鸡MHCⅠ类分子结构与抗病性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主要组织相容性复合体(MHC)由一组紧密连锁、高度多态的基因座所组成,在脊椎动物的移植排斥反应、免疫应答和免疫调控等方面起极其重要的作用。鸡的MHCⅠ基因(BF)的多态性与许多传染病的抗性和易感性密切相关,所以,研究MHC多态性特征是抗病育种的基础。虽然关于禽类MHCⅠ类分子结构特性的研究已有许多报道,但由MHC基因导致不同品种间抗病性差异的分子机理尚不十分清楚。MHC分子的多态性是动物在环境压力下平衡选择的结果。由于家畜禽在饲养选择中更多地受到人工选择,特别是传染病原压力影响,不同区域形成的在外形、生产性能等方面可能完全不同,是否其MHCⅠ分子在结构演变中也产生差异。为此,我们选择了在中国南方和中部地区的三个经过长期驯化的鸡品种(即文昌鸡、清远和淮北麻鸡),运用RT-PCR法克隆了清远麻鸡、淮北麻鸡和文昌鸡的MHCⅠ类分子cDNA序列,进行了结构分析。
     首先,经过克隆,从90羽鸡共获得了80条α链cDNA序列,其中文昌鸡、清远和淮北麻鸡分别为24、30和26条。序列分析显示α链呈现高度多态,有73不同基因序列,还存在6组的序列是完全相同的,其中3组的成员分布于不同品种。另,我们测序了15条β_(2m)链cDNA序列,每个品种各5条,分析发现其序列差异极小,较为保守。进一步分析MHCⅠα氨基酸全长序列位点的分布特征,显示鸡MHCⅠ类分子的多态性氨基酸位点共130个,分布整个分子的5个区域(信号肽、α1、α2、α3和TM / CY区域),但是其中83个集中在α1和α2区域(9~155aa)。构建了MHCⅠα链序列系统发育树,结果显示克隆的等位基因型与其他鸡品种一起分属于两个类群,决定分属类群的是基因型而不是品种。这表明鸡MHCⅠα具有共同祖先的遗传特征,其品种属性与MHC分属类群无相关性。由此推测,驯化鸡更多地受到共同病原的压力选择,而不是受地域环境影响。
     其次,采用Wu-kabat法分析了α链α1和α2区域位点的变异率,并与其他物种进行了α1和α2区域多态位点和空间结构的比对。分析多态性位点发现,清远麻鸡的α1和α2区域氨基酸序列共有16处高度多态性位点(分值大于等于4),其中α1区域有9个,α2区域有7个,而这两个区的4个高峰的位点分布于9、111、113和153位(分值大于等于8);淮北麻鸡在α1和α2区域共23个高度变异位点,分别为10和13个,类似清远鸡,位点9、111、113和153的变异值较高,特别是113变异率高达26;文昌鸡的α1和α2区域存在25个高度变异位点,分别为13和12个,其中位点9、69、111、113、149和153位为5个峰点。此外,我们发现三个品种MHCⅠ类分子的位点9、24、43、53、72、97、111、113和153都是高度变异,且9、111、113和153变异率分值均大于或等于8。最后,通过对比鸭、人和鼠MHCⅠα的高变异位点,显示禽类的9、111、113和153位氨基酸对应哺乳动物中的9、114、116和156均属高度变异位点。在MHCⅠα链分子中存在抗原肽结合域(PBR),是MHCⅠ分子多态性最高的区域,也是与抗病性关系最密切的结构。PBR位于α1、α2区,所以不同物种MHCⅠ的α1和α2区域氨基酸残基在分布上存在共同特征,尤其是在PBR中与抗原结合位点的空间定位具有相似性。这些结果表明,脊椎动物MHC分子是物种分离前形成的,具有共同祖先的特征。在进化过程中,同一物种尽管所生存的环境不同,但是主要还是受到病原体选择,在品种间存在更多的共同特征。
     由于MHCⅠ类分子α和β链在细胞内先形成稳定聚合体,才能具有识别结合抗原短肽功能,进而呈递抗原肽。虽然PBR位于α上,但β链对于MHCⅠ分子形成稳定空间结构和发挥功能是必须的。为了探索MHC呈递处理抗原的机制,本文还构建了重组MHCⅠ类分子αβ链片段,并进行了原核表达。为此,我们利用基因工程技术将MHCⅠ分子的α和β通过一端连接肽头尾相接,构建了pET-MHCⅠβ_(2m)-α原核表达重组质粒,并转入了大肠杆菌BL21进行了表达。结果表明重组质粒得到了顺利表达,且获得了具有一定活性的MHCⅠβ_(2m)-α融合蛋白。该研究为进一步探索MHCⅠ分子携带抗原肽机制,保持和促进其功能的稳定发挥提供了实验基础。
Major histocompatibility complex (MHC) is closely linked by a group of highly polymorphic loci, they play a crucial role in the immune system, which induce the animal body transplant rejection, present antigen peptides to T cells for recognition, and trigger an appropriate immune response. Polymorphism of chicken MHCⅠgene (BF) is associated with resistance and susceptibility of many important infectious diseases, so the knowledge about characters of MHC polymorphism is basic for resistibility breeding. A number of works focusing on poultry MHCⅠgene have been reported; still it is not clear about the molecular mechanism of MHC inducing diversity in resistance to infectious diseases between animal breeds. MHC polymorphisms are subject to the animal's response to the environmental pressure. Livestock and poultry in the breeding process are more artificially selected and bred, especially under infectious pathogen pressure, which inhabit in different areas and exhibit various produce and form characters, whether their MHC gene has diversity in evolvement under the pressure. In order to understand polymorphism character of MHC evolution in domesticated poultry we selected three local breeds of chicken (Qingyuan, Wenchang and Huaibei) in different areas of China, and cloned and sequenced MHCⅠcDNA gene.
     First 80 sequences of MHCⅠαgene were cloned from 90 individuals by RT-PCR, in which Qingyuan, Wenchang and Huaibei were 30, 24 and 26 respectively. Comparison of sequences indicated thatαgene exhibited high polymorphism and had 73 different sequences and 6 groups having identical sequence, in which there were 3 groups, its members were distributed in different breeds. We also sequenced 5β_(2m) gene, they exhibited high conversed and less diversity. Further we analyzed the distribution of polymorphic amino acid residues in chicken MHCⅠαchain, in which an aligning all sequences of amino acid the residues. The results revealed that there were 130 of polymorphic sites, which were distributed in total MHCⅠαchain including five regions, namely leader peptide,α1,α2,α3 and TM / CY regions, but 83 of them were located in theα1 andα2 regions (9~155aa).
     In the phylogenetic tree all alleles belonged to two clusters together with other different taxa, especially one individual as cluster member was dependent on its genotype rather breed. This suggest that no correlation of MHCⅠαwith the chicken breeds and they keep genetic characters of a common ancestor. It is presumed that the MHCⅠmolecule of domesticated chickens would more influenced by the pressure of the pathogens rather than the environment in different areas.
     Secondly, analysis and comparison of diversity inα1 andα2 regions with other species were carried out by Wu-kabat index and structure simulation. We found that 16 amino acid residues with high polymorphism (score≥4) in PBRs of Qingyuan Partridge chicken MHCⅠ. There were 9 of polymorphic sites inα1 region, 7 of those sites inα2 region. Four main peaks (score≥8) were located at the residues 9, 111, 113 and 153. A total of 23 polymorphic sites in Huaibei Partridge chicken MHCⅠwere located in the regions, including 10 sites ofα1 region , 13 sites ofα2 region, four main peaks were also located at the residues 9, 111, 113 and 153. Wenchang chicken MHCⅠhad 25 highly variable sites,α1 andα2 regions had 13 and 12 sites respectively, and the residues 9,69,111,113,149 and153 with a score were greater than or equal to 8. Moreover, all these residues 9, 69, 111, 113, 149 and153 were polymorphic in three breeds, and the sites 9, 111, 113 and153 were highly polymorphic (score≥8). Compared with duck, human and mouse, the distribution of amino acid residues inα1 andα2 regions ofα-chain shows some similar features, namely some variable polymorphic sites (score≥4) at 9, 111(114), 113 (116) and 153 (156), especially these polymorphic sites in peptide-binding regions (PBRs) and their spatial location, indicating that they had similarity in gene structure. All these results suggest that MHC gene is an ancestral sequences that existed before separation of specie and has common character. In the evolution process the MHC gene of breeds in same specie have keep more common characters because under pressure of the specific pathogen rather than different living environment.
     A presenting antigen peptide is dependent on polymerization between MHCαandβchain and forming specific stable structure. The PBR locates inαchain, butβ_(2m) is essential for MHCⅠmolecule function. To explore mechanism of MHC molecule presenting antigen we constructed a recombined segment containing MHCⅠαandβchains and expressed in a prokaryotic system. We connectedαchain toβchain with a linker and inserted it into a vector, this recombinant plasmid was named as pET-MHCⅠβ_(2m)-α. Then it was transferred into E. coli BL21 and expressed. The results showed that the pET-MHCⅠβ_(2m)-αwere successfully expressed, This MHCⅠβ_(2m)-αfusion protein with certain immune activity would provide experimental materials for exploring mechanism of MHCⅠmolecule improving immune function as epitope carrier.
引文
[1]林学颜,张玲.现代细胞与分子免疫学[M].北京:科学出版社, 1999, 90~107.
    [2]陈仁馨.人MHCⅢ类抗原及其意义[J].免疫学杂志, 1990, 6(2):132~410.
    [3] Hughes AL, Yeager M. Natural selection at major histocompatibility complex loci of vertebrates [J]. Annu Rev Genet, 1998, 32:415~435.
    [4] Maenaka K, Jones EY. MHC superfamily structure and the immune system [J]. Curr Opin Struct Biol, 1999, 9:745~753.
    [5] Bontrop RE, Otting N, de Groot NG, et al. Major histocompatibility complex class II polymorphisms in primates [J]. Immunol Rev, 1999, 167:339~350.
    [6] Otting N, de Vos-Rouweler AJ, Heijmans CM, et al. MHC class I A region diversity and polymorphism in macaque species [J]. Immunogenetics, 2007, 59:367~375.
    [7] Boehm T, Zufall F. MHC peptides and the sensory evaluation of genotype [J]. Trends Neu, 2006, 29:100~107.
    [8] Tregenza T, Wedell N. Genetic compatibility, mate choice and patterns of parentage: Invited review [J]. Molecular Ecology, 2000, 9(8):1013~1028.
    [9] Paterson S, Pemberton JM. No evidence for major histocompatibility complex- dependent mating patterns in a free-living ruminant population [J]. Proc R Soc Lond B,1997, 264:1813~1819.
    [10] Lamont SJ. The chicken Major Histocompatibility Complex in disease resistance and poultry breeding [J]. J Dairy Sci,1989, 72:1328~1333.
    [11] Sharif S, Mallard BA, Wikie BN, et al. Association of bovine major histocompatibility complex DRB3 (BoLA-DRB3) with production traits in Canadian dairy cattle [J]. Animal Genetics, 1999, 30:157~160.
    [12]欧阳建华,袁立,孙权等.中国泰和乌骨鸡MHC与其繁殖性能相关的研究[J].江西农业大学学报, 2000, 22 (1):98~101.
    [13]杨黎青.免疫学基础与病原生物学[M].北京:中国中医药出版社, 2003.
    [14] Brown JH, Jardetzky TS, GorgaJ C, et al .Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature, 1993, 364:33~39.
    [15] Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol, 1995, 13:587~622.
    [16] Natarajan K, Li H, Mariuzza RA, et al. MHC class I molecules, structure and function. Rev Immunogenet, 1999, 1:32~46.
    [17] Bjokman PJ, Saper MA, Samraoui B, et al. Structure of the human class Ihistocompatibility antigen, HLA-A2 [J]. Nature, 1987, 329:506~512.
    [18] Pullen JK, Horton RM , Cai ZL, et al. Sturucture diversity of the H-2 genes:K, D and L [J] . J Immunol,1992, 148:953~967.
    [19] Bergg?rd I, Bearn AG. Isolation and properties of a low molecular weightβ2-Globulin occurring in human biological fluids [J]. J Biol Chem, 1968, 243:4095~4103.
    [20] Kaufman J, Andersen R, Avila D, et al. Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues [J]. J Immunol, 1992, 148:1532~1546.
    [21]闫若潜,李新生,夏春.乌骨鸡和珍珠鸡BF2与β微球蛋白(β2m)基因克隆及品种多态性分析[J].畜牧兽医学报, 2005, 36 (9):861~868.
    [22] Mitchell DA, Nair SK, Gilboa E, et al. Dendritic cell/macrophage precursors capture exogenous antigen for MHC class I presentation by dendritic cells [J]. Eur J Immunol, 1998, 28(6):1923~1933.
    [23] Pfeifer JD, Wick MJ, Roberts RL, et al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells [J]. Nature, 1993, 361:359~362.
    [24] Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotxicyty in lymphocytic choromeningitis within a syngeneic or semi-allogeneic system [M]. Nature(Lond.), 1974, 248 :701.
    [25] Garcia KC, Degans M, Anαlpha beta T cell receptor structure at 2.5 and its orientation in the TCR-MHC complex [J]. Science,1996, 274:209~219.
    [26] Garboczi DN, Ghosh P. Structure of the complex between human T-cell receptor , viral peptide and HLA-A2 [J]. Nature,1996, 384:134~141.
    [27] Lanzavecchia A. Licence to kill [J]. Nature, 1998, 393:413~414.
    [28]王重庆.分子免疫学基础[M].北京,北京大学出版社, 1997, 139~140.
    [29] Paul WE. Fundamental Immunology [M]. Fourth Edition. Philadelphia: Lippincott-Raven Publishers.1999, 297~298.
    [30] Little AM, Parham P. Polymorphism and evolution of HLA class I and II genes and molecules [J]. Rev Immunogenet, 1999, 1 (1):105~123.
    [31]谢维. MHC基因多态性和肿瘤的发生[J].现代免疫学, 2004, 24:441~444.
    [32]裴梓峰,李岩,马威等. HLA基因多态性与原发性高血压的相关性研究进展[J]. 2009, 3(6):259~363.
    [33] Ohta T. Effect of gene conversion on polymorphic patterns at major histocompatibility complex loci [J]. Immunolo Rev, 1999,167:319~325.
    [34] Andersson L, Gustafsson K, Jonsson AK, et al. Concerted evolution in a segment of the first domain exon of polymorphic MHC class II b loci [J]. Immunogenet, 1991, 33:235~242.
    [35]赵德荣,孙岚玲.哺乳类MHC多态性的形成[J].国外医学遗传学分册, 1995, 18(6):330~332.
    [36] Bernatchez L, Landry C. MHC studies in nonmodel vertebrates:what have we learned about natural selection in 15 years? [J]. J Evol Biol, 2003, 16:363~377.
    [37] Fernando MMA, Stevens CR, Walsh EC, et al. Defining the Role of the MHC in Autoimmunity:A Review and Pooled Analysis [J]. Plos Genet, 2008, 4(4):e1000024.
    [38] Nikolich-Zugich J, Fremont DH, Miley M J, et al. The role of mhc polymorphism in anti-microbial resistance [J]. Microbes Infect, 2004, 6(5):501~5l2.
    [39] Brewerton DA, Hart FD, Nicholls A, et al. Ankylosing spondylitis and HLA-27 [J]. Lancet, 1973, 1:904~907.
    [40] Schlosstein L, Terasaki PI , Bluestone R, et al. High Association of an HLA antigen,w27,with Ankylosing spondylitis [J]. New Engl J Med, 1973, 288 (14):704~706.
    [41] Tsuckiya K, Kimura A, Kindo M, et al.Combination of HLA-A and HLA classⅡalleles controls the susceptibility to rheumatoid arthritis [J]. Tissue Antigens, 2001, 58(6):395~401.
    [42] Anhalt GJ, Kim SC, Stanley JR, et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia [J]. New Engl J Med, 1990, 323:1729~1735.
    [43] Perdriger A, Guggenbuhl P, Chales G, et al. The role of HLA-DR-DR and HLA-DR-DP interactions in genetic susceptibility to rheumatoid arthritis [J]. Hum Immunol, 1996, 46(1):42~48.
    [44] Motta P M, Cech N, Fontan C, et al. Role of HLA-DR and HLA-DQ alleles in multibacillary leprosy and paucibacillary leprosy in the province of Chaco (Argentina) [J]. Enferm I nfecc Microbiol Clin, 2007, 25(10) :627~631.
    [45] Garcia-Camacho L, Schat KA, Brooks R, et al. Early cell-mediated immune responses to Marek' s disease virus in two chicken lines with defined major histocompatibility complex antigens [J]. Veterinary Immunology and Immunopathology, 2003, 95(3-4):145~153.
    [46] Vukmanovi S, Neubert TA, Santori FR. Could TCR antagonism explain associations between MHC genes and disease? [J]. Trends in Molecular Medicine, 2003,9(4):139~146.
    [47] Blankert JJ, Alber GAA, Briles WE, et al. The effect of serologically defined major histocompatibility complex haplotypes on Marek’s disease resistance in commercially bred White Leghorn chickens [J]. Avian Dis, 1990, 34(4):818~823.
    [48] Bacon LD, Witter RL. Efficacy of Marek's disease vaccines in Mhc heterozygous chickens:Mhc congenic x inbred line F1 matings [J]. J Hered, 1995, 86:269~273.
    [49] Sherman MA, Goto RM, Moore RE, et al. Mass spectral data for 64 eluted peptides and structural modeling define peptide binding preferences for class I alleles in two chicken MHC-B haplotypes associated with opposite responses to Marek's disease [J]. Immunogenetics, 2008, 60: 527~541.
    [50] Wallny H, Avila D, Hunt L, et al. Peptide motifs of thesingle dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens [J]. Proc Natl Acad Sci, 2006, 103:1434~1439.
    [51]徐卫华,符生苗,赵英. HLA-B27等位基因和亚型与强直性脊柱炎关系研究进展[J].中国优生与遗传杂志, 2007, 15(9):11~12.
    [52] Baum H, Davies H, Peakman M. Molecular mimicry in the MHC:hidden clues to autoimmunity [J].I mmuno Today, 1996, 17:64~70.
    [53] Mcadam S, Klenerman P, Tussey L, et al. Immunogenic HIV variant peptide that bind to HLA-B8 can fail to stimulate cytotoxic T lymphocyte responses [J]. J Immunol, 1995, 155:2729~2736.
    [54] Westby M, Manca F, Dalyleish AG. The role of host immune response in determinding the outcome of HIV infection [J].Immuno Today, 1996, 17:120~126
    [55] Gorer PA. The detection of a hereditary antigenic difference in the blood of mice by means of human group a serum [J]. J Genet, 1936, 32:17~31.
    [56] Gorer PA, Lyman S, Snell GD. Studies on the genetic and antigenic basis of tumour transplantation. Linkage between a histocompatibility gene and "fused" in mice [J]. Proc R Soc, 1948, 135(881):499~505.
    [57] Dausset J. Iso-leuco-anticorps. Acta Haematol, 1958, 20:156~166.
    [58] The MHC sequencing consortium.Complete sequence and gene map o f a human major histocompaitbility complex [J]. Nature.1999, 401(6756):921~923.
    [59] Glithero A, Tormo J, Doering K, et al. The crystal structure of H-2Db complexed with a partial peptide epitope suggests a major histocompatibility complex class I assembly intermediate [J]. J Biol Chem, 2006,281(18):12699~12704.
    [60] Antunes SG, de Groot NG, Brok H, et al. The common marmoset:A new worldprimate species with limited MHC class II variability [J]. Pans, 1998, 95 (20):11745~11750.
    [61] Chardon P, Renard C, Vaiman M. The major histocompatibility complex in swine [J]. Immunological Review, 1999, 167:179~192.
    [62] Ballingall KT, Tassi R. Sequence-based genotyping of the sheep MHC class II DRB1 locus [J]. Immunogenetics, 2010, 62: 31~39.
    [63] Ibeagha-Awemu EM, Kgwatalala P, Ibeagha AE, et al. A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig [J]. Mammalian Genome, 2008,19:226~245.
    [64]夏春.中华鳌MHCⅠα2基因克隆及序列分析[J].遗传免疫学,1999:15(2):77~79.
    [65]夏春.白鲢MHCⅠα2基因克隆及序列分析[J],动物学报, 1999, 45(3):345~349.
    [66]夏春,青柳宙,中西照幸.一新MHCⅠ类等位基因存在于低等脊推动物虹鳟鱼[J].科学通报, 2001, 46(2):121.
    [67]夏春,徐广贤,林常有等.草鱼MHCⅠ等位基因克隆及其多态性分析[J].自然科学进展, 2004,14(1):51~58.
    [68] Hedrick PW, Miller PS. Rare alleles, MHC and captive breeding [J] . Exs,1994, 68:187~204.
    [69] Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes [J]. Immunogenetics, 2005, 56:683~695.
    [70] Takeshima SN, Sarai Y, Saitou N, Aida Y. MHC class II DR classification based on antigen-binding groove natural selection [J]. Biochem Biophys Res Commun. 2009, 385(2):137~142.
    [71] Guo Z, Gatterman MS, Hood L, et al. Oligonucleotide arrays for high-throughput SNPs detection in the MHC Class I genes:HLA-B as a model system [J]. Genome Res, 2002,12:447~457.
    [72] Lagaaij EL, Hennemann IP, Ruigrok M, et al. Effect of one-HLA- DR-antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allografts [J]. N Engl J Med, 1989, 321:701~705.
    [73] Bontrop RE, Watkins DI. MHC polymorphism:AIDS susceptibility in non-human primates [J]. Trends Immunol, 2005, 26:227~233.
    [74] Ziegler A, Kentenich H, Uchanska-Ziegler B. Female choice and the MHC [J]. Trends Immunol, 2005, 26:496~502.
    [75] Goulder PJ, Watkins DI. HIV and SIV CTL escape:implications for vaccine design [J]. Nat Rev Immunol, 2004, 4:630~640.
    [76] Kaufman J, Milne S, Gobel TW, et al. The chicken B locus is a minimal essential major histocompatibility complex [J]. Nature, 1999, 401:923~925.
    [77] Shiina T,Oka A, Imanishi T, et al. Multiple class I loci experssed by the quail Mhc [J].Immunogenetcs, 1999, 49 (5):456~460.
    [78] Shiina T,Shimizu C,Oka A, et al. Gene organization of the quail major histocompatibility complex(MhcCoja) class I gene region [J]. Immunogenetics,1999, 49(5):384~394.
    [79] Iglesias GM, Soria LA, Gote RM, et al. Genotypic variability at the major histocompatibility complex(B and Rfp-Y)in Camperos broiler chickens [J].Animal Genetics, 2003, 34:88~95.
    [80] Livant EJJ, Brigati R, Ewald SJ. Diversity and locus specificity of chicken MHC B class I sequences [J]. Anim. Genet, 2004, 35:18~27.
    [81]罗庆斌,沈栩,任广彩.鸡MHC- B- F基因外显子2、3的SNPS分析[J].养禽与禽病防治, 2005, 10:6~9.
    [82] Yan RQ, Li XS, Yang TY, et al. Structures and homology modeling of chicken major histocompatibility complex protein class I(BF2 and beta2m) [J].Molecular Immunology, 2006, 43:1040~1046.
    [83] Cerundolo V, Elliott T, Elvin J, et al. Association of the human invariant chain with H-2 Db class I molecules [J]. Eur J Immunol, 1992, 22:2243~2248.
    [84] Vigna JL, Smith KD, Lutz CT. Invariant chain association with MHC class I:preference for HLA class I/beta 2-microglobulin heterodimers, specificity, and influence of the MHC peptide-binding groove [J]. J Immunol, 1996, 157:4503~4510.
    [85] Reber AJ, Turnquist HR, Thomas HJ, et al. Expression of invariant chain can cause an allele~dependent increase in the surface expression of MHC class I molecules [J]. Immunogenetics, 2002, 54:74~81.
    [86] Cannon L, Bobilev-Priel, Brener B, et a1. Characterization of novel breast carcinoma–associated BA46-derived peptides in HLA-A2.1/Db-beta2m transgenic mice [J]. J Clin Invest, 2002, 110(4):453~462.
    [87] Yu YY, Netuschil N, Lybarger L, et a1. Cutting edge:single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells [J]. J Immunol, 2002, 168(7):3145~3149.
    [88] Huang CH, Peng S, He L, et a1. Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to all HPV-16 E6 immunodminant CTL epitope [J]. Gene Ther, 2005, 12 (15):1180~1186.
    [89] Hung CF, Calizo R, Tsai YC, et a1. A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors [J]. Vaccine, 2007, 25(1):127~135.
    [90] Lybarger L, Yu YY, Miley MJ. Enhanced immune presentation of a single-chain major histocompatibility complex class I molecule engineered to optimize linkage of a C-terminally extended peptide [J]. J Biol Chem, 2003, 278:27105~27111.
    [91] Westerdahl H, Wittzell H, von Schantz T. Mhc diversity in two passerine birds:no evidence for a minimal essential Mhc [J]. Immunogenetics, 2000, 52(1~2):92~100.
    [92] Aly TA, Eller E, Ide A, et al. Multi-SNP analysis of MHC region:Remarkable conservation of HLA-A1-B8-DR3 haplotype. Diabetes, 2006, 55:1265~1269.
    [93] O'Leary CE, Wiseman RW, Karl JA, et al. Identification of novel MHC class I sequences in pig-tailed macaques by amplicon pyrosequencing and full-length cDNA cloning and sequencing [J]. Immunogenetics. 2009, 61:689~701.
    [94] Binz T, Reusch TBH, Wedekind C, et al. SSCP analysis of Mhc class IIB genes in the threespine stickleback. Journal of Fish Biology, 2005, 58(3):887~890.
    [95] Huchard E, Cowlishaw G, Raymond M,et al. Molecular study of Mhc-DRB in wild chacma baboons reveals high variability and evidence for trans-species inheritance [J]. Immunogenetics, 2006, 58:805~816.
    [96] Penedo MC, Bontrop RE, Heijmans CM, et al. Microsatellite typing of the rhesus macaque MHC region [J]. Immunogenetics, 2005, 57:198~209.
    [97] Surridge A, van der Loo W, Abrantes J, et al. Diversity and evolutionary history of the MHC DQA gene in leporids [J]. Immunogenetics, 2008, 60:515~525.
    [98] Zhou H, Hickford JGH. Allelic polymorphism in the ovine DQA1 gene [J]. J Anim Sci, 2004, 82:8~16.
    [99] Kaufman J. The simple chicken major histocompatibility complex:life and death in the face of pathogens and vaccines [J]. Philos Trans R Soc Lond B Biol Sci, 2000, 355:1077~1084.
    [100] Hunt HD, Fulton JE. Analysis of polymorphisms in the major expressed class I locus (B-FIV) of the chicken [J]. Immunogenetics, 1998, 47:456~467.
    [101] Lima-Rosa CAV, Canal CW, Streck AF, et al. B-F DNA sequence variability in Brazilian (blue-egg Caipira) chickens [J]. Anim Genet, 2004, 35:278~284.
    [102] Li L, Johnson WL, Livant EJ, et al. The MHC of broiler chicken line:serology, B-G genotypes, and B-F/B-LB sequences [J]. Immunogenetics, 1999, 49:215~224.
    [103] Yan RQ, Li XS, Yang TY, et al. Characterization of BF2 andβ2m in threeChinese chicken lines [J]. Vet Immunol Immunopathol, 2005, 108:417~425.
    [104] Chaves LD, Krueth SB, Reed KM. Defining the turkey MHC:sequence and genes of the B locus [J]. J Immunol, 2009, 183(10):6530~6537.
    [105] Xu SX, Ren WH, Li SZ, et al. Sequence polymorphism and evolution of three cetacean MHC genes [J]. J Mol Evol, 2009, 69(3):260~275.
    [106] Koutsogiannouli EA, Moutou KA, Sarafidou T, et al. Major histocompatibility complex variation at class II DQA locus in the brown hare (Lepus europaeus) [J]. Mol Ecol, 2009, 18(22):4631~4649.
    [107] Ewald SJ, Livant EJ. Distinctive polymorphism of chicken B-FI (major histocompatibility complex class I) molecules [J]. Poult Sci, 2004, 83(4):600~605.
    [108] Antoniou AN, Powis SJ. Pathogen evasion strategies for the major histocompatibility complex class I assembly pathway [J].Immunology, 2008,124:1~12.
    [109] J.萨姆布鲁克, DW.拉塞尔等著〔美〕(黄培堂等译).分子克隆实验指南(第三版).北京:科学出版社, 2002.
    [110] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res, 1997, 25:4876~4882.
    [111] Wu, T. T. and Kabat, E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity [J]. J Exp Med, 1970, 132:211~250.
    [112] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace:A web- based environment for protein structure homology modelling [J]. Bioinformatics, 2006, 22:195~201.
    [113] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server [J]. Nucleic Acids Res, 2003, 31:3381~3385.
    [114] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer:An environment for comparative protein modelling [J]. Electrophoresis, 1997, 18: 2714~2723.
    [115] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Brief Bioinform, 2004, 5:150~163.
    [116] Shiina T, Shimizu S, Hosomichi K, et al. Comparative genomic analysis of two avian (quail and chicken) MHC regions [J]. J Immunol, 2004, 172(11):6751~6763.
    [117] Gu X, Nei M. Locus specificity of polymorphic alleles and evolution by abirth-and-death process in mammalian MHC genes [J]. Mol Biol Evol, 1999, 16(2):147~156.
    [118] Mona S, Crestanello B, Bankhead-Dronnet S, et al. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois [J].Mol Ecol, 2008, 17(18):4053~4067.
    [119] Furlong RF, Yang Z. Diversifying and purifying selection in the peptide binding region of DRB in mammals [J]. J Mol Evol, 2008, 66(4):384~394.
    [120] Eizaguirre C, Yeates SE, Lenz TL, et al. MHC-based mate choice combines good genes and maintenance of MHC polymorphism [J]. Mol Ecol, 2009, 18(15): 3316~3329.
    [121] Goto RM, Wang Y, Taylor RL Jr, et al. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken [J]. Proc Natl Acad Sci USA, 2009, 106(39):16740~16745.
    [122] Yin Dai, Fangfang Chen, Xuelan Liu, et al. cDNA cloning and antigen-binding sites of the MHC class I in Chinese native chicken (Qingyuan Partridge chicken) [J]. J. Food, Agric. Environ, 2010, 8(1):91~97.
    [123] Ryoichi A , Hiroshi U, Atsushi K, et al . An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion [J] . Protein Engineering, 2001 ,14(8):529~532.
    [124] Kaija Al ,Kristiina T, Dorothea S, et al. Properties of a single-chain antibody containing different linker peptides [J]. Protein Engineering, 1995, 8(7):725~731.
    [125] Kikuchi Y, Uno S, Yoshimura Y, et al. A bivalent single-chain Fv fragment against CD47 induces apoptosis for leukemic cells. Biochem Biophys Res Commun [J], 2004, 315:912~918.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700