptide-DNA dual vac-cine (PDDV) strategy was used, which was a nanometer-size particleantigen delivery system constructed by combination of the epitope fromthe protective antigen and the plasmid encoding the same epitope. Theepitopes containing 18 lysines which acted as the bridge of the peptideand its control peptide of 18 lysines (18K) were synthesized and puri-fied. The oligonucleotides encoding the epitopes with restrictive en-zyme (RE) Sal I site at 5' terminus and EcoR I site at 3' terminus werealso synthesized and insert into expression plasmidpUMVC1-mGM-CSF. The procedure for preparing PDDV was per-formed by titrating peptide into a solution of the corresponding plasmid.The input molar ratio of peptide to DNA (r) was the ratio of moles oflysine to nucleotide (NH4~+/PO3~-). PDDVs prepared was identified byDNA retardation assay, DNase I digestion assay and electron micros-copy to choose the best condition of preparation. The optimized PDDVswere prepared for the animal experiments.
     C57BL/6 mice were divided into 29 groups, 14 mice each group.Each mouse was injected subcutaneously (s.c) in the back with 100μl ofsolution containing 28μg of peptide and 10μg of plasmid pGT or pGrespectively, or PBS (control group). The immunization was repeatedwith 14-day interval. One week after the final vaccination, 6 mice from each group were sacrificed for the detection of the cellular and humoralimmune response. CTL activity of the CD8+ effector cells was assessedin a standard 4-h ~(51)Cr-release assay. T cell proliferation and cytokineswere detected for evaluation of Th cellular immune response. And anti-bodies were measured for evaluation of humoral immune response. Theresults showed that CTL responses, Th response and antibodies wereinduced by the CTL, Th and B-cell epitope-PDDV respectively. But therelevant immune response was not detected in the groups immunizedwith mixed epitope PDDVs.
     Two weeks after the last vaccination, 8 mice of each group werechallenged percutaneously with 40 cercariae of S. j aponicum. Six weeksafter challenge, all vaccinated and control mice were sacrificed andperfusion was undertaken with saline containing heparin to recover theadult worms. The livers were digested and the number of eggs was de-termined by microscopic examination. The worm/egg reduction ratewas calculated. After portal perfusion, mice livers were dissected andstained with hematoxylin and eosin (HE) for microscopic examination.The number of egg granulomas was counted and the sizes of noncon-fluent granulomas formed around a single egg containing a maturemiracidium were assessed using a video micrometer. The resultsshowed that several PDDVs induced promising protection. Especially,T3 epitope PDDV induced both cellular and humoral immune responses, achieved 33.8%~44.7% protections against S. japonicum infection anddiminished egg granulomas in the livers of challenged mice.
引文
1 King CH, Lombardi G, Lombardi C, Greenblatt R, Hodder S, Kinyanjui H, Ouma J, et al. Chemotherapy-based control of schistosomiasis haematobia. I. Metrifonate versus praziquantel in control of intensity and prevalence of infection. The American journal of tropical medicine and hygiene 1988, 39: 295-305
    2 King CH, Lombardi G, Lombardi C, Greenblatt R, Hodder S, Kinyanjui H, Ouma J, et al. Chemotherapy-based control of schistosomiasis haematobia. II. Metrifonate vs. praziquantel in control of infection-associated morbidity. The American journal of tropical medicine and hygiene 1990, 42: 587-595
    3 Utzinger J, Zhou XN, Chen MG, Bergquist R. Conquering schistosomiasis in China: the long march. Acta tropica 2005, 96: 69-96
    4 Chitsulo L, Engels D, Montresor A, Savioli L. The global status of schistosomiasis and its control. Acta tropica 2000, 77: 41-51
    5 Friedman JF, Mital P, Kanzaria HK, Olds GR, Kurtis JD. Schistosomiasis and pregnancy. Trends in parasitology 2007, 23: 159-164
    6 Hotez PJ, Zheng F, Long-qi X, Ming-gang C, Shu-hua X, Shu-xian L, Blair D, et al Emerging and reemerging helminthiases and the public health of China. Emerging infectious diseases 1997, 3: 303-310
    7 Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, Davis GM, et al Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proceedings of the National Academy of Sciences of the United States of America 2007, 104: 7110-7115
    8 Badawy AA, el-Badrawy NM, Mansy SS, Akl MM, Abdel Hady AM, Ebeid FA, Hassan MM. Evaluation of colchicine with or without praziquantel therapy in the control of hepatic fibrosis in murine schistosomiasis. Pharmacol Res 1996, 33: 319-325
    9 Bergquist NR, Leonardo LR, Mitchell GF. Vaccine-linked chemotherapy: can schistosomiasis control benefit from an integrated approach? Trends in parasitology 2005, 21:112-117
    10 Fenwick A, Webster JP. Schistosomiasis: challenges for control, treatment and drug resistance. Current opinion in infectious diseases 2006,19: 577-582
    11 Lin D, Zhang S, Murakami H, Wu Z, Totsuya T, Gu X, Hu G, et al. Impact mass chemotherapy with praziquantel on schistosomiasis control in Fanhu village, People's Republic of China. The Southeast Asian journal of tropical medicine and public health 1997, 28: 274-279
    12 Doenhoff M, Kimani G, Cioli D. Praziquantel and the control of schistosomiasis. Parasitology today (Personal ed 2000, 16: 364-366
    13 McManus DP, Bartley PB. A vaccine against Asian schistosomiasis. Parasitology international 2004, 53: 163-173
    14 Cherfas J. New hope for vaccine against schistosomiasis. Science 1991,251:630-631
    15 Engers HD, Bergquist R, Modabber F. Progress on vaccines against parasites. Developments in biological standardization 1996, 87: 73-84
    16 Hooker CW, Brindley PJ. Cloning of a cDNA encoding SjIrVl, a Schistosoma japonicum calcium-binding protein similar to calnexin, and expression of the recombinant protein in Escherichia coli. Biochimica et biophysica acta 1999, 1429: 331-341
    17 Scott JC, McManus DP. Identification of novel 70-kDa heat shock protein-encoding cDNAs from Schistosoma japonicum. International journal for parasitology 1999, 29: 437-444
    18 Acosta LP, Waine G, Aligui GD, Tiu WU, Olveda RM, McManus DP. Immune correlate study on human Schistosoma japonicum in a well-defined population in Leyte, Philippines: II. Cellular immune responses to S. japonicum recombinant and native antigens. Acta tropica 2002, 84: 137-149
    19 Bergquist NR. Schistosomiasis vaccine development: approaches and prospects. Memorias do Instituto Oswaldo Cruz 1995, 90: 221-227
    20 Zhang Y, Taylor MG, Bickle QD. Schistosoma japonicum myosin: cloning, expression and vaccination studies with the homologue of the S. mansoni myosin fragment IrV-5. Parasite immunology 1998, 20: 583-594
    21 Dupre, Herv M, Schacht AM, Capron A, Riveau G. Control of schistosomiasis pathology by combination of Sm28GST DNA immunization and praziquantel treatment. The Journal of infectious diseases 1999, 180:454-463
    22 Argiro LL, Kohlstadt SS, Henri SS, Dessein HH, Matabiau VV, Paris PP, Bourgois AA, et al Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH. Vaccine 2000, 18: 2039-2048
    23 Lebens M, Sun JB, Czerkinsky C, Holmgren J. Current status and future prospects for a vaccine against schistosomiasis. Expert review of vaccines 2004, 3:315-328
    24 Colley DG, Colley MD, Protective immunity and vaccines to schistosomiasis. Parasitology today (Personal ed 1989, 5: 350-355
    25 Ben-Yedidia T, Arnon R. Design of peptide and polypeptide vaccines. Current opinion in biotechnology 1997, 8: 442-448
    26 Arnon R, Tarrab-Hazdai R, Steward M. A mimotope peptide-based vaccine against Schistosoma mansoni: synthesis and characterization. Immunology 2000, 101: 555-562
    27 Tarrab-Hazdai R, Schechtman D, Arnon R. Synthesis and characterization of a protective peptide-based vaccine against Schistosoma mansoni. Infection and immunity 1998, 66: 4526-4530
    28 Zhang Y, Taylor MG, Johansen MV, Bickle QD. Vaccination of mice with a cocktail DNA vaccine induces a Th1-type immune response and partial protection against Schistosoma japonicum infection. Vaccine 2001, 20:724-730
    29 Yang W, Jackson DC, Zeng Q, McManus DP. Multi-epitope schis-tosome vaccine candidates tested for protective immunogenicity in mice. Vaccine 2000, 19: 103-113
    30 James SL, Pearce EJ. The influence of adjuvant on induction of protective immunity by a non-living vaccine against schistosomiasis. J Immunol 1988, 140: 2753-2759
    31 Harn DA, Reynolds SR, Chikunguwo S, Furlong S, Dahl C. Synthetic peptide vaccines for schistosomiasis. Pharmaceutical biotechnology 1995, 6: 891-905
    32 Arnon R. Synthetic peptides as the basis for vaccine design. Molecular immunology 1991, 28: 209-215
    33 Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLoS computational biology 2006, 2: e71
    34 Hewitson JP, Hamblin PA, Mountford AP. Immunity induced by the radiation-attenuated schistosome vaccine. Parasite immunology 2005, 27: 271-280
    35 James SL, Labine M, Sher A. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. I. Analysis of antibody and T-lymphocyte responses in mouse strains developing differing levels of immunity. Cellular immunology 1981, 65: 75-83
    36 Sher A, Hieny S, James SL, Asofsky R. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. II. Analysis of immunity in hosts deficient in T lymphocytes, B lymphocytes, or complement. J Immunol 1982, 128: 1880-1884
    37 Jankovic D, Sher A. Initiation and regulation of CD4+ T-cell function in host-parasite models. Chemical immunology 1996, 63: 51-65
    38 Zhu X, Zhang ZS, Ji MJ, Wu HW, Wang Y, Cai XP, Zhang L, et al Gene transcription profile in mice vaccinated with ultraviolet-attenuated cercariae of Schistosoma japonicum reveals molecules contributing to elevated IFN-gamma levels. Acta biochimica et biophysica Sinica 2005, 37: 254-264
    39 Vignali DA, Crocker P, Bickle QD, Cobbold S, Waldmann H, Taylor MG. A role for CD4+ but not CD8+ T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-3128-terminated infections. Immunology 1989, 67: 466-472
    40 Smythies LE, Coulson PS, Wilson RA. Monoclonal antibody to IFN-gamma modifies pulmonary inflammatory responses and abrogates immunity to Schistosoma mansoni in mice vaccinated with attenuated cercariae. J Immunol 1992, 149: 3654-3658
    41 Jankovic D, Wynn TA, Kullberg MC, Hieny S, Caspar P, James S, Cheever AW, et al. Optimal vaccination against Schistosoma mansoni requires the induction of both B cell- and IFN-gamma-dependent effec- tor mechanisms. J Immunol 1999, 162: 345-351
    42 Wilson RA, Coulson PS, Betts C, Dowling MA, Smythies LE. Impaired immunity and altered pulmonary responses in mice with a disrupted interferon-gamma receptor gene exposed to the irradiated Schistosoma mansoni vaccine. Immunology 1996, 87: 275-282
    43 McKeever DJ. Theileria parva and the bovine CTL response: down but not out? Parasite immunology 2006, 28: 339-345
    44 Marshall MA, Jankovic D, Maher VE, Sher A, Berzofsky JA. Mice infected with Schistosoma mansoni develop a novel non-T-lymphocyte suppressor population which inhibits virus-specific CTL induction via a soluble factor. Microbes and infection / Institut Pasteur 2001, 3: 1051-1061
    45 Liu HL, Wu YZ, Zhao JP, Ni B, Jia ZC, Zhou W, Zou LY. Effective elicitation of anti-tumor immunity by collocation of antigen with encoding gene in the same vaccine. Immunology letters 2003, 89: 167-173
    46 Wu YZ, Zhao JP, Wan Y, Jia ZC, Zhou W, Bian J, Ni B, et al. Mimovirus: a novel form of vaccine that induces hepatitis B virus-specific cytotoxic T-lymphocyte responses in vivo. Journal of virology 2002, 76: 10264-10269
    47 Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. The Journal of biological chemistry 2001, 276: 34379-34387
    48 Perales JC, Grossmann GA, Molas M, Liu G, Ferkol T, Harpst J, Oda H, et al. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialogly-coprotein receptor. The Journal of biological chemistry 1997, 272: 7398-7407
    49 de Jong EC, Vieira PL, Kalinski P, Schuitemaker JH, Tanaka Y, Wierenga EA, Yazdanbakhsh M, et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol 2002, 168: 1704-1709
    50 Scott P, Hunter CA. Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Current opinion in immunology 2002,14: 466-470
    51 Siddiqui AA, Phillips T, Charest H, Podesta RB, Quinlin ML, Pinkston JR, Lloyd JD, et al. Induction of protective immunity against Schistosoma mansoni via DNA priming and boosting with the large subunit of calpain (Sm-p80): adjuvant effects of granulocyte-macrophage colony-stimulating factor and interleukin-4. Infection and immunity 2003, 71: 3844-3851
    52 Weiss WR, Ishii KJ, Hedstrom RC, Sedegah M, Ichino M, Barnhart K, Klinman DM, et al. A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. J Immunol 1998, 161: 2325-2332
    53 Wang XJ, Zhang ZS, Li GF, Wang Y, Liu F, Ji MJ, Zhu X, et al. [Preliminary identification of T cell epitopes on 22.6 kDa antigen of Schistosoma japonicum]. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese journal of parasitology & parasitic diseases 2003,21: 345-348
    54 Wu ZD, Lu ZY, Yu XB. Development of a vaccine against Schistosoma japonicum in China: a review. Acta tropica 2005, 96: 106-116
    55 Liu S, Song G, Xu Y, Yang W, McManus DP. Immunization of mice with recombinant Sjc26GST induces a pronounced anti-fecundity effect after experimental infection with Chinese Schistosoma japonicum. Vac- cine 1995,13: 603-607
    56 Ramirez BL, Kurtis JD, Wiest PM, Arias P, Aligui F, Acosta L, Peters P, et al. Paramyosin: a candidate vaccine antigen against Schistosoma japonicum. Parasite immunology 1996,18: 49-52
    57 McManus DP. A vaccine against Asian schistosomiasis: the story unfolds. International journal for parasitology 2000, 30: 265-271
    58 Zhu Y, Si J, Harn DA, Yu C, Liang Y, Ren J, Tin X, et al. The protective immunity of a DNA vaccine encoding Schistosoma japonicum Chinese strain triose-phosphate isomerase in infected BALB/C mice. The Southeast Asian journal of tropical medicine and public health 2004, 35: 518-522
    59 Zhu Y, Si J, Ham DA, Yu C, He W, Hua W, Yin X, et al. The protective immunity produced in infected C57BL/6 mice of a DNA vaccine encoding Schistosoma japonicum Chinese strain triose-phosphate isomerase. The Southeast Asian journal of tropical medicine and public health 2002, 33: 207-213
    60 Liu JM, Cai XZ, Lin JJ, Fu ZQ, Yang GZ, Shi FH, Cai YM, et al. Gene cloning, expression and vaccine testing of Schistosoma japonicum SjFABP. Parasite immunology 2004, 26: 351-358
    61 Gan Y, Shi YE, Bu LY, Zhu XH, Ning CX, Zhu HG. Immune responses against Schistosoma japonicum after vaccinating mice with a multivalent DNA vaccine encoding integrated membrane protein Sj23 and cytokine interleukin-12. Chinese medical journal 2004, 117: 1842-1846
    62 Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annual review of immunology 2006, 24: 419-466
    63 Messaoudi I, LeMaoult J, Metzner BM, Miley MJ, Fremont DH, Nikolich-Zugich J. Functional evidence that conserved TCR CDR alpha 3 loop docking governs the cross-recognition of closely related peptide:class I complexes. J Immunol 2001,167: 836-843
    64 Maenaka K, Jones EY. MHC superfamily structure and the immune system. Current opinion in structural biology 1999, 9: 745-753
    65 Brusic V, Rudy G, Harrison LC. MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic acids research 1998, 26: 368-371
    66 Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 50: 213-219
    67 Parker KC, Shields M, DiBrino M, Brooks A, Coligan JE. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunologic research 1995, 14: 34-57
    68 Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson MW, Hersh LB, Kalbacher H, et al. Two new proteases in the MHC class I processing pathway. Nature immunology 2000, 1:413-418
    69 Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005, 57: 33-41
    70 Gasteiger E. HC, Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. 2005: pp. 571-607
    71 Wagner E, Ogris M, Zauner W. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev 1998, 30: 97-113
    72 Vaysse L, Arveiler B. Transfection using synthetic peptides: comparison of three DNA-compacting peptides and effect of centrifugation. Biochimica et biophysica acta 2000, 1474: 244-250
    73 Harbottle RP, Cooper RG, Hart SL, Ladhoff A, McKay T, Knight AM, Wagner E, et al. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Human gene therapy 1998, 9: 1037-1047
    74 Nardin EH, Calvo-Calle JM, Oliveira GA, Nussenzweig RS, Schneider M, Tiercy JM, Loutan L, et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J Immunol 2001, 166: 481-489
    75 Coulson PS. The radiation-attenuated vaccine against schistosomes in animal models: paradigm for a human vaccine? Advances in parasi-tology 1997, 39: 271-336
    76 Caulada-Benedetti Z, al-Zamel F, Sher A, James S. Comparison of Th1- and Th2-associated immune reactivities stimulated by single versus multiple vaccination of mice with irradiated Schistosoma mansoni cercariae. J Immunol 1991,146: 1655-1660
    77 Shen L, Zhang ZS, Wu HW, Weir RE, Xie ZW, Hu LS, Chen SZ, et al. IFN-gamma is associated with risk of Schistosoma japonicum infection in China. Parasite immunology 2003, 25: 483-487
    78 Haddad D, Ramprakash J, Sedegah M, Charoenvit Y, Baumgartner R, Kumar S, Hoffman SL, et al. Plasmid vaccine expressing granulo-cyte-macrophage colony-stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J Immunol 2000, 165: 3772-3781
    79 Sin JI, Kim JJ, Ugen KE, Ciccarelli RB, Higgins TJ, Weiner DB. Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. European journal of immunology 1998, 28: 3530-3540
    80 Da'dara AA, Skelly PJ, Wang MM, Harn DA. Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice. Vaccine 2001, 20: 359-369
    81 Mountford AP, Hogg KG, Coulson PS, Brombacher F. Signaling via interleukin-4 receptor alpha chain is required for successful vaccination against schistosomiasis in BALB/c mice. Infection and immunity 2001, 69: 228-236
    82 Correa-Oliveira R, Sher A, James SL. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. V. Anamnestic cellular and humoral responses following challenge infection. The American journal of tropical medicine and hygiene 1984, 33: 261-268
    83 Wynn TA, Reynolds A, James S, Cheever AW, Caspar P, Hieny S, Jankovic D, et al. IL-12 enhances vaccine-induced immunity to schistosomes by augmenting both humoral and cell-mediated immune responses against the parasite. J Immunol 1996, 157: 4068-4078
    84 Mangold BL, Dean DA. Passive transfer with serum and IgG antibodies of irradiated cercaria-induced resistance against Schistosoma mansoni in mice. J Immunol 1986, 136: 2644-2648
    85 Hogg KG, Kumkate S, Mountford AP. IL-10 regulates early IL-12-mediated immune responses induced by the radiation-attenuated schistosome vaccine. International immunology 2003, 15: 1451-1459
    86 Wilson RA, Coulson PS. Strategies for a schistosome vaccine: can we manipulate the immune response effectively? Microbes and infection / Institut Pasteur 1999, 1: 535-543
    1. Colucci, R, Caligiuri, M. A. & Di Santo, J. P. What does it take to make a natural killer? Nature Rev. Immunol. 2003, 3: 413-425
    2. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nature Immunol. 2002, 3: 523-528.
    3. Loza, M. J. & Perussia, B. Final steps of natural killer cell maturation: a model for type 1 type 2 differentiation? Nature Immunol. 2001, 2: 917-924.
    4. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE and Caligiuri MA.. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 2001, 97: 3146-3151.
    5. Bendelac. A., M.N.Rivera, S-H.Park, and J.H.Roark. Mouse CD1-specific NK1-T cells: Development, specificity and function. Annu.Rev.Immunol. 1997,15: 535
    6. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R and Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 2001,19: 197-223 .
    7. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 2001, 19: 291-330 .
    8. Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. A. & Margulies, D. H. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 2002,20:853-885.
    9. Mocikat, R. et at. Natural killer cells activated by MHC class I~(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 2003,19: 561-569
    10. Hanke T, Raulet DH. Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors.J Immunol. 2001, 166: 3002-3007.
    11. Michaelsson J, Achour A, Salcedo M, Kase-Sjostrom A, Sundback J, Harris RA, Karre K. Visualization of inhibitory Ly49 receptor specificity with soluble MHC class I tetramers. Eur.J.Immunol. 2000, 30:300-307
    12. Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD. Crystal structure of an Nk cell immunolglublin-like receptor in complex with its class I MHC ligand. Nature 2000, 405: 537-543
    13. Martin AM, Freitas EM, Witt CS, Christiansen FT. The genomic organization and revolution of the natural killer immunoglobulin-like receptor gene cluster.Immunogenetics 2000, 51: 268-280
    14. Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D, Beck S, Trowsdale J. Plasticity in the organization and sequences of human KIR/ILT gene fammilies. Proc.Natl.Acad.Sci.USA 2000, 97:4478-4483
    15. Carretero M, Cantoni C, Bellon T, Bottino C, Biassoni R, Rodriguez A, Perez-Villar JJ, Moretta L, Moretta A, Lopez-Botet M The CD94 and NKG2-A C-type lectins covalently assemble to form a natrual killer cell inhibitory receptor for HLA class I moleculars. Eur.J.Immunol. 1997, 27:563-567
    16. Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice.Immunity. 2000, 12:721-727
    17. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activatation of NK cells and macrophages.Nature Immunol. 2000, 1:119-126
    18. Geijtenbeek TB, van Vliet SJ, van Duijnhoven GC, Figdor CG, van Kooyk Y. DC-SIGH, a dendritic cell specific HIV-1 receptor present in placenta that infects T cells in trans-a review. Placenta 2001, 22(Suppl.A):S 19-23
    19. Hermanz-Falcon P, Arce I, Roda-Navarro P, Fernandez-Ruiz E. Cloning of human DECTIN-1, a novel C-type lectin-like receptor gene expressed on dendritic cells. Immunogenetics 2001, 53: 288-295
    20. Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 2000, 275:20157-20167
    21.Hakansson K, Reid KB. Collectin structures review.Protein Sci. 2000,9:1607-1617
    22. Taylor ME. Structure and function of the macrophage mannose receptor. Results. Probl. Cell Differ. 2001, 33:105-121
    23. Linehan SA, Martinez-Pomares L, Gordon S. Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Adv.Exp. Med.Biol. 2000, 479:1-14
    24. Tangye SG, Phillips JH, Lanier LL. The CD2-subset of the Ig superfamily of cell surface molecules: receptor-ligand pairs expressed by NK cells and other immune cells.Semin.Immunol. 2000, 12:149-157
    25. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human Nk cells.Nature 2001, 409:1055-1060
    26. Hanke T, Raulet DH. Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors.J.Immunol. 2001, 166:3002-7
    27. Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2002, 2, 735-747
    28. Yu Y, Hagihara M, Ando K, Gansuvd B, Matsuzawa H, Tsuchiya T, Ueda Y, Inoue H, Hotta T, Kato S. Enhancement of human cord blood CD34+ cellderived NK cell cytotoxicity by dendritic cells. J. Immunol. 2001,166,1590-1600.
    29. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H. Nature' s TRAIL — on a path to cancer immunotherapy. Immunity 2003,18, 1-6.
    30. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) contributes to interferon γ -dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 2001,193, 661-670.
    31. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K. Involvement of tumor necrosis factor related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 2001, 7, 94-100.
    32. Guidotti, L. G. & Chisari, F. V. Noncytolytic control of viral infec- tions by the innate and adaptive immune response. Annu. Rev. Immunol. 2001,19, 65-91.
    33. Katze, M. G, He, Y. & Gale, M. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol. 2002, 2, 675-687
    34. Anthony L. DeVico and Robert C. Gallo. CONTROL OF HIV-1 INFECTION BY SOLUBLE FACTORS OF THE IMMUNE RESPONSE. 2004, 2:401-413
    35.Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17, 189-220.
    36. Fehniger TA, Herbein G, Yu H, Para MI, Bernstein ZP, O'Brien WA, Caligiuri MA. Natural killer cells from HIV-1+ patients produce C-C chemokines and inhibit HIV-1 infection. J. Immunol. 1998, 161, 6433-6438.
    37. Oliva A, Kinter AL, Vaccarezza M, Rubbert A, Catanzaro A, Moir S, Monaco J, Ehler L, Mizell S, Jackson R, Li Y, Romano JW, Fauci AS. Natural killer cells from humanimmunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J. Clin. Invest. 1998,102: 223-231.
    38. Kottilil S, Chun TW, Moir S, Liu S, McLaughlin M, Hallahan CW, Maldarelli F, Corey L, Fauci AS. Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J. Infect. Dis. 2003,187: 1038-1045.
    39. Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to HBV infection. Proc.Nat.Acad.Sci.USA. 2004, 101:6669-6674
    40. Kakimi K, Lane TE, Chisari FV, Guidotti LG. Inhibition of HBV replication by activated NKT cells does not require inflammatory cell recmitment to the liver. J.Immunol. 2001, 167:6701-6705
    41. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a non-classical NKT cell subset in a transgenic mouse model of hepatatitis B virus infection. Immunity. 2002, 16:583-594
    42. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J.Exp.Med. 2000, 192:921-930
    43. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O'Brien SJ, Rosenberg WM, Thomas DL, Carrington M. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004.305:872-874
    44. Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J.Exp.Med. 2002,195:43-49
    45. Crotta S, Stilla A, Wack A, D'Andrea A, Nuti S, D'Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J.Exp.Med. 2002, 195:35-42
    46. Jinushi M, Takehara T, Tatsumi T, Kanto T, Miyagi T, Suzuki T, Kanazawa Y, Hiramatsu N, Hayashi N. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection.J.Immunol. 2004, 173:6072-6081
    47. Smyth, M. J., Hayakawa, Y, Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Rev. Cancer 2002,2: 850-861
    48. Eugui EM, Allison AC. Differences in susceptibility of various mouse strains to haemoprotozoan infections: possible correlation with natural killer activity. Parasite Immunol. 1980, 2: 277-292.
    49. Skamene E, Stevenson MM, Lemieux S. Murine malaria: dissociation of natural killer (NK) cell activity and resistance to Plasmodium chabaudi. Parasite Immunol. 1983, 5:557-565.
    50. Orago AS, Facer CA. Cytotoxicity of human natural killer (NK) cell subsets for Plasmodium falciparum erythrocytic schizonts: stimulation by cytokines and inhibition by neomycin. Clin Exp Immunol. 1991, 86:22-9.
    51. Solomon JB, Forbes MG, Solomon GR. A possible role for natural killer cells in providing protection against Plasmodium berghei in early stages of infection. Immunol Lett. 1985, 9: 349-352.
    52. Kitaguchi T, Nagoya M, Amano T, Suzuki M, Minami M. Analysis of roles of natural killer cells in defense against Plasmodium chabaudi in mice. Parasitol Res. 1996, 82:352-357.
    53. Worku S, Bjorkman A, Troye-Blomberg M, Jemaneh L, Farnert A, Christensson B. Lymphocyte activation and subset redistribution in the peripheral blood in acute malaria illness: distinct gammadelta+ T cell patterns in Plasmodium falciparum and P. vivax infections. Clin Exp Immunol. 1997, 108:34-41.
    54. Hauser WE Jr, Sharma SD, Remington JS. Natural killer cells induced by acute and chronic toxoplasma infection. Cell Immunol. 1982, 69:330-346.
    55. Hunter CA, Remington JS. Immunopathogenesis of toxoplasmic encephalitis. J Infect Dis. 1994, 170:1057-1067.
    56. Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA. Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii.Infect Immun. 1997, 65:1675-1682.
    57. Smith AL, Rose ME, Wakelin D. The role of natural killer cells in resistance to coccidiosis: investigations in a murine model. Clin Exp Immunol. 1994, 97: 273-279
    58. Bany J, Janiak MK, Budzynski W. Activity of natural killer (NK) cells in the course of experimental trichinellosis in mice. Wiad Parazytol. 1992,38: 117-126.
    59. Kim KH, Shin CO, Im K. Natural killer cell activity in mice infected with free-living amoeba with reference to their pathogenicity. Korean J Parasitol. 1993, 31:239-248.
    60. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F. Induced recruitment of NK cells to the lymph nodes provides IFN-γ for Th1 priming.Nature Immunol. 2004, 5:1260-1265
    61. Mariapia A.Degli-Esposti and Mark J. Smyth.Close Encounters Of Different Kinds: Dendritic Cells And Nk Cells Take Centre Stage. 2005, 5:112-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700