玉米光周期敏感相关基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带、亚热带玉米种质具有丰富的遗传变异,是拓宽我国玉米种质遗传基础和提升育种水平的一个重要途径。然而,玉米光周期敏感是热带、亚热带种质利用的一个主要障碍。因此,分离、克隆控制玉米光周期敏感相关基因并探知其功能,进而揭示光周期敏感的遗传特性和内在机制,不仅对热带、亚热带玉米种质的有效利用,而且对植物花发育生物学机理研究的深入,均具有重要的理论和实践意义。本研究以热带玉米光周期敏感自交系CML288为材料,通过长、短日照挪移试验,在明确玉米对光周期反应敏感指标和敏感时期的基础上,利用抑制差减杂交的方法,构建了具有3000多个单克隆的光周期敏感差减文库;利用同源基因克隆结合RACE技术,分离克隆了ZmHd1、PL5L15和PL3K2等同玉米光周期敏感反应相关的重要基因,并分析了克隆基因在不同发育时期和器官的表达特点;然后根据生物信息学分析,通过与RIL群体光周期敏感基因QTL定位研究结果的比较,初步对ZmHd1基因进行了定位和功能的验证。主要研究结果如下:
     1、通过对CML288和黄早四玉米自交系光周期敏感特性对比试验发现,在9小时短日照条件下,CML288和黄早四均发育正常,能够正常抽雄,节间伸长明显。15h长日照条件下CML288雄穗不能分化,节间短缩,对光周期反应敏感,黄早四抽雄略有推迟,节间伸长正常。说明CML288对光周期的敏感性明显强于黄早四,是一个对光周期敏感的热带玉米材料。通过CML288长、短日照处理相互挪移试验发现,从短日条件挪移到长日条件的植株,6叶期未见雄穗分化,7叶期、8叶期雄穗发育基本正常,9叶期雄穗发育正常,说明6~7叶期是光周期反应最敏感的时期,7~9叶期是光周期敏感的持续期,但敏感效应明显减弱。
     2、利用同源克隆和RACE技术,成功地分离克隆了ZmHd1的CDS序列、基因组DNA序列。CDS序列全长1310bp,具有1197bp完整的ORF阅读框,编码一条397个氨基酸残基的肽链,含有CO/Hd1家族基因2个保守的BBOX与CCT结构域,ZmHd1基因是由一个内含子与2个外显子构成,具有完整的编码区域和帽子结构、启动子和转录终止子等转录元件。玉米ZmHd1与水稻Hd1基因具有74%的序列同一性,编码的氨基酸序列具有75%的同源性,明显高于水稻与拟南芥的同源性。因此认为,玉米ZmHd1是水稻的光周期敏感基因Hd1的一个同源基因,可能是控制玉米光周期敏感反应的一个重要基因。
     3、黄早四与CML288 ZmHd1基因gDNA序列对比发现,在第二个外显子中发生一个从T向A的点突变,导致产生了一个翻译的终止密码子,而使具有CO/Hd1基因家族保守的CCT结构域蛋白翻译被提前终止,使C末端的核定位信号功能丧失。因此,ZmHd1基因蛋白编码区中一个核苷酸突变所产生的终止密码子,可能是光周期敏感性发生改变的一个重要机制,显示出在这个基因位点对光周期反应的敏感和钝感反应。根据黄早4在ORF之内这个早熟终止子序列,与CML288 ZmHd1序列中存在的这个核苷酸差异所产生的StuI的酶切位点,成功地开发了一个简单有效的CAPS标记,可用来测定2个玉米材料中光周期敏感基因的存在。
     4、ZmHd1基因序列与MaizeGDB数据库公布的B73测序的AC189064克隆序列同源性高达98~99%,由于玉米基因组测序已经基本结束,而在基因组测序的克隆中仅有一个拷贝同该基因具有这样高的同源性,因此推断该基因位于玉米第9染色体的9.03区段内,接近着丝点位置。通过RIL遗传作图群体的光周期敏感相关基因的QTLs定位分析,在这个区间检测到一个同光周期敏感反应有关的QTL,因此认为ZmHd1可能是这个光周期敏感主效QTL的一个侯选基因。Real-time PCR分析显示,ZmHd1基因进入光周期敏感时期具有上调表达的趋势,而且长日照条件的表达高于短日条件。
     5、以热带玉米光周期敏感时期的叶片与茎尖为材料,利用SSH技术构建了对长日照敏感而特异表达的基因文库,3000多个单克隆被有效地富集在正向光周期敏感差减文库中,为进一步分离克隆光周期敏感基因的研究搭建一个材料平台。对差减文库中分离的64个特异表达EST序列分析表明,16个EST序列与玉米已知编码的功能蛋白序列具有较高的同源性,可以初步推测其功能,可能的蛋白功能主要涉及光接受与信号转导、生长分化与发育转录因子、逆境反应等多个生理生化途径中的相关基因,31个序列与其它物种编码序列同源性较高,7个EST可能代表了新基因。
     6、以SSH文库的EST克隆为材料,利用同源克隆技术,成功分离克隆出了玉米PL5L15基因的cDNA序列。PL5L15基因cDNA全长1410bp,具有897bp完整的ORF阅读框,编码一条292个氨基酸残基的肽链,位于该肽链第89到272个氨基酸中含有一个保守的Clp-protease结构域。与ClpR2基因序列具有78%的同源性。因此,所克隆的PL5L15是玉米Clp蛋白酶家族的ClpR2-LIKE基因,初步推测该序列可能位于玉米第9条染色体上。Real-time PCR分析显示,在短日条件下该基因正常水平的表达促进了生殖分化,但在长日条件下持续过量高表达则抑制了生殖分化,推测可能与玉米光周期反应条件下的生殖分化有关。
     7、利用SSH文库的EST序列成功分离克隆出了玉米PL3K2基因的cDNA序列。序列全长639bp,具有453bp完整的阅读框,编码150个氨基酸残基的肽链,位于该肽链的第25到150个氨基酸中含有一个保守的Jacalin结构域,包含Jacalin功能域的蛋白属于Lectin基因家族成员。初步推测该序列可能位于玉米第10条染色体上。Real-time PCR分析显示,长日照逆境条件下该基因在茎尖中的表达显著高于短日照正常条件。该基因可能与玉米逆境抗性有关。
Tropical and subtropical germplasms contain abundent hereditary variation to broaden Chinese maize germplasm and increase the breeding level.However,photoperiod sensitivity is the main restriction of its use in temperate zone.We have to study it in order to utilize tropical and subtropical germplasm better.CML288,a tropical maize photoperiodic sensitivity inbred line,and HuangZao No.4,a temperate maize inbred line were used as material in these studies.We studied the responses to photoperiod further in CML288 and cloned some photoperiod-related genes,ZmHd1,PL5L15 and PL3K2,which play the important roles during the transition from vegetative growth to reproductive growth,and test its transcription level by Real-Time PCR during different development leaf number stage and a whole day in photoperiod sensitivity stage.The ZmHd1 gene was mapped and deduced its function by comparing with the QTLs result of photoperiod sensitivity RILs.The main results were as follows. The inbred lines were grown in 2 different controlled photoperiod recycles,9hr and 15 hr light every day.Result showed that the HuangZao No.4 lines could perform productive growth and elongate the stem not only short-days conditon but also long-day condition.While CML288 could not development tassel and elongate the stem on long-day condition.CML288 was much more sensitive to photoperiod than HuangZao No.4.It shows that the tassel difference transferred from SD to LD condition in sixth leaf period was invisible but in seventh,the tassel development between seven-leaf and eight-leaf period were later than the tassel in short days consistently.The result indicated that CML288 was more sensitive to photoperiod between sixth and seventh leaf period.
     CDS and DNA sequence of ZmHd1 were isolated and cloned successfully using RACE technique.The full-length CDS sequence was 1310 bp,include a 1197bp complete ORF region,which encode a 397 amino acid peptides,owning two highly conserved BBOX and CCT domains.ZmHd1 genome gene was composed of one intron and two extron,had complete transcript elements,such as promoters and terminal sequence.It is 74 percent identifies,and 75 percent positives with Hd1 of Oryza sativa.It is an ortholog of Hd1 and related to photoperiod sensitivity. We found a premature stop codon in the second exon of ZmHd1 of Huangzao4 due to a single basepair replacement from T to A,which is not found in the same position in CML288.The translation of ZmHd1 protein had to stop ahead,and the conserved CCT domain in CO/Hd1 family was lost.So it may be an important mechanism of the change of photoperid sensitivity between tropical and temperate lines.We designed to develop a CAPS marker that depend on the difference of StuI restriction site caused by the premature stop codon to detect the photoperid sensitive gene in maize. We found the ZmHd1 gene sequence shared a high similarity with the sequence of AC189046 in Maize genome database(MaizeGDB),and it was mapped in the chromosome 9.03,near centromere.We detected a QTL in chromosome 9.03,which is benefit to photoperiod sensitivity.So it considered that ZmHd1 was a candidate gene of this QTL region.We studied the expression of ZmHd1 by Real-Time PCR, the result showed that it has the uptrend in photoperid sensitive time,and expressed higher level in long day condition than in short day condition.
     A subtracted,cDNA library was constructed by the way of suppression substractive hybridization with the mRNA of leaf and shoot apical meristem of 7~(th) leaf stage,it contained more than 3000 clones related to photoperid sensitivity.We analyzed 64 clones,results showed that 16 EST sequences were high homologous with maize sequences related to transcription factors,signal transduction,development,flowering, adversity-stressed,and so on in GenBank.31 EST sequences were homologous with other plant genes.7 EST sequences may be the new genes.
     We cloned the PL5L15 gene after SSH cDNA library construction.The complete sequence was 1410bp,a predicated 897 bp open reading frame was detected in the cloned sequence,which encoded 292 amino acids,a conserved Clp-protease domain was found between 89~(th) and 272~(nd) amino acids.It was positive 78 percent with ClpR2. The RT-PCR results showed that PL5L15 is a ClpR2-LIKE gene,related to reproductive definition in photoperiodism.
     We cloned the PL3K2 gene based on the EST from SSH cDNA library.The complete sequence was 639bp,a deduced.453-bp open reading frame was detected in the cloned sequence,which encoded 292 amino acids,a conserved Jaclin domain was found among the amino acids.The RT-PCR results shows that P L3K2 is a subfamily gene of Letins in Maize,related to resistent response in photoperiodism.
引文
[1]Adam, Z., Adamska, I., Nakabayashi, K., Ostersetzer, O., Haussuhl, K., Manuell, A., Zheng, B., Vallon, O., Rodermel, S. R., Shinozaki, K., and Clarke, A. K. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol. 2001 Apr; 125(4): 1912-8.
    [2]Adams M. Munir, V. M. Valdes, F. A. Langton , S. D. Jackson. Using Flowering Times and Leaf Numbers to Model the Phases of Photoperiod Sensitivity in Antirrhinum majus L (J). Annals of Botany,2003 ,92: 689-696.
    [3] Adams SR, Pearson S, Hadley P, Patefeld WM. The effects of temperature and light integral on the phases of photoperiod sensitivity in Petunia x hybrida (J) . Annals of Botany. 1999, 83: 263-269.
    [4]Adams SR, Pearson S, Hadley P. Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity (J). Journal of Experimental Botany, 2001, 52:655-662.
    [5]Allison, J.C.S. and T.B. Daynard. Effects of change in time of flowing, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci. 1979, 19:1-4.
    [6]An H., Roussot C., Suarez-Lopez P., Corbesier L., Vincent C, Pineiro M., Hepworth S., Mouradov A., Justin S., Turnbull C. G. N., and Coupland G. 2004. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 131: 3615-3626.
    [7]Armstead IP, Sk(?)t L, Turner LB, Sk(?)t K, Donnison IS, Humphreys MO, King IP. Identification of perennial ryegrass (Lolium perenne (L.)) and. meadow fescue (Festuca pratensis (Huds.)candidate orthologous sequences to the rice Hdl(Sel) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol. 2005 Jul; 167(1):239-47.
    [8]Ayako Yamaguchi, Yasushi Kobayashi,et al .TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT. (J) .Plant cell Physiol,2005,46: 1175-1189.
    [9]Ayre B., and Turgeon R. 2004. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol., 135: 1-8.
    [10]Badescu GO, Napier RM. Receptors for auxin: will it all end in TIRs? Trends Plant Sci. 2006 May;11(5):217-23. Epub 2006 Mar 24.
    [11]Bai SH N. Tan K H. Is the information of leaf specical in stem apical meristem morphological formation events (J) . Chinese Science Bulletin. 2001,46 (9) :788~792 (in Chinese).
    [12]Bao Fang; LI Jia_Yang. Evidence That the Auxin Signaling Pathway Interacts with Plant Stress Response. Acta Botanica Sinica, 2002, 05.
    [13]Biermann BJ, Pao LI, Feldman LJ (1994) Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates. Plant Physiol 105: 243-251.
    
    [14]Bodson M, Outlaw WH. Elevation in the Sucrose Content of the Shoot Apical Meristem of Sinapis alba at Floral Evocation.Plant Physiol. 1985 Oct;79(2):420-424. Bomblies K, Doebley JF. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes
    [15]zfll and zfl2 on traits under selection during maize domestication. Genetics. 2006 Jan; 172(1):519-31. Epub 2005 Oct 3.
    [16]Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development. 2003 Jun;130(11):2385-95.
    [17]Bonhomme R, Derieu M, Emeades GO(1994). Flowering of dives maize cultivars in relation to temperature and period in mutilocation field trials. Crop Sci 34,156-164.
    [18]Brigitte Gouesnardl, Ce'cile Rebourg,Claude Welcker and Alain Charcosset.Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution .49: 471-481, 2002.
    [19]Bunn-Moreno, M. and Campos-Neto, A. (1981) Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J. immunol, 127,427-429.
    [20]Chapman S. C., G. O. Edmeades, 1999, Selection improves drought tolerance in tropical maize populations, Crop Sci.,39:1315-1324.
    [21]Chardon F, Hourcade D, Combes V, Charcosset A. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8 (J) . Theor Appl Genet. 2005, 112(1): 1-11.
    [22]Chen Xiao, L1 S Y, Wu L CH, Wang C L, Chen Y H. Molecular mechanism of flowering time effected by photoperiod. Acta botanica boreali-occidentalia sinica , Vol.26.No.7,2006,1490-1499.
    [23]Chen Y H ,Wu L CH.Wu J Y. Study on identifying tropical .subtropical populations of maize (J) . Acta Agriculturae Universitatis Henanensis, 1999,12(4): 321-325 (in Chinese).
    [24]Chen Y H, Zhang X Q, Chang S H, Wu L C, Wu J Y.Studies on the Heredit y of the Traits Related to the Photoperiod2sensitive Phenomenon Among the Temperate × Tropical Crosse s in Maize. Scientia Agricultura Sinica, 2003 ,36 (3) :248 - 253.
    [25]ChenY H ,Wu L CH,Wu J Y. Study on identifying tropical ,subtropical populations of maize (J) . Acta Agriculturae Universitatis Henanensis, 1999,12(4): 321-325 (in Chinese).
    [26]Chong,K., Bao,S., Xu,T., Tan,K., Liang,T., Zeng,J., Huang,H., Xu,J. and Xu,Z. Functional analysis of the ver gene using antisense transgenic wheat. Physiol. Plantarum 102, 87-92 ,1998.
    [27]Chong,K., Tan,K., Huang,H. and Liang,H.Sequence analysis of vernalization-related cDNA clone from winter wheat, Acta Phytophysiologica Sinica 23, 99-102 ,1997.
    [28]Chou MX, Wei XY, Chen DS, Zhou JC. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot. 2006;57 (11): 2673-85. Epub 2006 Jul 10.
    [29]Ciceri P, Gianazza E, Lazzari B, Lippoli G, Ganga A, Hoschek G, Schmidt RJ, Viotti A (1997) Phosphorylation of Opaque 2 changes diurnally and impacts its DNA binding activity. Plant Cell 9: 97-108.
    [30]Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell. 1990 Jan;2(1):19-27.
    [31]Cockshull KE, Hand DW, Hurd RG, eds. Crop processes in controlled environments. London: Academic Press, 253-250.
    [32]Cockshull KE.1972. Photoperiodic control of flowering in the chrysanthemum. In: Rees AR
    [33]Colasanti J, Yuan Z, Sundaresan V (1998). The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93,593-603.
    [34]Colasanti J, Tremblay R, Wong AY, Coneva V, Kozaki A, and Mable BK (2006). The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7,158.
    [35]Covington M. F., Panda S., Liu X. L., Strayer C. A., Wagner D. R., and Kay S. A. 2001. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 13: 1305-1315.
    [36]Cremer F, Havelange A, Saedler H, Huijser P. 1998. Environmental control of flowering time in Antirrhinum majus. Physiologia Plantarum 104: 345-350.
    
    [37]Dai Yin CHAO, Yong Hai LUO,Min SHI,Da LUO, Hong Xuan LIN. Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Research, 2005, 10 .
    
    [38]Dalabadi, T. Oyama, M J Yanovsky, F G Harmon, P Mas, S A KAY. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (J) . Science. 2001, 293: 880-883.
    
    [39]Daniel X, Sugano S, Tobin EM, et al. CK2 phosphorylation of CCA 1 is necessary for its circadian oscillator function in Arabidopsis (J) . Proc Natl Acad Sci USA, 2004, 101(9): 3292—3297.
    
    [40]Datta N, Chen YR, Roux SJ (1985) Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem Biophys Res Commun 128:. 1403-1408.
    [41]Deng X.W., Matsici M., and Wei N. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motify and a G beta homologous domain. Cell, 1992. 71: 791.
    [42]Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30.
    [43]Dombrowski JE, Baldwin JC, Martin RC. Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol. 2007 Aug 17.
    [44]Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma- Bognar, L., Nagy, F., Millar, A.J. and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74—77.
    [45]Duan SH J,Diao X M , Zhao L Y. Electronic scanning observation of developmental morphology of inflorescence in FOXTAIL MILLET(J). Acta Bot .Boreal .-Occident.Sin. 1998, 18(3): 406—410 (in Chinese).
    [46]Ellis RH, Sumerfield RJ and Edmeades GO (1992). Photoperiod, temperature, and the intervial from sowing inititation to emergence of maize. Crop Sci 32, 1225-1232.
    [47]Fallon KM, Trewavas AJ (1994) Phosphorylation of renatured protein from etiolated wheat leaf protoplast is modulated by blue and red light. Plant Physiol Kb: 253-258.
    [48]Fallury S P , Goodman M M. Experimental evaluation of the potential of tropical germplasm for temperate maize up grading (J) . TAG, 1999, 98:54 - 61.
    [49]Fanchauser C., Yeh K. C., and Lagarias J. C. 1999. PKS1, a substrate phospharylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284: 1589, 1999.
    [50]Faure S, Higgins J, Turner A, Laurie DA. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics. 2007 May;176(1):599-609.
    [51]Francis, C.A. Photoperiod sensitivity and adaptation in maize. Proc. Annu. Corn Sorghum Res. Conf. 1972, 27:119-131.) .
    [52]Francois Parcy, Kirsten Bomblies, and Detlef Weigel. Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. (J) . Development,2002,129: 2519-252.
    [53]Francois Parcy. Flowering: a time for integration. (J) .Int. J. Dev. Biol. ,2005,49: 585-593
    [54]Gallie DR, Young TE. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics. 2004 Apr;271(3):267-81.
    [55]Garner W, Allard H A, Effect of the relative length of the day and night and other factors of the environment on growth and reproduction in plants (J) Journal of Agriculture Research, 1920 . 1920.2:553 -606.
    [56]Gottesman S, Roche E, Zhou Y, Sauer RT.The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998 May 1;12(9):1338-47.
    [57]Green RM,Tobin EM. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression(J). Proc Natl Acad Sci U S A.1999, 96(7): 4176-4179.
    [58]Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003 Apr; 131(4): 1855-67.
    [59]Grimaud R, Kessel M, Beuron F, Steven AC, Maurizi MR. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem. 1998 May 15;273(20): 12476-81.
    [60]Guo H, YANG H, MOCKLER TC, LIN C. Regulation of flowering time by Arabidopsis photoreceptors (J) . Science. 1998, 279:: 1360-1363.
    [61]Halliday K. J. Hudson M., Ni M., Qin M., and Quail P. H. 1999. poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interactiong bHLH protein. Proc. Natl. Acad. Sci. USA, 96: 5832-5837.
    [62]Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861): 42-52.
    [63]Hashim, O.H., Shuib, A.S. and Chua, C.T. (2001) The interaction of selective plant lectins with neuraminidase-treated and untreated IgA1 from the sera of IgA nephropathy patients. Immunol. Invest., 30, 21-31.
    [64]Hayamar R, Yokoi S,Tamaki S, Yano M,Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice (J) . Nature. 2003, 422(6933): 719-22.
    [65]Herman C, Thevenet D, Bouloc P, Walker GC, D'Ari R.Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 1998 May 1;12(9): 1348-55.
    [66]Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lorz H, Dresselhaus T. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol. 2001 Sep;127(1):33-45.
    [67]Hicks KA,Albertson TM,Wanger DR. EARLY FLOWERTNG3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (J) . Plant Cell. 2001, Jun 13(6): 1281-92.
    [68]Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S.ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17): 11037-42. Epub 2002 Aug 12.
    [69]Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu XQ. The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet. 1994 Jul 25;244(2):151-9.
    [70]Huq E., and Quail P. H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J., 2002. 21: 2441.
    [71]Imaizumi T., Tran H. G., Swartz T. E., Briggs W. R., Kay S. A. 2003. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426: 302-306.
    [72] Imaizumi T , Schultz TF, Harmon FG, Ho LA, Kay. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J]. Science. 2005, 309(5732): 293-297.
    [73]Izawa T, Oikawa T, Sugiyama N, el nf. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev, 2002, 16: 2006-2020.
    [74]Jacqmard A,Gadisseur I,Bernier G. Cell Division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition (J) . Ann Bot(Lond), 2003, 91(5):: 571-6.
    [75]Jarillo J. A., Capel J., Tang R. H., Yang H. Q., Alonso J. M., Ecker J. R., and Cashmore A. R. 2001. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature, 410:487-490.
    [76]Jeyaprakash, A.A., Geetha Rani, P., Banuprakash Reddy, G., Banumathi, S., Betzel, C, Sekar, K., Surolia, A., and Vijayan, M. (2002) Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes. J Mol Biol, 321, 637-645.
    [77]John Alvarez, Catherine L. Guli,et al. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. (J) .The Plant Journal, 1992,2(1): 103-116
    [78]John Klejnot and Chentao Lin. A CONSTANS Experience Brought to Light (J) . Science. 2004, 13 February, Issue 5660: 965-966.
    [79]Joseph Sambrook,David W.Russell.Molecular Cloning:A Laboratory Manual,3rd ed.Cold Spring Harbor Laboratory Press,2001.
    [80]Kelly MO, Davies PJ. Photoperiodic and Genetic Control of Carbon Partitioning in Peas and Its Relationship to Apical Senescence.Plant Physiol. 1988 Mar;86(3):978-982.
    [81]Kempin S.A., Savidge B., and Yanofsky M.F., 1995, Molecular basis of the cauliflower phenotype in Arabidopsis, Science, 267: 522-525.
    [82]Kevei E., and Nagy F. 2003. Phytochrome controlled signaling cascades in higher plant. Physiologia Plantarum, 117: 305.
    [83]Kim J. Y., Song H. R., Taylor B. L. and Carre I. A. 2003. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J., 22: 935-944.
    [84]Kimura M, Kagawa T. Phototropin and light-signaling in phototropism. Curr Opin Plant Biol. 2006 Jul 24.
    [85]Kiniry H.H. J.T. Ritchie. The photoperiod sensitive intervial in maize. Agron. J., 1983, 75 : 687-690.
    [86]Kittur FS, Lalgondar M, Yu HY, Bevan DR, Esen A. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation. J Biol Chem. 2007 Mar 9;282(10):7299-311. Epub 2007 Jan 8.
    [87]Klimczak LJ, Collinge MA, Farini D, Giuliano G, Walker JC, Cashmore AR.Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell. 1995 Jan;7(1):105-15.
    [88]Klimczak LJ, Schindler U, Cashmore AR.DNA binding activity of the Arabidopsis G-box binding factor GBF1 is stimulated by phosphorylation by casein kinase II from broccoli. Plant Cell. 1992 Jan;4(1):87-98.
    [89]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol. 2002 Oct;43(10):1096-105.
    [90]Kong,K., Tan,K.H., Huang,H.L. and Liang,H.G. Molecular cloning of a cDNA related to vernalization (ver203) in winter wheat. Science in China 38, 799-806 (1995).
    [91]Kozaki A, Hake S, Colasanti J (2004). The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32, 1710-1720.
    [92]Kreps and Simon, 1997; Somers D. E., Webb A. A. R., Pearson M., and Kay S. A. 1998b. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development, 125: 485-494.
    [93]Kreps J. A., and Simon A. E. 1997. Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis. Plant Cell, 9: 297-304; Somers et al., 1998b.
    [94]Kuroda H, Maliga P. The plastid clpP1 protease gene is essential for plant development. Nature. 2003 Sep 4;425(6953):86-9.
    [95]Lafont, V., Hivroz, C, Carayon, P., Dornand, J., and Favero, J. (1997) The lectin jacalin specifically triggers cell signaling in CD4+ T lymphocytes. Cell Immunol., 181, 23-29.
    [96]Landsteiner K, Raubitschek H. Beobachrungen uber Hamolyseund Hamagglutination (J) . Zbl Bakt IAbt Orig, 1907, 45: 600—607.
    [97]Laskowski M. Teaching resources. Model of the TIR1 pathway for auxin-mediated gene expression. Sci STKE. 2006 Feb 14;2006(322):tr1.
    [98]Lee Y, Lloyd AM, Roux SJ. Antisense expression of the CK2 alpha-subunit gene in Arabidopsis. Effects on light-regulated gene expression and plant growth. Plant Physiol. 1999 Mar; 119(3):989-1000.
    [99]Letizia CK, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D and Charcosset A ( 2006) . Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 172, 2449-2463.
    [100]Li J.G., 2003, Study on cotton reproductive organ development related genes and their expression pattern, Dissertation for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Guo S.D., and Zhang L.J.
    [101]Lis, H. and Sharon, N. (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 98, 637-674.
    [102]Liu J, Yu J, McIntosh L, Kende H, Zeevaart JA. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol. 2001 Apr;125(4):1821-30.
    [103]Liu J-L Maize Breeding,Beijing: Agricultural Publishers, 1991.
    [104]Liu X. L., Covington M. F., Fankhauser C, Chory J., and Wanger D. R. 2001b. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 13: 1293-1304.
    [105]Ma Chongjian Liu Jun Xie Conghua .Functions of Jasmonates and Defense of Stress. Journal of Huazhong Agricultural, Vol. 20,No. 6Dec. 2001 ,603—608.
    [106]Maginnes EA, Langhans RW. 1967. Photoperiod and flowering of snapdragon. New York State Flower Growers Bulletin 260: 1-3.
    [107]Majeran W, Wollman FA, Vallon O. Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b(6)f complex. Plant Cell. 2000 Jan; 12(1): 13 7-50.
    [108]Majeran, W., Olive, J., Drapier, D., Vallon, O., and Wollman, F.A. (2001). The light sensitivity of ATP synthase mutants of Chlamydomonas reinhardtii. Plant Physiol. 126, 421-433.
    [109]Makino S., A. Matsushika, M. Kojima, et al. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:: I. Characterization with APRR1-overexpressing plants (J) .Plant Cell Physiol. 2002, 43: 58-69.
    [110]Makino S., Kiba T.. Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M.. Ueguchi C., Sugiyama T., and Mizuno T. 2000. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol., 41:791-803.
    [111]Maria Jose Carmona,M MANUEL Pineiro, Conception Gomez-Mena, Robert Schaffer, Jose Miguel Martinez-Zapater, George Coupland. EARLY BOLTING IN SHORT DAYS Is Related to Chromatin Remodeling Factors and Regulates Flowering in Arabidopsis by Repressing FT[J]. Plant Cell, 2003, 5(7): 1552-1562.
    [112]yriam Calonje,et al.The FT/TFL1 gene family in grapevine. (J) . Plant Mol Boil., 2007 ,63(5): 637-650.
    [113]MARTIN J, STORGAARD M, ANDERSEN CH, NIELSEN KK. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog (J) . Plant Mol.Biol. 2004,56(2): 159-169.
    [114]MAS P, Kim W Y, Somers D E, Kay SA. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana (J) . Nature. 2003, 426: 567-70.
    [115]Mas P,Alabadid,Yanovsky MJ, Oyama T,Kay SA. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis (J) . Plant Cell. 2003, 15(1): 223-36.
    [116]Matsushika A, Makino S, Kojima M, Yamashino T, MIZUNO T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:: II. Characterization with CCA1-overexpressing plants (J) . Plant Cell Physio. 2002, 43: 118-122.
    [117]McWatters H. G., Bastow R. M., Hall A., and Millar A. J. 2000. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature, 408: 716-720.
    [118]Menzel G., Apel K., and Melzer S., 1996, Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering, Plant J., 9: 399-408.
    [119]Millar A. J., Carre I. A., Strayer C. A., Chua N. H., and Kay S. A. 1995a. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 267: 1161-1163.
    [120]Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H. R., Carre I. A., and Coupland G. 2002. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell, 2: 629-641.
    [121]Mockler, T.C., Guo, H., Yang, H., Duong, H. and Lin, C. (1999). Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126,2073-2082.6.
    [122]Morandi EN, Casano LM, Reggiardo LM.1988. Post-flowering photoperiod effect on reproductive efficiency and seed growth in soybean. Field Crops Research 18, 227-241.
    [123]Moutiq,R., Ribaut, j.ra., Edmeades G.,etal. Quantitative Trait Loci for photoperiod response in maize 2001. Maize Genetics Conference Abstracts, 2002, 43 :P 147.
    [124]Muchow, R.C. and P.S. Carberry Environmental control of phenology and leaf growth in a tropically adapted maize. Field Crop Research, 1989, 20:221-236.
    [125]Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Zl, Bruggemann E, Archibald R, Ananiev EV, and Danilevskaya ON (2006). delayed floweringl Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology 142, 1523-1536.
    [126]Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A. Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol. 1999 May;40(5):504 -14.
    [127]Nelson D. C, Lasswell J., Rogg L. E., Cohen M. A., and Bartel B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 101: 331-340 Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 2003 Oct;36(1):82-93.
    [128]Ni M, and Tepperman J. 1999. M. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 400: 781.
    [129]Olbrich M, Betz G, Gerstner E, Langebartels C, Sandermann H, Ernst D.Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.).Plant Biol (Stuttg). 2005 Nov;7(6):670-6.
    [130]Oliver J. Ratcliffe, Desmond J. Bradley and Enrico S. Coenl . Separation of shoot and floral identity in Arabidopsis. (J) .Development, 1999, 126: 1109-1120.
    [131]Oresic M , Shalloway D. Specific correlations between relative synonymous codon usage and protein secondary st ruct ure (J ) .Journal of Molecul ar Biology, 1998 ,281 : 31 -48.
    [132]Otto V, Schafer E (1988) Rapid phytochrome-controlled protein phosphorylation and dephosphorylation in Avena sativa. Plant Cell Physiol 29: 1115-1121.
    [133]Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y. Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem. 2004 Feb 6;279(6):4768-81. Epub 2003 Oct 30.
    [134]Peumans, W.J., Hause, B., and Van Damme, E.J. (2000) The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Lett, 477, 186-192.
    [135]Peumans, W.J., Van Damme, E.J., Barre, A., and Rouge, P. (2001) Classification of plant lectins in families of structurally and evolutionary related proteins. Adv. Exp. Med. Biol, 491, 27-54.
    [136]Poethig RS. Phase change and the regulation of developmental timing in plants. Science. 2003 Jul 18;301(5631):334-6.
    [137]Puiterill J. Flowering in time: genes controlling photoperiodic fowering in Arabidopsis (J) . Phil.Trans.R. Soc. 2001, Lond B 356: 1761-1767.
    [138]Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:, 847-857.
    [139]Quail P. H.2002. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol., 3: 85-93.
    [140]Ragot M., P. H. Sisco, D. A. Hoisington et al 1995, Molecular-marker-mediated characterization of favorable exotic alleles and quantitative trait loci in maize, Crop Sci.,35:1306-1315.
    [141]Ratcliffe, O. J., Amaya, I., et al. A common mechanism controls the life cycle and architecture of plants. (J) . Development, 1998,125: 1609-1615.
    [142]Raval S,Gowda SB, Singh DD, Chandra NR. A database analysis of jacalin-like lectins: sequence-structure-function relationships. Glycobiology. 2004 Dec;14(12):1247-63. Epub 2004 Aug 25.
    [143]Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol. 2005 Sep 27;3:20.
    [144]Robert, L.S., Robson, F.. Sharpe, A., Lydiate, D., and Coupland, G. (1998). Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. Biol. 37:, 763-772.
    [145]Roberts EH, Summerfield RJ, Muehlbauer FJ, Short RW.1986. Flowering in lentil (Lens culinaris Medic): the duration of the photoperiodic inductive phase as a function of accumulated daylength above the critical photoperiod. Annals of Botany 58, 235-248.
    [146]Roden, L.C., Song, H.R., Jackson, S., Morris, K. and Carre, I.A. (2002). Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 13313-13318.
    [147]Roenneberg T., and Merrow M. 2000. Circadian clocks: Omnes viae Romam ducunt. Curr. Biol., 10: R742-R745; McClung C. R. 2001. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52:139-162.
    [148]Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ.Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis..Plant Cell. 2006 Jul; 18(7): 1704-21.
    [149]Russel WK and Stuber C(1983). Effects of photoperiod and temperatures on the duration of vegetative in maize. Agron J 75, 795-802.
    [150]Ryan C A. The search for the proteinase inhibitor2inducing factor, PIIF. Plant Mol Bio,1992, 19:123-133.
    [151]Salah El-DIN El-ASSAL, CARLOS ALONSO-BLANCO, ANTON J M PEETERS, CORNELIS WAGEMAKER, JAMES L. WELLER, MAARTEN KOORNNEF. The role of cryptochrome 2 in flowering in Arabidopsis (J) . Plant Physiol,2003, 133(4): 1504-1516.
    [152]Samach A., and Coupland G. 2000. Time measurement and the control of flowering in plants. Bioessays 22: 38-47.
    [153]Sangho Jeong, Steven E. CLARK. Photoperiod Regulates Flower Meristem Development in Arabidopsis thaliana (J) . Genetics, 2005, Vol.169,: 907-915.
    [154]Sarah J. Liljegren, Cindy Gustafson-Brown, et al. Interactions among APETALA1,LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate. (J) .The Plant Cell, 1999,11: 1007-1018.
    [155] Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carre I. A., and Coupland G. 1998. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93: 1219-1229.
    [156]Schelin J, Lindmark F, Clarke AK.The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiology. 2002 Jul;148(Pt 7):2255-65.
    [157]Schfer E., and Bowler H. 2002. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO Reports, 3: 1042.
    [158]Schultz T. F., Kiyosue T., Yanovsky M., Wada M., and Kay S. A. 2001. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell, 13:2659-2670.
    [159]SETH J. DAVIS. Photoperiodism: The coincidental perception of the season (J) . Curr Biol, 2002; 12(24): 841-3.
    [160]Shanklin J, DeWitt ND, Flanagan JM.. The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell. 1995 Oct;7(10):1713-22.
    [161]Sharon N. Glycoproteins now and then: a personal account. Acta Anat (Basel). 1998a; 161 (1-4):7-17.
    [162]Sharon N. Lectins: from obscurity into the limelight. Protein Sci. 1998b Sep;7(9):2042-8. Sharon, N. and Lis, H. (1989) Lectins as cell recognition molecules. Science, 246, 227-234.
    
    [163]Shen Faful; 2; Yu Shuxun2; Xie Qingenl; HAN Xiulanl & FAN Shuli21. Identification of genes associated with cotyledon senescence in upland cotton. Chinese Science Bulletin, 2006, 09
    [164]Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T. The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol. 2001 Mar;42(3):264-73.
    [165]Simpson GG,Filipowicz W.,1996,Splicing of precursors to mRNA in higher plants:mechanism,regulation and subnuclear organization of the spliceosomal machinery. Plant Mol Biol 32:1-41.
    [166]Sk(?)t L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics. 2007 Sep;177(1):535-47.
    [167]Smale M, Jason H, Paul W H, Ben S. The contribution of genetic resources and diversity to wheat production in the Punjab of Pakistan American Journal of Agricultural Economic, 1998, 80:482-483.
    [168]Smith H , Whitelam G C. Phytochrome, a family of photoreceptors with multiple physiological roles (J) . Plant Cell Environ , 1990 , 13 : 695—707.
    [169]Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser VM, Herrmann RG, Shestakov SV.The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr Genet. 2002 Aug;41(5):291-310. Epub 2002 Jul 18.
    [170]Somers D. E., Schultz T. F., Milnamow M., and Kay S. A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 101: 319-329.
    [171]SOMERS D.E., P.F. DEVLIN ,S.A. KAY. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock (J) . Science. 1998, 282: 1488-1490.
    [172]Staiger D., Allenbach L., Salathia N., Fiechter V., Davis S. J., Millar A. J., Chory J. and Fankhauser C. 2003. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev., 17: 256-268.
    [173]Strayer C, Oyama T., Schultz T. F., Raman R., Somers D. E., Mas P., Panda S., Kreps J. A., and Kay S. A. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homo.log. Science, 289: 768-771.
    [174]Struik PC, Doorgeest M and Boonman G (1986). Environmental effects on flowering characteristics and kernel set of maize (Zea mays L.). Netherlands J of Agric Sci 34,469-484.
    [175]Suarez-Lopez P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde and G. Coupland. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (J). Nature. 2001, 410: 1116-1120.
    [176]Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM.Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):11020-5.
    [177]Sugano S, Andronis C, Ong MS, Green RM, Tobin EM.The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22): 12362-6.
    [178]Sun MM, Li LH, Xie H, Ma RC, He YK. Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens. J Biochem Mol Biol. 2007 Nov 30;40(6):986-1001.
    [179]Takada S., and Goto K. 2003. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1 . counteracts the activation of FLOWERING LOCUS T bv CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell, 15: 2856-2865.
    [180]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7922-7. Epub 2001 Jun 19.
    [181]Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007 May 18;316(5827): 1033-6.
    
    [182]Tamma, S.M., Kalyanaraman, V.S., Pahwa, S., Dominguez, P., and Modesto, R.R. (2003) The lectin jacalin induces phosphorylation of ERK and JNK in CD4+ T cells. J. Leukoc. Biol., 73, 682-688.
    
    [183]Tamma, S.M., Oyaizu, N., McCloskey, T.W., Kalyanaraman, V.S., and Pahwa, S. (1996) HIV-1 gp 120 blocks jacalin-induced proliferative response in CD4+ T cells: jacalin as a useful surrogate marker for qualitative and quantitative deficiency of CD4+ T cells in HIV-1 infection. Clin. Immunol. Immunopathol., 80, 290-297.
    [184]Tang X H, LI W A. Studies on the stage of development in rice II: effect on the stage of development in rice from several condition (J) . Crops Journal, 1965, 3 (3) : 283~287 (in Chinese).
    [185]Thpmas B, Vince-Prue D.1997. Photoperiodism in plants, 2nd edn. London: Academic Press.
    [186]Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28, 286-289.
    [187]Tian Q , Reed J W. Molecular Links Between Light and Auxin Signaling Pat hways (J) .J Plant Growth Regul, 2001 , 20 : 274—280.
    [188]Tong C-G, Kendrick RE, Roux SJ (1996) Red-light-induced appearance of phosphotyrosine-like epitopes on nuclear proteins from pea (Pisum sativum) plumules. Photochem Photobiol 64: 863-866.
    [189]Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A. and Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 303: 1003-1006.
    [190] Van Nocke S, Muszynski M. Briggs K, Amasino RM. Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Mol Biol. 2000 Sep;44(1): 107-22.
    [191]Vijayan P ,Shockey J ,AdreLevesque C , et al. A role for jasmonate in pathogen defense of A rabi dopsis . Proc Natl Acad sci ,1998 ,95 :7209~7214.
    
    [192]Vijayan, M. and Chandra, N. (1999) Lectins. Curr. Opin. Struct. Biol, 9, 707-714.
    [193]Vince-Prue D.1975. Photoperiodism in plants. London: McGraw Hill Vladutu C, McLaughlin J, Phillips RL. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics. 1999 Oct;153(2):993-1007.
    [194]Vladutu C, McLaughlin J, Phillips RL. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics. 1999 Oct;153(2):993-1007.
    [195]Wang Z. Y., Tobin E. M. 1998. Constitutive expression of the ORCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93: 1207-1217.
    [196]Watanabe T, Salai S. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound2inducible 12 aminocyclopropane212carboxylate synthase in winter squash ( Cucur2 bita maxima). Planta ,1998 , 206 :570~576.
    [197]Wei-dong Yong, Yun-yuan Xu, Wen-zhong Xu, Xin Wang, Ning Li, Jin-song Wu, Tie-bing Liang, Kang Chong, Zhi-hong Xu, Ke-hui Tan, Zhi-qing Zhu. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta. Volume 217, Number 2 / 2003 年 6 月, 0032-0935.
    [198]Williams CE, Collier CC, Nemacheck JA, Liang C, Cambron SE. A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J Chem Ecol. 2002 Jul;28(7):1411-28.
    [199]Xiang Yu Zhao, Mao Sen Liu, Jia Rui Li, Chun Mei Guan and Xian Sheng Zhang. The wheat TaGIl, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Molecular Biology (2005) 58:53-64.
    [200]Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics. 2000 Feb;154(2):885-91.
    [201]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L. Fuse T. Baba T, Yamamoto K, Umehara Y,Nagamura Y,Sasaki T.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell.2000Dec;12(12):2473-2484.
    [202]Yanovsky M J,S A Kay.Molecular basis of seasonal time measurement in Arabidopsis(J).Nature,2002,419:308-312.
    [203]Yanovsky M.J.,S.A.KAY.Living by the calendar:how plants know when to flower(J).Nature.2003,Rev.Mol.Cell Biol.4:265.
    [204]Yew Lee,Alan M.Lloyd,and Stanley J.Rouxo Antisense Expression of the CK2 α-Subunit
    [205]Gene in Arabidopsis.Effects on Light-Regulated Gene Expression and Plant Growth。Plant Physiol.(1999) 119:989-1000.
    [206]Yu EY,Kim SE,Kim J H,Ko J H,Cho MH,Chung IK(2000).Sequence 2 specific DNA recognition by the Myb2like domain of plant telomeric protein RTBP1.J Biol Chem,275:24208-24214.
    [207]Yuji Takahashi,Ayahiko Shomura,Takuji Sasaki,Masahiro Yano.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the α subunit of protein kinase CK2.Proc Natl Acad Sci U S A.2001 July 3;98(14):7922-7927.
    [208]Z.X.Zhang,W.H.Tang,F.D.Zhang,Y.L.Zheng.Fertility Restoration Mechanisms in CMS-S of Maize(Zea mays L.) Revealed through Expression Differences Identified by cDNA Microarray and Suppression Subtractive Hybridization.Sexual Plant Reproduction.
    [209]Zheng B,Halperin T,Hruskova-Heidingsfeldova O,Adam Z,Clarke AK.Characterization of Chloroplast Clp proteins in Arabidopsis:Localization,tissue specificity and stress responses.Physiol Plant.2002 Jan;114(1):92-101.
    [210]Zhong YW,Cheng J,Qu JH,Zhang LY,Guo J,Li XD,Xu DP.Screening and cloning of the down-regulation gene by recombinant interferon-B using suppression subtractive hybridization technique.Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi.2006 Sep;20(3):273-5.
    [211]Zhu Y,Chen H,Fan J,Wang Y,Li Y,Chen J,Fan J,Yang S,Hu L,Leung H,Mew TW,Teng PS,Wang Z,Mundt CC.Genetic diversity and disease control in rice.Nature.2000 Aug 17;406(6797):718-22.
    [212]蔡小钿,王金发。植物MADS盒基因的功能和调节机理。植物生理学通讯,2000,6,277。
    [213]曹宛虹;董亿;张劲松;陈受宜。水稻乙烯受体类似物基因的克隆及其表达特性。中国科学C辑,2003年02期。
    [214]常团结,朱祯。植物凝集素及其在抗虫植物基因工程中的应用,遗传 2002.7 Vol 24,No.4
    [215]陈俊,王宗阳。植物MYB类转录因子研究进展。植物生理与分子生物学学报,2002,28(2):81-88。
    [216]陈其军;王学臣;刘强。植物逆境胁迫耐受性功能基因组研究进展。生物化学与生物物理进展,2001年06期。
    [217]陈晓,陈彦惠,任永哲。植物开花转换的分子生物学研究,分子植物育种,2005,8。
    [218]陈彦惠,常胜合,吴连成.温热玉米杂交种基本营养生长期遗传的初步研究.华北农学报,2000,15(2):15-20。
    [219]陈彦惠,吴连成,吴建宇,等.两种纬度生态条件下热带、亚热带玉米群体的鉴定(J).中国农业科学,2000,33(增):40-48。
    [220]陈彦惠,吴连成,吴建宇.热带、亚热带玉米种质群体的鉴定研究.河南农业大学学报,1999,33(4):321-325。
    [221]程芳芳,玉米光周期敏感相关性状的QTL定位,河南农业大学硕士论文,2007,6。
    [222]程芳芳,王翠玲,库丽霞,吴连成,侯本军,陈彦惠。对温、热带玉米杂交后代RIL的评价及其光周期敏感性研究。玉米科学,2006,05,74-77。
    [223]番兴明.热带亚热带玉米种质的利用.新疆科技卫生出版社,云南科技出版社,2003。
    [224]冯芬芬,董海合,周旭东.CIMMYT玉米自交系与群体鉴定初报.作物杂志,1998,(增):24-27。
    [225]高鹏,玉米淹苗水诱导表达基因的克隆及功能分析,中国农业大学博士学位论文,2005。
    [226]高伟;陈晓;库丽霞;任永哲;常胜合;王铁固;陈彦惠:玉米类LFY基因的克隆及其在不同光周期条件下的表达,作物学报.2006,8。
    [227]谷本静史,石冈奈穗子。1992。花成诱导物质。植物化学调节。27(1):44-55。
    [228]郭瑞,玉米光周期敏感相关基因的QTLs定位及性状分析(D),郑州:河南农业大学硕士论文.2005:38-45
    [229]胡瑞法.黄煜,Rozelle S.遗传单一性及其对中国小麦产量的影响.中国农业科学,2002,35(12):1442-1449。
    [230]李言照,东先旺,刘光亮,陶飞。光温因子对玉米产量及产量构成因素值的影响。中 国生态农业学报,2002,6。
    [231]李智洋,李亚男,陈大清。光与IAA和NAA对拟南芥下胚轴伸长的影响。长江大学学报B(自然科学版)。2006 Vol.3 No.3 P.169-171。
    [232]刘纪麟主编.玉米育种学(M).北京,1991,农业出版社。
    [233]刘永建、张莉萍、潘光堂,荣廷昭.CIMMYT玉米种质群体主要农艺性状的遗传变异和光周期敏感性。西南农业学报,1999,12(3):30-34。
    [234]罗光佐,王永军,谢宗铭,盖钧镒,张劲松,陈受宜,大豆丝氨酸/苏氨酸激酶基因GmAAPK 受非生物胁迫调控。植物学报。2006,48(3):327-333。
    [235]马崇坚;柳俊;谢从华。茉莉酸类物质的功能与胁迫防御。华中农业大学学报,2001年06期。
    [236]孟繁静,韩玉珍,傅永福,赵德刚.植物花发育的分子生物学.北京:中国农业出版社.2000,12.86-105。
    [237]任永哲,陈彦惠,库丽霞,常胜合,高伟,陈晓。玉米光周期反应及一个相关基因的克隆,中国农业科学.2006,7。
    [238]任永哲。玉米光周期反应和类EMF基因的克隆与分析。河南农业大学硕士学位论文。2006。
    [239]荣廷昭,潘光堂,黄玉碧,等.热带玉米种质在温带的应用,作物杂志,1998,增:12-14.
    [240]师晨娟;刘勇;荆涛。植物激素抗逆性研究进展,世界林业研究,2006年05期。
    [241]孙洪波,王国英,孙振元,古润泽,赵梁军。应用抑制差减杂交法分离粗枝大叶黄杨幼苗的冷诱导表达基因。中国农业科学2005,38(1):135-139。
    [242]唐万虎;张祖新;邹锡玲;陈旋;郑用琏。玉米耐渍功能基因组分析及相关基因Sicyp51的鉴定与克隆。中国科学C辑,2005年01期。
    [243]田振东,柳俊,谢从华。利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因。遗传学报,July 2003,30(7):597-605。
    [244]汪静,荣廷昭,潘光堂,朱英国,曹墨菊。植物线粒体遗传物质与细胞质雄性不育关系的研究进展。玉米科学2006,14(6):78-82。
    [245]王彬;谢应忠。高羊茅逆境生理研究进展。农业科学研究,2007年01期。
    [246]王关林,方洪筠。植物基因过程(第二版)。科学出版社,2002,P34。
    [247]王海光,李自超。早稻IRAT109苗期水分胁迫诱导表达差减cDNA文库的构建。全国作物遗传育种学术研讨会论文集,2003,合肥。
    [248]王莉,胡瑞法,黄季煜,Rozells S.大豆遗传多样性及其经济影响研究.中国农业科学,2001,34(6):604-609。
    [249]王涛,陆应麟。抑制消减杂交技术的原理及应用。国外医学分子生物学分册,1998,Vol20,6,P271-275
    [250]吴景锋.我国玉米杂交种发展的主要历程、差距和对策.玉米科学,1995,3(1):1-5.
    [251]杨洪强;梁小娥。蛋白激酶与植物逆境信号传递途径。植物生理学通讯,2001年03期。
    [252]杨金莹,孙颖,孙爱清,伊淑莹,刘箭。番茄LeHsp110/ClpB基因的分子克隆及其对植物耐热性的影响。生物工程学报,2006年01期。
    [253]余迪求,岑川,李宝健,傅家瑞.植物系统获得的抗病性和信号转导。植物学报,Vol.41No.2 1999。
    [254]张凤路,S.Mugo.不同玉米种质对长光周期反应的初步研究.玉米科学,2001,9(4):54-56。
    [255]张和臣;尹伟伦;夏新莉。非生物逆境胁迫下植物钙信号转导的分子机制。植物学通报。2007年01期。
    [256]张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究[J].作物学报,1995,21(3):271-280;
    [257]张世煌,赵琦.CIMMYT玉米项目的种质改良研究[J].世界农业,1996,(4):17-20.
    [258]张世煌.系统引进和利用外来玉米种质.作物杂志,1995,1:7-9。
    [259]赵弘巍,宋爽,王勇,朱亮基,王宁宁.大豆叶片57kD钙依赖蛋白激酶自磷酸化性质的研究,南开大学学报(自然科学),Vol.35№4 2002。
    [260]郑军,玉米幼苗水分胁迫相关基因的克隆与分析,中国农业大学博士学位论文,2005;
    [261]种康,杨维才,王台,瞿礼嘉,蒋高明,王小菁,许亦农,陈之端,于昕。2004年中国植物科学若干领域研究进展,植物学通报,2005,(4).385-395。
    [262]朱龙付,涂礼莉,张献龙,聂以春,郭小平,夏启中。黄萎病菌诱导的海岛棉抗病反应的SSH文库构建及分析。遗传学报,May 2005,32(5):528-532。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700