用户名: 密码: 验证码:
空间推进算法及超燃冲压发动机部件优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超燃冲压发动机是以高超声速巡航导弹、高超声速飞机和未来低成本可重复使用天地往返运输系统为应用背景的。以美国为首的各航天大国,都在加紧对其研究,并取得了一些技术突破。但就世界范围来说,目前关于这种发动机的许多技术难题仍然没有完全解决,在其工作规律、流场数值模拟,以及流动通道尤其是进气道和尾喷管的气动优化设计等方面,有许多问题需要进一步深入研究。其中,传统的时间迭代CFD方法计算效率太低,是亟待解决的关键技术之一,它严重影响了发动机流场大规模数值模拟的计算效率,制约了高精度CFD技术在发动机部件及一体化设计中的广泛应用。
     围绕这一问题,论文主要开展了三方面的研究工作,即高性能(高效、低存储量和高精度)的超声速/高超声速流场计算方法SSPNS(Single-Sweep Parabolized Navier- Stokes Algorithm)的研究,多种优化方法的对比分析研究,以及超燃冲压发动机进气道和尾喷管气动优化设计研究。具体来说,论文主要开展了以下一些工作:
     详细地介绍了LU-SGS(Lower-Upper Symmetric Gauss-Seidel)隐式积分方法及其改进形式,以及其在全NS方程(Full Navier-Stokes Equations,FNS)的时间迭代求解方法中的应用。通过5个算例的计算考察了典型迎风格式,包括矢通量分裂、通量差分分裂和混合型迎风格式,以及二阶NND格式,在超声速/高超声速流动中的粘性分辨率和间断分辨率的高低。结果表明,以AUSM系列格式和LDFSS格式为代表的混合型迎风格式分辨率较高,在超声速/高超声速流动数值模拟中综合性能最优。
     讨论了抛物化NS方程(Parabolized Navier-Stokes Equations,PNS)的数学性质,对比分析了多种处理流向压力梯度的方法的优缺点。以此为基础,成功地将LU-SGS隐式时间积分方法推广到了PNS方程的流向空间积分上,发展了基于PNS方程的单次扫描空间推进算法SSPNS。在该算法中,横向无粘数值通量和粘性通量分别采用混合型迎风格式和中心格式求解。同时,对多次扫描空间推进算法FBIPNS进行了公式推导和初步算例研究。用SSPNS算法计算了5个典型流场,包括超声速平板流、15°压缩楔板流、带攻角的锥形流、双向垂直压缩角流和激波-边界层干扰平板流。前4个算例的SSPNS计算结果,与NASA UPS程序计算结果、相关文献提供的实验数据及理论分析结果,符合得很好。在对激波-边界层干扰平板流计算时,SSPNS算法没有模拟出平板上的流向分离现象;FBIPNS算法虽能准确给出分离点位置,但仍然未预测出再附点位置。进一步用SSPNS算法计算了4个高超声速进气道和2个尾喷管流场,得到的结果也与文献中相关数值解和实验结果基本一致,表明SSPNS法能够准确地模拟超燃冲发动机进气道和尾喷管内的高超声速流动。对比研究表明,SSPNS法与传统时间迭代法相比,二者计算精度相当,而SSPNS计算速度快1~2个量级,存储量至少低1个量级。
     对比分析了基于梯度的传统优化方法和GA等全局优化方法的寻优机制,指出传统方法多属确定性方法,局部搜索能力强而全局搜索能力较弱,优化结果在很大程度上依赖于所选初值;GA则属于启发式随机搜索方法,全局搜索能力强而局部搜索能力较弱。与传统方法相比,遗传算法更适合求解多目标优化问题;组合优化方案则可提高优化设计的效率。此外,论文还较详细地分析了气动优化设计中的一些主要影响因素。
     数值计算表明,文献中常采用的进气道设计方案(方案I),不能保证进气道低马赫数自起动。为此,论文给出了进气道设计方案II,从而很好地解决了进气道指定马赫数自起动问题。以进气道设计方案II为基础,将序列二次规划法(SQP)、多岛遗传算法(MIGA)、多目标遗传算法(NCGA和NSGA-II)等优化方法,与SSPNS流场计算方法相结合,在巡航点(Ma = 7.0)对二维高超声速进气道进行了单目标和多目标优化设计研究,包括总压恢复最大模型、有效动能效率最大模型和多目标优化模型等。优化设计结果表明,在有效动能效率最大模型中,由于过分强调阻力系数的作用,往往在阻力系数降低的同时,也使得进气道总压恢复和流量系数较低。较之单目标优化设计,多目标优化设计得到的进气道Pareto最优前沿,为设计者提供了关于各性能参数的更全面、更可靠的权衡信息。为了兼顾巡航点和加速爬升段的综合性能,采用多目标优化方法,对进气道进行了多点优化设计,并开展了基于等动压弹道的设计点选择问题研究。计算结果表明,若将设计点选在巡航点,则进气道爬升段的流量系数相对较低,且可变范围较小;若将设计点选在6.5左右,则进气道的综合性能较好。
     采用相同的优化方法和流场数值模拟技术,对某二维高声速尾喷管即单壁扩张喷管进行了单目标和多目标气动优化设计,分别得到了喷管的最大推力设计和关于多个目标性能的Pareto最优前沿分布情况。以这些结果为基础,分析了尾喷管推力系数、升力系数和俯仰力矩系数的主要影响因素。
As a candidate powerplant for the hypersonic flight vehicles, scramjet has been studied extensively all over the world, but there are still many technical problems remaining unsolved, such as efficient flowfield simulation tools and aerodynamic integrated design tools, etc. The traditional CFD methods, i.e. time iterative algorithms based on Full Navier-Stokes (FNS) Equations, have achieved great development and been widely used in scramjet integrated design. But it is so time-consuming that it is very difficult to integrate them into the aerodynamic optimization design process of scramjet and its components.
     A new single-sweep Parabolized Navier-Stokes algorithm (SSPNS), a highly accurate, highly efficient supersonic/hypersonic flowfield simulation method, is developed. And it is successfully used in the aerodynamic optimization design process of scramjet inlets and single expansion ramp nozzles (SERNs).
     Firstly, a time iterative FNS algorithm is presented. It is a finite volume method (FVM) based on implicit lower-upper symmetric Gauss-Seidel (LU-SGS) time integration, and several typical upwind schemes, including van Leer scheme, Roe scheme, AUSM-family schemes, LDFSS schemes, and 2-order NND schemes, etc. Five typical flows, including 1D Sod tube, colliding flow, laminar/turbulent flat plate boundary flow, shock-boundary interaction on a flat plate and hypersonic inlet flow, are investigated using this method. Results show that the hybrid upwind schemes, such as AUSM-family schemes and LDFSS schemes, have higher viscous resolution and discontinuities resolution. They are applicable to supersonic/hypersonic flowfield simulations.
     Secondly, theoretical analysis is focused on the mathematic properties about the Parabolized Navier-Stokes (PNS) Equations, especially on the treatment of streamwise pressure gradient. Then the original implicit time iterative LU-SGS method is successfully extended to integrate the PNS Equations in the streamwise space direction. And the space-marching algorithm SSPNS is formulated. Five typical flows, including supersonic flat plate flow, 15°ramp hypersonic flow, cone flows with different angles of attack, hypersonic corner flow, and shock-boundary interaction flow on a flat plate, are computed with the SSPNS codes. Numerical results of the first 3 examples agreed well with those obtained from NASA’s UPS PNS codes and experimental results by Tracy or Holden et al. The five-shock structure of the corner flow is also computed well. But the separation zone of the shock-boundary interaction flow is not captured satisfactorily. Several scramjet component flowfields, including 4 hypersonic inlet flows and 2 SERN flows, are also obtained with the SSPNS codes. Results of inlets, such as flow structures, wall pressure distributions, and friction coefficients, show good agreement with numerical results of UPS, SCRAMIN NS codes, and experimental results by NASA. SSPNS results of the 2D and 3D SERN flows also agree well with NASA’s experimental results. By comparison with the FNS flow solvers, the SSPNS codes show at least 1~2 order of magnitude speed faster and 1 order of magnitude of storage saving in the 3D side-compression hypersonic inlet flowfield simulation. All these numerical results prove that SSPNS is a highly efficient, highly accurate algorithm for steady supersonic/ hypersonic flows, especially for 3D cases.
     Thirdly, theoretical comparison analysis is carried out between traditional gradient based optimization methods and global random optimization methods, such as Genetic Algorithms (GAs), etc. It is concluded that GAs are typical random heuristic methods, and more suitable for nonlinear discontinuous optimization problems than traditional methods.
     Fourthly, a novel 2D inlet which can self-start at relay Mach number (Ma = 3.5) is designed. Then single- or multi-objective optimization designs of this 2D inlet are carried out on cruise operation point (Ma=7.0) by Sequential Quadratic Programming (SQP), Multi-Island GA (MIGA), and multi-objective GAs, including NCGA and NSGA-II. The inlet flowfields are calculated with SSPNS in these optimization design processes. Single objective optimization results show pressure recovery maximum model is better than effective kinetic energy coefficient maximum model. Multi-objective optimization results reveal the tradeoffs of pressure recovery, static pressure rise, and drag coefficients. Based on multi-objective design process, a two-point design and a design point choosing process are investigated. Results show if design point is set at cruise point, the off-design mass capture coefficients is relatively low; whereas if the design Mach number is 6.5, the 2D inlet will get good overall operation performances along the constant dynamic pressure trajectory.
     Lastly, the same optimization design methods are applied to design several 2D SERNs. The single objective optimization design result shows that the objective, thrust coefficient is improved, but the lift coefficient is too small. In the 2- and 3-objective optimization design, tradeoffs of thrust coefficient, lift coefficient and pitching moment coefficient, are obtained.
引文
[1]刘陵,刘敬华,张榛等.超音速燃烧与超音速燃烧冲压发动机[M].西安:西北工业大学出版社,1993.
    [2]马朝恺.超声速补燃的实验及数值模拟研究[D].北京:北京航空航天大学,2003.
    [3] Fry, R.S., A Century of Ramjet Propulsion Technology Evolution [J]. Journal of Propulsion and Power, 2004, 20(1): 27~58.
    [4] Bissinger, N.C. CFD Support for Scramjet Design and Testing [R]. AIAA 99-4956, 1999.
    [5] Rodriguez, C.G. CFD Analysis of the CIAM/NASA Scramjet [R]. AIAA 2002-4128, 2002.
    [6] Godriguez, C.G., Cutler, A.D. CFD Analysis of the Scholar Scramjet Model [R]. AIAA 2003-7039, 2003.
    [7] Kim, K.H., Kim, C., Rho, O.H. Method for the Accurate Computations of Hypersonic Flows I: AUSMPW+ Scheme [J]. Journal of Computational Physics, 2001, 174: 38~80.
    [8] Kim, K.H., Kim, C., Rho, O.H. Method for the Accurate Computations of Hypersonic Flow II: Shock-Aligned Grid Technique [J]. Journal of Computational Physics, 2001, 174: 81~119.
    [9] Heiser, W.H. Pratt D.T. Hypersonic Airbreathing Propulsion [M]. AIAA Education Series, 1994.
    [10]张堃元,金志光,王成鹏等.四种高超侧压式进气道的对比研究[A]. 2003年高超研讨会[C].北京,2003.
    [11]王元光,徐旭,蔡国飙.超燃冲压发动机燃烧室设计计算方法的研究[J].北京航空航天大学学报,2005,31(1): 69~73.
    [12] Curran, E.T., Murthy, S.N.B. Scramjet Propulsion [M]. Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., 2001.
    [13] Curran, E.T. Scramjet Engines: The First Forty Years [J]. Journal of Propulsion and Power, 2001, 17(6): 1138~1148.
    [14] Andrews, E.H. Scramjet Development and Testing in the United States [R]. AIAA 2001-1927, 2001.
    [15] Waltrup, P.J. Liquid Fueled Supersonic Combustion Ramjet: A Research Perspective of the Past, Present and Future [R]. AIAA 86-0158, 1986.
    [16] Waltrup, P.J., White, M.E., Zarlingo F., et al. History of U.S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development [J]. Journal of Propulsion and Power, 2002, 18(1): 14~27.
    [17] Waltrup, P.J. Liquid-Fueled Supersonic Combustion Ramjets: A Research Perspective [J]. Journal of Propulsion and Power, 1987, 3(6): 515~524.
    [18] Waltrup, P.W. et al. History of Ramjet and Scramjet Propulsion Development for U.S. Navy Missiles [J]. Johns Hopkins APL Technical Digest, 1997, 18(2): 234~243.
    [19] Waltrup, P.J., Upper Bounds on the Flight Speed of Hydrocarbon-Fueled Scramjet-Powered Vehicles [J]. Journal of Propulsion and Power, 2001, 17(6): 1199~1204.
    [20] Orton, G.F. Air-Breathing Hypersonic Research at Boeing Phantom Works [R]. AIAA 2002-5251, 2002.
    [21] Lewis, M.J. Significance of Fuel Selection for Hypersonic Vehicle Range [J]. Journal of Propulsionand Power, 2001, 17(6): 1214~1221.
    [22] Edwards, T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903~2003 [J]. Journal of Propulsion and Power, 2003, 19(6): 1089~1107.
    [23] Yang, V. Hypersonic Propulsion [R]. Report delivered at Beijing University of Aeronautics & Astronautics, Beijing, China, 2004.
    [24] Yang, V. The Evolution of Hypersonic Airbreathing Propulsion [R]. Report delivered at Beijing University of Aeronautics & Astronautics, Beijing, China, 2005.
    [25]刑继发等.世界导弹与航天发动机大全[M],北京:军事科学出版社,1999.
    [26] Billig, F.S. SCRAM: A Supersonic Combustion Ramjet Missile [R]. AIAA 93-2329, 1993.
    [27] Powerll, O.A., Edwards, J.T., Norris, R.B. et al. Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology (HyTech) Program [J]. Journal of Propulsion and Power, 2001, 17(6): 1170~1176.
    [28] McClinton, C.R., Ronald D.R. Hyper-X Program Status [R]. AIAA 2001-1910, 2001.
    [29]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科优化设计方法研究[D].长沙:国防科技大学, 2004.
    [30]戴艳丽,董露,胡斌.高超声速推进系统关键技术[A].多样化航天动力技术进展学术会议论文集(航天第三专业信息网第26届年会)[C].武夷山:中国航天科技集团公司第四研究院第四十一所,2005: 6~9.
    [31] Takayuki Kojima et al. Development Study on Axisymmetric Air Inlet ATREX Engine [R], AIAA 2001-1895, 2001.
    [32]刘喜泉,蒲建军.日本超燃冲压发动机试验技术进展[A]. 2005冲压发动机技术交流会论文集(上集)[C].吉林市:中国航天科工集团科技委,2005: 87~91.
    [33]贺武生.超燃冲压发动机研究综述[J].火箭推进,2005, 31(1): 29~32.
    [34] Bouchez, M., Falempin, F., Levine, V., et al. French-Russian Partnership on Hypersonic Wide-Range Ramjets [J]. Journal of Propulsion and Power, 2001, 17(6): 1177~1183.
    [35]乐嘉陵. CARDC高超声速技术进展与展望[A]. 2005年高超声速技术研讨会论文集[C].北京,2005年3月.
    [36]刘兴洲.高超声速吸气式飞行器技术的研究进展[A]. 2005年高超声速技术研讨会论文集[C].北京,2005年3月.
    [37]王振国.高超声速技术研究进展及发展设想[A]. 2005年高超声速技术研讨会论文集[C].北京,2005年3月.
    [38]张新宇,陈立红,范学军等.超燃冲压发动机基础研究进展与设想[A]. 2005年高超声速技术研讨会论文集[C].北京,2005年3月.
    [39] Van Vie, D.M., Ault, D.A. Internal Flowfield Characteristics of a Two-Dimensional Scramjet Inlet at Mach 10 [R]. AIAA 94-0584, 1994.
    [40] Duman, E.F, Sekar, B., Wolff, J.M. Two and Three-Dimensional Viscous Analysis of High Speed Inlets and Comparison with Experimental Data [R]. AIAA 97-3273, 1997.
    [41] Messitt, D., Nagamatsu, H., Myrabo, L. Combined Numerical and Experimental Investigation of a 2-DScramjet Inlet at Mach Numbers from 10 to 25 [R]. AIAA 95-6020, 1995.
    [42] Van Keuk, K., Ballmann, J., Schneider, A., et al. Numerical Simulation of Hypersonic Inlet Flows [R]. AIAA 98-1526, 1998.
    [43] Hasegawa, S., Knight, D. Numerical Analysis and Optimization of Two-Dimensional Hypersonic Inlets [R]. AIAA 2004-0856, 2004.
    [44] Carrie, G., Knight, D., Rashee, K., et al. Multi-Criteria Design Optimization of Two-Dimensional Supersonic Inlet [R]. AIAA 2001-1064, 2001.
    [45] Shukla, V. Automated Design Optimization for Hypersonic Inlets [J]. Submitted to Journal of Aircraft, 1996.
    [46] Carrier, G. et al. Multi-Criteria Design Optimization of Two-Dimensional Supersonic Inlet [R]. AIAA 2001-1046, 2001.
    [47] Rudd, L.V., Rankins, F., Pines, D.J. Moveable Cowl Control for Increased Hypersonic Performance [R]. AIAA 98-1575, 1998.
    [48] Blaize, M. et al. Automated Optimal Design of Two-Dimensional High Speed Missile Inlets [R]. AIAA 98-0950, 1998.
    [49] Holland, S.D. at el. Internal Shock Interactions in Propulsion/Airframe Integrated Three-Dimensional Sidewall Compression Scramjet Inlets [R]. AIAA 92-3099, 1992.
    [50] Holland, S.D. at el. Reynolds Number and Cowl Position Effects for a Generic Sidewall Compression Scramjet Inlet at Mach 10: a Computational and Experimental Investigation [R]. AIAA 92-4026, 1992.
    [51] Holland, S.D. Experimental Investigation of Generic Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 6 in Tetrafluoromethane [R]. NASA-TM-4497, 1993.
    [52] Holland, S.D. Internal Aerodynamics of a Generic Three-Dimensional Scramjet Inlet at Mach 10 [R]. NASA-TP-3476, 1995.
    [53] Holland, S.D. Mach 10 Computational Study of a Three-Dimensional Scramjet Inlet Flow Field [R]. NASA-TM-4602, 1995.
    [54] Bourdeau, C. et al. Three-Dimensional Optimization of Supersonic Inlets [R]. AIAA 99-2108, 1999.
    [55] Gaiddon, A. et al. Multi-Criteria Design Optimization of Integrated Three-Dimensional Supersonic Inlets [R]. AIAA 2001-3298, 2001.
    [56] Ye, F., Huque, Z., Butak, N. Effect of Sidewall Leading Edge Sweep Direction on Performance of a Hypersonic 3-D Inlet [R]. AIAA 2000-3600, 2000.
    [57] Chernyavsky, B. et al. 3-D Hypersonic Inlet Optimization Using a Genetic Algorithm [J]. AIAA 98-3582, 1998.
    [58] Coratekin, T. van Keuk, J., Ballmann, J. Preliminary Investigation in 2D and 3D Ramjet Inlet Design [R]. AIAA 99-2667, 1999.
    [59] Rodi, P.E. Effects of Body-Side Compression on Forward-Swept Sidewall Compression Inlets [J]. Journal of Propulsion and Power, 1995, 11(6): 1242~1249.
    [60] Towned, L.H. Domain of the Scramjet [J]. Journal of Propulsion and Power, 2001, 17(6): 1205~1213.
    [61] Smart, M.K. Design of Three-Dimensional Hypersonic Inlets with Rectangular-to-Elliptical Shape Transition [R]. AIAA 98-0960, 1998.
    [62] Smart, M.K. Experimental Testing of a Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition [R]. AIAA 99-0085, 1999.
    [63] Sabean, J. et al. Optimization of a Hypersonic Inlet with a Rectangular to Circular Transition [R]. AIAA 99-0612, 1999.
    [64] Sabean, J. et al. Optimization of a Hypersonic Streamtraced Power Law Inlet with a Rectangular to Circular Transition [R]. AIAA 99-2666, 1999.
    [65] Goldfeld, M.A., Starov, A.V., Vinogradov, V.V. Experimental Study of Scramjet Module [J]. Journal of Propulsion and Power, 2001, 17(6): 1222~1232.
    [66] Kussoy, M.I., Horstman, K.C., Horstman, C.C. Hypersonic Crossing Shock-Wave/Turbulent- Boundary-Layer Interactions [R]. AIAA Journal, 1993, 31(12): 2197~2203.
    [67] Thivet, F., Knight, D.D. Some Insights in Turbulence Modeling for Crossing-Shock- Wave/Boundary-Layer Interactions [R]. AIAA 2000-0131, 2000.
    [68] Gokhale, S.S., Kumar, V.R. Numerical Computations of Supersonic Inlet Flow [J]. International Journal of Method in Fluids, 2001, 36: 597~617.
    [69] Mahoney J. J. Inlets for Supersonic Missiles [M]. AIAA Education Series, 1990.
    [70] Cokrell, C. E. et al. Generic Hypersonic Inlet Module Analysis [R]. AIAA 91-3209, 1991.
    [71] Butuk, N. et al. Optimization of an Integrated Inlet/Ejector of an RBCC Engine Using Collaborative Optimization [R]. AIAA 98-3567, 1998.
    [72] Francesco Creta et al. Optimal Shape Design of Supersonic, Mixed-Compression, Fixed-Geometry Air Intakes for SSTO Mission Profiles [R]. AIAA 2002-4133, 2002.
    [73] Valorani, M. et al. Optimal Supersonic Intake Design for Air Collection Engines [J]. Acta Astronautica, 1999, 45(12): 729-745.
    [74] Reinartz, B. U. et al. Computation of Wall Heat Fluxes in Hypersonic Inlet Flows [R]. AIAA 2002-0506, 2002.
    [75] Bissinger, V.N. Blagoveshchensky, N.A., Gubanov, A.A., et al. Improvement of Forebody/Inlet Integration for Hypersonic Vehicle [J]. Aerospace Science and Technology, 1998, 8: 505~514.
    [76]约翰·霍普金斯大学应用物理实验所编,李存杰等译.冲压发动机技术(上册)[M].北京:国防工业出版社,1980.
    [77]约翰·霍普金斯大学应用物理实验所编,李存杰等译.冲压发动机技术(下册)[M].北京:国防工业出版社,1980.
    [78]王军旗,倪招勇,李素循等.二维超声速/高超声速进气道流场数值模拟[J].航空学报,2005, 26(2): 153~157.
    [79]金志光,张堃元.二维非常规压缩型面超声速/高超声速进气道的设计概念[J].推进技术,2004, 25(3): 226~229.
    [80]黄国平,尤延铖,梁德旺.高超声速进气道流路特性分析研究[A]. 2003年高超研讨会[C].北京,2003.
    [81]张晓嘉,梁德旺.高超声速进气道内压缩通道设计分析[A]. 2003年高超研讨会[C].北京,2003.
    [82]梁德旺,李博.某典型二元高超声速进气道内二次流分析[J].推进技术,2005, 26(2): 139~143.
    [83]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究[J].推进技术,2001, 22(6): 468~472.
    [84]罗世彬,罗文彩,丁猛等.超燃冲压发动机二维进气道多级多目标优化设计方法[J].国防科技大学学报,2004, 26(3): 1~6.
    [85]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报,2004, 19(4): 459~465.
    [86]张堃元,Meier G.E.A.二维非均匀超音速来流下最有利压缩面型面的随机选取法数值研究[J].推进技术,1994, 15(5): 9~15.
    [87]张堃元,萧旭东,徐辉.非均匀超声速二维进气道绕流研究[J].空气动力学学报, 2000, 18(1): 92~97.
    [88]王国辉,李进贤,蔡体敏.二元混压超声速进气道三维流动数值分析[J].推进技术, 2001, 22(2): 118~121.
    [89]邓隆范,李国雄,成楚之.二元混压式超声速进气道性能预估及优化设计[J].现代防御技术,2002, 30(5): 25~29.
    [90]梁德旺.二元高超声速进气道设计体系及优化[A]. 2005高超声速进气道技术交流(研讨)会论文集[C].南京,2005:6~9.
    [91]王硕等.进气道计算不起动现象若干问题讨论[A].杭州:中国工程热物理学会热机气动热力学学术会议[C],珠海:1998.
    [92]由德侠,戚磊,李宏东.三维侧压式进气道计算及试验研究[A]. 2003年高超研讨会论文集[C].北京,2003.
    [93]袁化成,梁德旺.高超声速侧压式模型进气道不起动特性研究[J].南京航空航天大学学报,2004, 36(6): 683~687.
    [94]张堃元,萧旭东,徐辉.高超侧压式进气道参数分析及试验研究[J].推进技术,1995, 16(6): 20~25.
    [95]徐惊雷,张堃元,凌文辉等.马赫数对侧压式高超音速进气道机等直隔离段三维内流场的影响的数值分析[J].航空动力学报,2002, 17(4): 489~494.
    [96]张堃元,王成鹏,杨建军等.带高超声速进气道的隔离段流动特性[J].推进技术,2002, 23(4): 311~314.
    [97]王成鹏,张堃元,杨建军.带进气道的隔离段流场实验研究与数值模拟[J].推进技术,2005, 25(1): 27~31.
    [98]王成鹏,张堃元,金志光等.非均匀超声来流矩形隔离段内流场实验[J].推进技术,2004, 25(4): 349~353.
    [99]张堃元.侧压式进气道和流场参数测量技术研究进展[A]. 2005高超声速进气道技术交流(研讨)会论文集[C].南京,2005:16~22.
    [100]金志光,张堃元.一种提高侧压式进气道流量系数的设计方法研究[A]. CCTAM 2005-001348,2005.
    [101]孙波,张堃元. Busemann进气道风洞试验及数值模拟[A]. 2005年冲压发动机技术交流会论文集(上册)[C].吉林:2005:261~264.
    [102]尤延铖,梁德旺,黄国平.内乘波式进气道内收缩基本流场[A] . 2005年冲压发动机技术交流会论文集(上册)[C].吉林:2005:276~282.
    [103]谭慧俊,郭荣伟.轴对称多模块高超声速进气道的初步设计与流场计算[A]. 2003年高超研讨会论文集[C].北京,2003.
    [104]赵慧勇,乐嘉陵.超燃冲压发动机三维进气道的数值模拟内乘波式进气道内收缩基本流场[A] . 2005年冲压发动机技术交流会论文集(上册)[C].吉林:2005:276~282.
    [105]张堃元,余少志,骆长天.乘波体预压缩性能试验研究[J].空气动力学学报,1999, 17(1): 93~97.
    [106]杨进军,张堃元,徐辉等.双模态冲压发动机高超进气道的实验研究[J].推进技术,2001, 22(6): 473~475.
    [107]朱宇,李天,李椿萱. CFD在超声速进气道设计上的应用状况[J].飞机设计,2002, 4: 11~18.
    [108]卢燕等,樊思齐,马会民等.超声速进气道与发动机的匹配[J].推进技术,2003, 24(4): 323~325.
    [109]谷良贤.整体式冲压发动机导弹总体一体化设计[D].西安:西北工业大学博士学位论文,2002.
    [110]李国雄.吸气式远程超声速防空导弹一体化外形设计的几个重大技术问题[J].现代防御技术,2002, 30(2): 29~34.
    [111]李敬,李天,武哲.进气道进口几何参数模糊优化设计[J].北京航空航天大学学报, 1999, 25(5): 543~545.
    [112]李敬,李天,武哲.进气道外形参数的多层次、多目标优化[J].飞机设计,2000, 1: 1~5.
    [113]张梦正,张忠利,葛李虎等.一体化超燃冲压发动机初步设计计算模型[J].火箭推进,2005, 31(1): 14~20.
    [114]赵桂林,胡亮,闻洁等.乘波构形和乘波飞行器研究综述[J].力学进展,2003, 33(3): 357~374.
    [115]黄国平,梁德旺.基于三维高分辨率CFD解法的气动优化设计研究[J].南京航空航天大学学报,2003, 35(6): 599~604.
    [116]黄国平,梁德旺.一种快速的有约束气动CFD优化方法[J].南京航空航天大学学报,2005, 37(2): 150~154.
    [117] Gruhn, P., Henckels, A., Kirschstein, S. Flap Contour Optimization for Highly Integrated SERN Nozzles [J]. Aerospace Science and Technology, 2000, 4: 555~565.
    [118] Gruhn, P., Henckels, A., Seiberger, G. Improvement of the SERN Nozzle Performance by Aerodynamic Flap Design [J]. Aerospace Science and Technology, 2000, 6: 395~405.
    [119] Harloff, G. J. et al. Two-Dimensional Viscous Flow Computations of Hypersonic Scramjet Nozzle Flowfields at Design and Off-Design Conditions [R]. NASA-CR- 182150, 1988.
    [120] Hiraiwa, T., Tomioka, S., Ueda, S., et al. Performance Variation of Scramjet Nozzle at Various Nozzle Pressure Ratios [J]. Journal of Propulsion and Power, 1995, 11(3): 403~ 408.
    [121] Monta, W.J. Pitot Survey of Exhaust Flow Field of a 2-D Scramjet Nozzle at Mach 6 with Air or Freon and Argon Used for Exhaust Simulation [R]. NASA-TM-4361, 1992.
    [122] Spaid, F.W., Keener, E.R. Experimental Results for a Hypersonic Nozzle/Afterbody Flow Field [R]. AIAA 92-3915, 1992.
    [123] Spaid, F.W., Keener, E.R. Hypersonic Nozzle/Afterbody CFD Code Validation Part I: Experimental Measurements [R]. AIAA 93-0607, 1993.
    [124] Ruffin, S.M., Venkatapathy, E., Lee, S.H., et al. Single Expansion Ramp Nozzle Simulations [R]. AIAA 92-0378, 1992.
    [125] Baysal, O., Eleshaky, M.E. Aerodynamic Design Optimization Using Sensitivity Analysis and Computational Fluid Dynamics [R]. AIAA 91-0471, 1991.
    [126] Baysal, O. Flow Analysis and Design Optimization Methods for Nozzle Afterbody of a Hypersonic Vehicle [R]. NASA-CR-4431, 1992.
    [127] Gronland, T.A., Cambier, J.L., Wallin, S. Nozzle/Afterbody Performance for Hypersonic Airbreathing Vehicles [R]. AIAA 97-3166, 1997.
    [128] Gilinsky, M., Blankson, I.M. Internal Designs Application for Inlet and Nozzle Aeroperformance Improvement [R]. AIAA 2000-3315, 2000.
    [129] Bae, Y.Y., Emanuel, G. Performance of an Aero-Space Plane Propulsion Nozzle [R]. AIAA 89-1878, 1989.
    [130] Waltrup, P.J., Billing, F.S., Stokbridge, R.D. A Procedure for Optimizing the Design of Scramjet Engines [R]. AIAA 78-1110, 1978.
    [131] Dash, S., Guidice, P.D. An Improved Numerical Procedure for the Parametric Optimization of Three Dimensional Scramjet Nozzles [R]. NASA ATL TR 215, 1975.
    [132] Tolle, R. A New Optimum Design Code for Hypersonic Nozzles, Utilizing Response Surface Methodology [R]. AIAA 97-0519, 1997.
    [133] Hussaini, M.M., Korte, J.J. Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure [R]. NASA-TM-110295, 1996.
    [134] Van Wei, D.M., White, M.E., Waltrup, P.J. Application of Computational Design Techniques in the Development of Scramjet Engines [R]. AIAA 87-1420, 1987.
    [135] Maingre, E., Lamugue, B., Joubert, H. CFD Optimization and Test Validation of 2D Ramjet Nozzle for Hypersonic Vehicle [R]. AIAA 94-2951, 1994.
    [136] Ebrahimi, H.B. An Efficient Two-Dimensional Engineering Design Code for Scramjet Combustor, Nozzle, and Plume Analysis [R]. AIAA 91-0416, 1991.
    [137] Ebrahimi, H.B. Parametric Investigation on the Effect of Various Phenomena on the Performance of a Scramjet Nozzle [R]. AIAA 95-6048, 1995.
    [138] Hamed, A., Yeuan, J.J., Liang, T., et al. 3-D Navier-Stokes Simulation of Turbulent Afterbody/Nozzle Flows [R]. AIAA 98-0964, 1998.
    [139] Linblad, I.A.A., Gr?nland, T.A., Cambier, J.L., et al. A Study of Hypersonic Afterbody Flowfields [R]. AIAA 97-2289, 1997.
    [140] Lee, S.H., Mitani, T. Reactive Flow in Scramjet External Nozzle [R]. AIAA 99-0616, 1999.
    [141] Bradford, J. Rapid Prediction of Afterbody Nozzle Performance in SCCREAM [R]. AIAA2002-3605, 2002.
    [142] Watanabe, S. A Scramjet Nozzle Experiment with Hypersonic External Flow [R]. AIAA 92-3289, 1992.
    [143] Bozec, A.L., Rostand, P., Rouy, F. Afterbody Testing and Comparison to CFD Simulations [R]. AIAA 98-1569, 1998.
    [144] Hu, J., Rizzi, A. Assessment of Compressibility for Modeling Turbulent Hypersonic Nozzle Flows [R]. AIAA 95-2313, 1995.
    [145] Ebrahimi, H.B. CFD Validation for Scramjet Combustor and Nozzle Flows, Part I [R]. AIAA 93-1840, 1993.
    [146] Ebrahimi, H.B. CFD Validation for Scramjet Combustor and Nozzle Flows, Part II [R]. AIAA 94-0025, 1994.
    [147] Hackett, C.M. Computational and Numerical Analysis of Hypersonic Nozzle Flows with Comparisons to Wind Tunnel Calibration Data [R]. AIAA 92-4011, 1992.
    [148] Hiraiwa, T., Tomioka, Izumikawa, M., Mitani, T., et al. Performance of a Scramjet Nozzle in Hypersonic Flight Conditions [R]. AIAA 95-2579, 1995.
    [149] Ebrahimi, H.B. Two and Three Dimensional Parabolized Navier-Stokes Code for Scramjet Combustor, Nozzle and Film Cooling Analysis [R]. AIAA 92-0391, 1992.
    [150]张堃元,张荣学,徐辉.非对称大膨胀比喷管研究[J].推进技术,2001, 22(5): 380~382.
    [151]李念,张堃元,徐惊雷.二维非对称喷管数值模拟与验证[J].航空动力学报,2004, 19(6): 802~805.
    [152]陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计[J].推进技术,2002,23(5): 433~437.
    [153]瞿章华,刘伟,曾明等.高超声速空气动力学[M].长沙:国防科技大学出版社, 2001.
    [154]梁德旺,李博,容伟.热完全气体的热力学特性及其N-S方程的求解[J].南京航空航天大学学报,2003,35(4): 424~429.
    [155] Liou, M.S. Mass Flux Schemes and Connection to Shock Instability [J]. Journal of Computational Physics, 2000, 160: 623~648.
    [156] Wileox, D.D. Progress in Hypersonic Turbulence Modeling [R]. AIAA 91-1785, 1991.
    [157]张红杰,马晖扬,董秉纲.高超声速复杂流动中湍流模式应用的评估[J].空气动力学学报, 2001, 19(2): 210~216.
    [158]张会强,陈兴隆,周力行等.湍流燃烧数值模拟研究的综述[J].力学进展,1999, 29(4): 567~575.
    [159]高智,周光炯.高雷诺数流动理论、算法和应用的若干研究进展[J].力学进展,2001, 31(3): 417~436.
    [160] Tannehill, J.C., Anderson, D.A. Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer (2nd Edition) [M]. Taylor and Francis, Washington, D.C., 1997.
    [161] Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes [J]. Journal of Computational Physics, 1981, 43(2): 352-372.
    [162] Kermani, M.J., Plett, E.G. Roe Scheme in Generalized Coordinates: Part I– Formulations [R]. AIAA 2001-0086, 2001.
    [163] Kermani, M.J., Plett, E.G. Roe Scheme in Generalized Coordinates: Part II– Application to Inviscid and Viscous Flows [R]. AIAA 2001-0087, 2001.
    [164] Kermani, M.J., Plett, E.G. Modified Entropy Correction Formula for the Roe Scheme [R]. AIAA 2001-0083, 2001.
    [165] Kim, S.S., Kim, C., Rho, O.H., et al. Cures for the Shock Instability: Development of a Shock-Stable Roe Scheme [J]. Journal of Computational Physics, 2003, 185: 342-374.
    [166] Yu-Xin Ren. A robust Shock-Capturing Scheme Based on Rotated Riemann Solvers [J]. Computers and Fluids, 2003, 32: 1379~1403.
    [167] Steger, J.L., Warming, R.F. Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods [J]. Journal of Computational Physics, 1981, 40: 263~293.
    [168] van Leer, B. Flux-Vector Splitting for the Euler Equation [J]. In Lecture Notes in Physics, 1982, 170: 507.
    [169] Ferrand, P., Aubert, S. New Mixed van Leer Flux Splitting for Transonic Viscous Flow [J]. AIAA Journal, 1995, 34(1): 190~193.
    [170] Gressier, J., Villedieu, P., Moschetta, J.M. Positivity of Flux Vector Splitting Schemes [J]. Journal of Computational Physics, 1999, 155: 199~220.
    [171] Osher, S., Solomon, F. Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws [J]. Mathematics and Computers, 1982, 38: 339~374.
    [172] Pandolfi, M., D’Ambrosioy D. Numerical Instabilities in Upwind Methods: Analysis and Cures for the“Carbuncle”Phenomenon [J]. Journal of Computational Physics, 2001, 166: 271~361.
    [173] Lin, H.C. Dissipation Additions to Flux-Difference Splitting [J]. Journal of Computational Physics, 1995, 117: 20-27.
    [174] Park, S.H., Kwon, J.H. On the Dissipation Mechanism of Godunov-type Schemes [J]. Journal of Computational Physics, 2003, 188: 524~542.
    [175] Park, S.H., Kwon, J.H. An Improved HLLE Method for Hypersonic Viscous Flows [R]. AIAA 2001-2633, 2001.
    [176] Liou, M.S., Steffen, C.J. A New Flux Splitting Scheme [J]. Journal of Computational Physics, 1993, 107: 23~39.
    [177] WADA, Y., Liou, M.S. A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities [R]. AIAA 94-0083, 1994.
    [178] Liou M-S, Progress towards and improved CFD method: AUSM+ [R], AIAA 95-1701, 1995.
    [179] Liou, M.S. A Sequel to AUSM: AUSM+ [J]. Journal of Computational Physics, 1996, 129: 346~382.
    [180] Kim, K.H., Lee, J.H., Rho, O.H. An Improvement of AUSM Schemes by Introducing the Pressure-Based Weight Functions [J]. Computers and Fluids, 1998, 27(3): 311~346.
    [181] Rossow, C.C. A Flux-Splitting Scheme for Compressible and Incompressible Flows [J]. Journalof Computational Physics, 2000, 164: 104~122.
    [182] Sanders, R., Morano, E., Druguet, M.C. Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics [J]. Journal of Computational Physics, 1998, 145: 511~537.
    [183] Amaladas, J.R., Kamath, H., Accuracy Assessment of Upwind Algorithms for Steady-State Computations [J]. Computers and Fluids, 1998, 27(8): 941~962.
    [184] Swanso, R.C., Radespiel, R., Turkel, E. On Some Numerical Dissipation Schemes [J]. Journal of Computational Physics, 1998, 147: 518~544.
    [185] Chakravarthy, S.R., Osher, S. A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws [R]. AIAA 85-0363, January 1985.
    [186]欧阳水吾,谢中强.高温非平衡空气绕流[M].北京:国防工业出版社, 2001.
    [187]秦立森.变比热激波关系式及其在高超声速进气道计算中的应用[J].航空动力学报, 2000, 15(1): 105~108.
    [188]崔济亚.变比热气动函数式及其计算的准确解和近似解[J].工程热物理学报, 1986, 7(3): 201~205.
    [189]崔济亚.变比热气动函数式的简化及正冲波解析解[J].工程热物理学报, 1990, 11(2): 123~125.
    [190] Hansen C F. Approximations for the thermodynamics and transport properties of high-temperature air [R]. NASA-TR-R-50, 1959.
    [191] Chaput, E., Dubois, F., Lemaire, D., et al. FLU3PNS: A Three-Dimensional Thin Layer and Parabolized Navier-Stokes Solver Using the MUSCL Upwind Scheme [R]. AIAA 91-0728, 1991.
    [192] Qin, N., Richards, B.E. Finite Volume 3D NS and PNS Solutions of Hypersonic Viscous Flows Around a Delta Wing using Osher’s Flux-Difference Splitting [R]. Proceeding of a Workshop on Hypersonic Flows for Re-Entry Problems, 1990, 2: 947~595.
    [193] Qin, N., Budlow, D.K., Shaw, S.T., et al. Calculation of Pitch Damping Coefficients for Projectiles [R]. AIAA 97-0405, 1997.
    [194] Shaw, S., Qin, N. A Matrix-Free Preconditioned Krylov-Subspace Method for the PNS Equations [R]. AIAA 98-0111, 1998.
    [195] Qin, N., Ludlow, D.K., Zhong, B., et al. Multigrid Acceleration of a Preconditioned GMRES Implicit PNS Solver [R]. AIAA 99-0799, 1999.
    [196] Birch, T.J., Wrisdale, I.E., Prince, S.A. CFD Predictions of Missile Flowfields [R]. AIAA 2001-4211, 2000.
    [197] Birch, T.J., Prince, S.A., Ludlow, D.K., et al. The Application of Parabolized Navier-Stokes Solver to Some Hypersonic Flow Problems [R]. AIAA 2001-1753, 2001.
    [198] Prince, S.A., Williams, M. J., Edwards, J. A. Application of a Parabolized Navier-Stokes Solver to Some Problems in Hypersonic Propulsion Aerodynamics [R]. AIAA 2001-4066, 2001.
    [199] Birch, T.J., Prince, S.A., Simpson, G.M. IMPNS: A Space-Marching Solver for Predicting the Aerodynamic Characteristics of High-Speed Missiles [R]. AIAA 2002-4512, 2002.
    [200] Birch, T.J., Cleminson, J.R. Aerodynamic Characteristics of s Square Cross- Section Missile Configuration at Supersonic Speeds [R]. AIAA 2004-5197, 2004.
    [201] Birch, J.B., Perreson, K. CFD Predictions of Square and Elliptic Cross-Section Missile Configurations at Supersonic Speeds [R]. AIAA 2004-5453, 2004.
    [202] Shanks, S.P., Srinivasan, G.R. and Nicolet, W.E. AFWAL Parabolized Navier- Stokes Code: Formulation and User’s Manual [R]. AFWAL TR-82-3034, 1982.
    [203] Kaul, U.K., Chaussee, D.S., AFWAL PNS Code: 1983 AFWAL/NASA merged Baseline Version [R]. AFWAL TR-83-3118, 1984.
    [204] Stalnaker, J.F., Nicholson, L.A., Hanline, D.S., et al. Improvements to the AFWAL PNS Code Formulation [R]. AFWAL TR-86-3076, 1986.
    [205] Schiff, L.B., Steger, J.L. Numerical Simulation of Steady Supersonic Viscous Flow [R]. AIAA 79-0130, 1979.
    [206] Chaussee, D.S., Patterson, J.L., Kutler, P., et al. A Numerical Simulation of Hypersonic Viscous Flows over Arbitrary Geometrics at High Angle of Attack [R]. AIAA 81-0050, 1980.
    [207] Mendenhall M.R.主编.战术导弹空气动力学(下):预估方法[M].北京:宇航出版社, 1999: 632-726.
    [208] Kamath, P., Mao, M., McClinton, C.R. Scramjet Combustor Analysis with the SHIP3D PNS Code [R]. AIAA 91-5090, 1991.
    [209] Kamath, P., Mao, M. Computation of Transverse Injection into a Supersonic Flow with SHIP3D PNS Code [R]. AIAA 92-5062, 1992.
    [210] Fathauer, B.W., Rogers, R.C. A Computational Investigation of Fuel Mixing in a Hypersonic Scramjet [R]. AIAA 93-2994, 1993.
    [211] Walker, M.A. SPRINTRUN: A User-Friendly Input Processor for SPRINT Code [R]. SAND 89-0625, 1990.
    [212] Barnette, D. An Investigation of Spin-Inducing Afterbody Configurations for Hypervelocity Projectiles [R]. AIAA 94-3452, 1994.
    [213] Payne, J.L., Walker, M.A. Verification of Computational Aerodynamic Predictions for Complex Hypersonic Vehicles Using the INCATM Code [R]. AIAA 95-0762, 1995.
    [214] Moschetta, J.M., Lafon, A.,Deniau, H., Numerical Investigation of Supersonic Vortical Flow about a Missile Body [J]. Journal of Spacecraft Rockets, 1995, 32(5): 765~770.
    [215] Moschetta, J.M., Grea, B.J., Saint, L.L. A Contribution to the Steady/Unsteady PNS Debate [A]. West-East High Speed Flow Field Conference [C], Marseilles, France, 2002.
    [216] Sturmayr, A.M., Moschetta, J.M., Lafon, A. Comparison of ENO and TVD Schemes for the Parabolized Navier-Stokes Equations [R]. AIAA 93-2970, 1993.
    [217] Lafon, A., Maman, P., Deniau, H., et al. A Fully Upwind Implicit PNS Solver for the Computation of 3D Supersonic Flows with Crossflow Separation [R], AIAA 94-0643, 1994.
    [218] Moschetta, J.M., Lafon, A., Deniau, H. Detailed Numerical Investigation of Supersonic Crossflow Separation [R]. AIAA 94-2382, 1994.
    [219] Deniau, H., Moschetta, J.M. Progress in the Development and Validation of Turbulence Models for the Computation of 3D Supersonic Flows with Cross- flow Separation [R]. AIAA 95-0090, 1995.
    [220] Thivet, F. Toward the aerodynamical optimization of a supersonic airplane using a genetic algorithm and a PNS solver [R]. AIAA 2002-3144, 2002.
    [221] Auneau, I., Garnero, P., Duveau, P. Design and Optimization Methods for Scramjet Inlets [R]. AIAA 95-6017, 1995.
    [222] Hugues, E., Verant, J.L. Nonequilibrium Parabolized Navier-Stokes Code with an Implicit Finite Volume Method [R]. AIAA 91-9471, 1991.
    [223] Verant, J.L., Radespiel, R., Hugues, E. Development of Three-Dimensional Real Gas Navier-Stokes and Parabolized Navier-Stokes Codes: Application to Hermes Space Shuttle [R]. AIAA 93-0675, 1993.
    [224] Brenner, G., Hachemin, J.V., Hugues, E. CFD Analysis of Hypersonic Chemically Reacting Flowfields around a Generic Shape [R]. AIAA 93-0323, 1993.
    [225] Lawrence, S.L., Tannehill, J.C., Chaussee, J.C. An Upwind Algorithm for the Parabolized Navier-Stokes Equations [R]. AIAA 86-1117, 1986.
    [226] Lawrence, S.L., Chaussee, J.C., Tannehill, J.C. Application of an Upwind Algorithm to the Three-Dimensional Parabolized Navier-Stokes Equations [R]. AIAA 87-1112, 1987.
    [227] Lawrence, S.L. Application of an Upwind Algorithm to the Parabolized Navier-Stokes Equations [D]. Iowa State University, 1987.
    [228] Prabhu, D.K., Tannehill, J.C., Marvin, J.G. A New PNS Code for Chemically Nonequilibrium Flows [J]. AIAA Journal, 1988, 26(7): 808~815.
    [229] Lawrence, S.L., Tannehill, J.C., Chaussee, J.C. Upwind Algorithm for the Parabolized Navier-Stokes Equations [J]. AIAA Journal, 1989, 27(9): 1175~ 1183.
    [230] Tannehill, J.C., Buelow, P.E., Ievalts, J.O., et al. A Three-Dimensional Upwind Parabolized Navier-Stokes Code for Real Gas Flows [R]. AIAA 89-1651, 1989.
    [231] Lawrence, S.L., Chaussee, J.C., Tannehill, J.C. Development of a Three- Dimensional Upwind Parabolized Navier-Stokes Code [J]. AIAA Journal, 1990, 28(6): 971~972.
    [232] Tannehill, J.C., Ievalts, J.O., Buelow, P.E., et al. Upwind Parabolized Navier-Stokes Code for Chemically Reacting Flows [J]. Journal of Thermophysics and Heat Transfer, 1990, 4(2): 149~ 156.
    [233] Prabhu, D.K., Tannehill, J.C., Marvin, J.G. New Parabolized Navier-Stokes Code for Three-Dimensional Chemically Reacting Flows [J]. Journal of Thermophysics and Heat Transfer, 1990, 4(3): 257~258.
    [234] Tannehill, J.C., Buelow, P.E., Ievalts, J.O., et al. Three-Dimensional Upwind Parabolized Navier-Stokes Code for Real Gas Flows [J]. Journal of Spacecraft & Rocket, 1990, 27(2): 150~ 159.
    [235] Buelow, P.E., Tannehill, J.C., Ievalts, J.O., et al. Three-Dimensional, Upwind, Parabolized Navier- Stokes Code for Chemically Reacting Flows [J]. Journal of Thermo- physics and Heat Transfer, 1991, 5(3): 274~283.
    [236] Wadawadig, G., Tannehill, J.C., Buelow, P.E., et al. A Three-Dimensional Upwind PNS Codefor Chemically Reacting Scramjet Flowfields [R]. AIAA 92-2898, 1992.
    [237] Harvery III, A.D., Acharya, S., Lawrence, S.L. Solution-Adaptive Grid Procedure for the Parabolized Navier-Stokes Equations [J]. AIAA Journal, 1992, 30(4): 953~962.
    [238] Lawrence, S.L. Application of Space-Marching Methods to Hypersonic Forebody Flow Fields [R]. AIAA 92-5030, 1992.
    [239] Green, M.J., Lawrence, S.L., Dilley, A.D., et al. Application of CFD to a Generic Hypersonic Research Study [R]. AIAA 93-0312, 1993.
    [240] Muramoto, K.K. The Prediction of Viscous Nonequilibrium Hypersonic Flows about Ablating Configurations Using an Upwind Parabolized Navier-Stokes Code [R]. AIAA 93-2998, 1993.
    [241] Wood, W. A. Thompson, R. A. Combined LAURA-UPS Hypersonic Solution Procedure [R]. NASA-TM-107682, 1993.
    [242] He, X., Rasmussen, M.L. Computational Analysis of Off-Design Waveriders [R]. AIAA 93-3488-CP, 1993.
    [243] Chattopadhyay, A., Pagaldipti, N. A Multilevel Decomposition Procedure for Efficient Design of High Speed Civil Transport [R]. AIAA 94-0097, 1994.
    [244] Wood, W.A. Combined LAURA-UPS Solution Procedure for Chemically-Reacting Flows [D]. University of Washington, 1994.
    [245] Wadawadigi, G., Tannehill, J.C., Edwards, T.A., et al. Application of a Two-Equation Turbulence Model to Supersonic Combustion Flowfields [R]. AIAA 94-0705.
    [246] Narayan, J.R., Chattopadhyay, A., Pagaldipti, N., et al. Optimization Procedure for Improved Sonic Boom and Aerodynamic Performance Using a Multiobjective Formulation Technique [R]. AIAA 95-0127, 1995.
    [247] Miller, J.H., Tannehill, J.C. Development of an Upwind PNS Code for Thermo-Chemical Nonequilibrium Flows [R]. AIAA 95-2009, 1995.
    [248] Wadawadigi, G., Tannehill, J.C., Lawrence, S.L.., et al. Three-Dimensional Computation of the Integrated Aerodynamic and Propulsive Flowfields of a Generic Hypersonic Space Plane [R]. AIAA 94-0633.
    [249] Wood, W.A. Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows [R]. AIAA 95-0158, 1995.
    [250] Pallis, J.M., Chattot, J.J., Lawrence, S.L. Parallelization of a Parabolized Navier-Stokes Solver with a Design Optimizer [R]. AIAA 96-0549, 1996.
    [251] Wood, W.A., Thompson, R.A., Eberhardt, S. Dual-Code Solution Strategy for Hypersonic Flows [J]. Journal of Spacecraft and Rockets, 1996, 33(3): 449~451.
    [252] Kato, H., Tannehill, J.C. Numerical Calculation of Viscous Flow over Hypersonic Waveriders [R]. AIAA 97-2292, 1997.
    [253] Wood, W.A., Riley, C.J., Cheatwood, F.M. Reentry-F Flowfield Solutions at 80,000 ft. [R]. NASA-TM-112856, 1997.
    [254] Miller, J.H., Tannehill, J.C., Lawrence, S.L., et al. Parabolized Navier-Stokes Code forHypersonic Flows in Thermo-Chemical Equilibrium of Nonequilibrium [J]. Computers and Fluids, 1998, 27(2): 199~215.
    [255] Miller, J.H., Tannehill, J.C., Lawrence, S.L. Computation of Supersonic Flows with Embedded Separated Region Using an Efficient PNS Algorithm [R]. AIAA 97-1942, 1997.
    [256] Miller, J.H., Tannehill, J.C., Lawrence, S.L. PNS Algorithm for Solving Supersonic Flows with Upstream Influences [R]. AIAA 98-0226, 1998.
    [257] Miller, J.H., Tannehill, J.C., Lawrence, S.L. Application of the IPNS Algorithm to Complex Two-Dimensional Geometries [R]. AIAA 99-0546, 1999.
    [258] Tannehill, J.C., Miller, J.H., Lawrence, S.L. Development of an Iterative PNS Code for Separated Flows [R]. AIAA 99-3361, 1999.
    [259] Tannehill, J.C., Miller, J.H., Lawrence, S.L. Iterative PNS Algorithms for Solving 3-D Supersonic Flows with Upstream Influences [R]. AIAA 2000-0821, 2000.
    [260] Ramesh, M.D., Tannehill, J.C., Miller, J.H. Correlations to Predict the Streamwise Influence Regions of Two-Dimensional Turbulent Shock Separated Flows [R]. AIAA 2000-0932, 2000.
    [261] Lahiri, S.K., Tannehill, J.C. Computation of Hypersonic Separated Flows over Compression Ramps Using the TIPNS Algorithm [R]. AIAA 2000-2599, 2000.
    [262] Ramesh, M.D., Tannehill, J.C. Correlations of Predict the Streamwise Influence Regions of 2-D Supersonic Turbulent Flows [R]. AIAA 2001-0884, 2001.
    [263] Kato, H., Tannehill, J.C. Computation of Hypersonic Laminar Separated Flows Using an Iterated PNS Algorithm [R]. AIAA 2001-1028, 2001.
    [264] Kato, H., Tannehill, J.C., Mahta, U.B. Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm [R]. AIAA 2002-0202, 2002.
    [265] Kato, H., Tannehill, J.C. Development of a Forward-Backward Sweeping Parabolized Navier-Stokes Algorithm [R]. AIAA 2002-0735, 2002.
    [266] Kato, H., Tannehill, J.C., Mahta, U.B. Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm [R], AIAA 2003-0326, 2003
    [267] Ramesh, M.D. Correlations to Predict Turbulent Streamwise Influence Regions and Onset of Transition in Supersonic Flows [D]. Iowa State University, 2003.
    [268] Kato, H.. A New Forward-Backward Sweeping Parabolized Navier-Stokes Algorithm with Application to Magnetohydrodynamic Flows [D]. Iowa State University, 2003.
    [269] Kato, H., Tannehill, J.C. New Forward/Backward Sweeping Parabolized Navier-Stokes Algorithm [J]. Journal of Spacecraft and Rockets, 2003, 40(2): 1~8.
    [270] Kato, H., Tannehill, J.C., Gupta, S., et al. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel [R]. AIAA 2004-0317, 2004.
    [271] Reece E. Neel, et al. Turbulence Model Validation in GASP Version 4 [R]. AIAA 2003-3740, 2003.
    [272] Erbland, P. J., et al. Numerical and Experimental Investigation of CO2 Condensate Behavior in Hypersonic Flow[R]. AIAA 2000-2379, 2000.
    [273] Bush, R.H., Power, G.D., Towne, C.E. WIND: The Production Flow Solver of the NPARC Alliance [R]. AIAA 98-0935, 1998.
    [274] White, J.A. Flux-Difference Split Parabolized Navier-Stokes Algorithm for Nonequilibrium Chemically Reacting Flows [R]. AIAA 93-0534, 1993.
    [275] Korte, J. J. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equation [R]. NASA-TP-3050, 1991.
    [276] Gielda, T., McRae D. An Accurate, Stable, Explicit, Parabolized Navier-Stokes Solver for High Speed Flow [R]. AIAA 86-1116, 1986.
    [277] Korte J. J., McRae D. Explicit Upwind Algorithm for the Parabolized Navier-Stokes Equations [R]. AIAA 88-0716, 1988.
    [278] D’Ambrosio, D., Marsilio, R., Pandolfi, M. Shock-Induced Separated Structures in Symmetric Corner Flows [R]. AIAA 95-2270, 1995.
    [279] D’Ambrosio, D., Marsilio, R. A Numerical Method for Solving the Three-Dimensional Parabolized Navier-Stokes Equations [J]. Computers & Fluids, 26(6): 587~611, 1997.
    [280] M.J.左克罗, J.D.霍夫曼.气体动力学(上册)[M].北京:国防工业出版社,1984年.
    [281] M.J.左克罗, J.D.霍夫曼.气体动力学(下册)[M].北京:国防工业出版社,1984年.
    [282]陈兵,蔡国飙.模拟真空羽流场的特征线法[J].推进技术,2002, 23(6): 500~504.
    [283]王汝权,刘学宗,焦履琼等.简化Navier-Stokes方程组及其数学性质[J].力学学报, 1980, 12(3): 226~231.
    [284]高智.简化Navier-Stokes方程组及无粘和粘性边界层联合求解[J].力学学报, 1982, 14(6): 606~611.
    [285]高智.简化Navier-Stokes方程组(SNSE)的几个精确解[J]. 1985, 17(3): 201~210.
    [286]王汝权,高智.三维简化Navier-Stokes方程的最优形式[J].空气动力学学报, 1985, 3(4): 67~72.
    [287]高智.论简化Navier-Stokes方程组(SNSE)[J].中国科学(A辑), 1987, 10: 1058~ 1070.
    [288]高智.简化Navier-Stokes方程的层次结构及其力学内涵和应用[J].中国科学(A辑), 1988, 6: 625~640.
    [289]高智.流体力学基本方程组(BEFM)的层次结构理论和简化Navier-Stokes方程组(SNSE)[J].力学学报, 1988, 20(2): 107~116.
    [290]陈国谦,陈耀松,高智.简化Navier-Stokes方程的基本形式[J].水动力学研究与进展(A辑), 1990, 5(3): 25~32.
    [291]陈国谦,陈耀松,高智.简化Navier-Stokes方程的一般理论[J].中国科学(A辑), 1990, 12: 1272~1281.
    [292]高智.粘性-无粘干扰流动(IF)理论[J].力学学报, 1990, 22(1): 9~19.
    [293]田纪伟,高智.简化Navier-Stokes(SNS)方程在二维层流边界层分离点邻域的特性[J].中国科学(A辑), 1992, 3: 282~292.
    [294]彭世.高智. N-S方程及其简化形式在圆柱绕流分离点邻域的数学性质[J].航空学报, 1995, 16(5): 587~591.
    [295]申义庆,高智,王汝权.有二次涡的激波边界层干扰流动的DPNS和NS方程计算[J].空气力学学报, 2000, 18(4): 407~412.
    [296]高智,申义庆. Navier-Stoke(NS)方程组差分计算中的物理和网格尺度效应及NS方程组的简化[J].空气动力学学报, 2001, 19(1): 1~7.
    [297]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [298]傅德薰.计算空气动力学[M].北京:宇航出版社,1994.
    [299]孙晓华,黄熙君.超音速进气道的亚音速扩压器流场的数值计算和实验研究[J].航空学报, 1987, 8(8): B378~B381.
    [300]赵志君,焦德勇.单圆弧扩压叶栅的三维不可压粘性流动的数值模拟[J].工程热物理学报, 1987, 8(1): 46~48.
    [301]焦德勇,杨弘伟.单圆弧直列扩压叶栅中三维湍流流动的数值计算[J].工程热物理学报, 1987, 8(4): 329~335.
    [302]张涵信,姚慧,高树春等.钝锥超声速粘性绕流的隐式推进求解方法研究[J].空气动力学学报, 1990, 8(3): 235~246.
    [303]沈清,高树春,张涵信.钝锥大攻角超声速分离流场的数值模拟[J].空气动力学学报, 1991, 9(1): 21~28.
    [304]叶友达,郭智权,张涵信.高超声速无粘流场的推进计算[J].空气动力学学报, 1991, 9(1): 29~36.
    [305]沈建伟,瞿章华.高超音速化学非平衡钝劈绕流数值模拟[J].航空学报, 1989, 10(1): A67~A69.
    [306]徐建中,余文胜.含流向粘性扩散与传热项的简化Navier-Stokes方程[J].工程热物理学报, 1991, 12(2): 141~149.
    [307]赵鹤书.任意横截面三维粘性管流的数值模拟[J].北京航空航天大学学报, 1987, 4: 67~73.
    [308]沈建伟,瞿章华.张量方程在三维粘性绕流计算中的应用[J].力学学报, 1992, 24(1): 102~108.
    [309]刘宇,张振鹏.三维抛物化N-S方程全隐式矢通量分裂求解[J].北京航空航天大学学报, 1998, 24(6): 629~632.
    [310]张国富,李东华.超声速和高超声速粘性绕流QPNS方程的GLS有限元解[J].南京航空航天大学学报, 1995, 27(4): 454~458.
    [311]陈伟芳,石于中,吴其芬.化学非平衡远尾迹流场的数值计算[J].国防科技大学学报, 1994, 14(2): 72~76.
    [312]陈国谦,陈懋章.平板绕流的抛物化Navier-Stokes方程分析[J].航空学报, 1994, 15(4): 399~404.
    [313] Chang, C.L., Merkle, C.L. The relation between Flux Vector Splitting and Parabolized schemes [J]. Journal of Computational Physics, 1989, 80(1): 344~361.
    [314]方宝瑞.飞机气动布局设计[M].北京:航空工业出版社,1997.
    [315] Bangert, L.H., Johnston, C.E., Schoop, M.J. CFD Application in F-22 Design [R]. AIAA 93-3055, 1993.
    [316]赖宇阳.叶片气动设计组合优化方案的算法研究和系统实现[D].北京:清华大学, 2002.
    [317]高正红.气动优化设计方法研究进展[A].中国力学学会学术大会’2005[C].北京:中国力学学会、北京工业大学, 2005.
    [318] Eyi, S., Lee, K.D. Inverse Airfoil Design Using the Navier-Stokes Equations [R]. AIAA 93-0972, 1993.
    [319] Lee, K.D., Eyi, S. Aerodynamic Design via Optimization [R]. ICAS 90-691, 1990.
    [320] Zhu, Z.W., Chan, Y.Y. A New Genetic Algorithm for Aerodynamic Design Based on Geometric Concept [R]. AIAA 98-2900, 1998.
    [321] Dulikravich, G.S. Aerodynamic Shape Design and Optimization [R]. AIAA 91-0476, 1991.
    [322] Kuruvila, G. Ta’san, S. Salas, M.D. Airfoil Optimization by the One-Shot Method [R]. AGARD 94-803, 1994.
    [323] Kuruvila, G. Ta’san, S. Salas, M.D. Airfoil Optimization by the One-Shot Method [R]. AIAA 95-0478, 1995.
    [324] Nielsen, E.J., Anderson, W.K. Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations [R]. AIAA 98-4813, 1998.
    [325] Sung, C.H., Kwon, J.H. Aerodynamic Design Optimization Using the Navier-Stokes and Adjoint Equations [R]. AIAA 2001-0266, 2001.
    [326] Hiernaux, S., Essers, J.A. Aerodynamic Optimization Using Navier-Stokes Equations and Optimal Control Theory [R]. AIAA 99-3297, 1999.
    [327] Madsen, J.I. Design Sensitivity Analysis of Navier-Stokes Flows Using Unstructured Mesh Finite Volume Method [R]. AIAA 2000-4728, 2000.
    [328]杨冰.实用最优化方法及计算机程序[M].哈尔滨:哈尔滨船舶工程学院出版社,1994.
    [329]方国尧,张中钦,余立凤等.固体火箭发动机总体优化设计[M].北京:北京航空航天大学出版社,1988.
    [330] Jameson, A., Alonso, J.J. High-Fidelity Multidisciplinary Design Using an Integrated Design Environment [R]. AFOSR Joint Contractors Meeting for Applied Analysis and Computational Mathematics Programs, Dayton, OH, 14-15 June 2004.
    [331] Jameson, A., Vassberg, J.C. Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact [R]. AIAA 2001-0538, 2001.
    [332] Jameson, A. CFD for Aerodynamic Design and Optimization: Its Evolution over the Last Three Decades [R]. AIAA 2003-3438, 2003.
    [333] Jameson, A., Sriram, Martinelli, L., et al. Aerodynamic Shape Optimization of Complete Aircraft Configurations Using Unstructured Grids [R]. AIAA 2004-0533, 2004.
    [334] Jameson, A. Efficient Aerodynamic Shape Optimization [R]. AIAA 2004-4369, 2004.
    [335] Jameson, A. The Role of CFD in Preliminary Aerospace Design [R]. FEDSM 2003-45812, 2003.
    [336]杨旭东,乔志德,朱兵.基于控制理论和NS方程的气动优化设计方法研究[J].空气动力学学报,2005, 23(1): 46~51.
    [337]王晓鹏.遗传算法及其在气动优化设计中的应用[D].西安:西北工业大学, 2000.
    [338]钟小平.优化设计软件系统及其应用研究[D].西安:西北工业大学, 2003.
    [339]武金瑛.遗传算法及其在结构优化中的应用[D].大连:大连理工大学, 2000.
    [340]陈永兵.遗传算法及其在结构工程优化中的应用研究[D].西安:西北工业大学, 2000.
    [341]苏三买.遗传算法及其在航空发动机非线性数学模型中的应用研究[D].西安:西北工业大学, 2002.
    [342]冯建军.基于遗传算法的平面叶栅优化设计[D].西安:西安理工大学, 2002.
    [343]张永栋.基于多目标遗传算法的涡旋型线形状优化设计研究[D].重庆:重庆大学, 2004.
    [344]张雅波.基于存档策略的多目标优化的遗传算法及其收敛性分析[D].长春:吉林大学, 2003.
    [345]隋洪涛.基因遗传算法及气动外形优化设计[D].南京:南京航空航天大学, 2001.
    [346]方杰.液体火箭发动机多学科优化设计[D].北京:北京航空航天大学, 2005.
    [347]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.
    [348]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999.
    [349] Cheng, F.Y., Li, D. Genetic Algorithm Development for Multiobjective Optimization Structures [J]. AIAA Journal, 1998, 36(6): 1105~1112.
    [350] Shim, M.B., Suh, M.W., Kyoungki-Do, et al. Pareto-Based Continuous Evolutionary Algorithms for Multiobjective Optimization [J]. Engineering Computations, 2002, 19(1): 22~48.
    [351] Alexandre, H.F. Dias, de Vasconcelos. Multiobjective Genetic Algorithms Applied to Solve Optimization Problems [J]. IEEE Transactions on Magnetics, 2002, 38(2): 1133~1136.
    [352] Fonseca, C.M., Fleming, P.J. An Overview of Evolutionary Algorithms in Multiobjective Optimization [J]. Evolutionary computation, 1995, 3(1): 1~16.
    [353] Srinivas, N., Deb, K. Multiobjective Function Optimization Using Non-Dominated Sorting Genetic Algorithms [J]. Evolutionary Computation, 1995, 2(3): 221~248.
    [354] Deb, K., Pratap A., Agarwal, S. et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182~197.
    [355] Zitzler, E., Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach [J]. 1999, 3(4): 257~271.
    [356] Zitzler, E. Laumanns, M., Thiele, L. SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm [R]. In technical report 103, computer engineering and communication networks lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 2001.
    [357] Lian, Y.S., Liou, M.S. Multiobjective Optimization Using Coupled Response Surface Model and Evolutionary Algorithm [R]. AIAA 2004-4323, 2004.
    [358] Goel, T. Vaidyanathan, R. Haftka, R.T., et al. Response Surface Approximation of Pareto Optimal Front in Multi-Objective Optimization [R]. AIAA 2004-4501, 2004.
    [359] Shinya, W.,Tomoyuki, H., Mitsunori, M.Neighborhood cultivation genetic algorithm for multi-objective optimization problems [A].Proceedings of the 4th Asia-Pacific Conference on SEAL[C], 2002:198~202.
    [360] Baldwin B. S., Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows [R]. AIAA 78-0257, 1978.
    [361] Cebeci S. Calculation of Compressible Turbulent Boundary Layers with Heat and Mass Transfer [R]. AIAA 70-741, 1970.
    [362] Visbal M., Knight D. Evaluation of the Baldwin-Lomax Turbulence Model for Two-Dimensional Shock Wave Boundary Layer Interactions [R]. AIAA 83-1697, 1983.
    [363]梁德旺,包宁.管内正激波/湍流附面层干扰数值模拟[J].空气动力学学报,1998, 16(2) :181~185.
    [364] Camelli F.E., L?hner R. Combining the Baldwin Lomax and Smagorinsky Turbulence Models to Calculate Flows with Separation Regions [R]. AIAA 2002-0426, 2002.
    [365]梁德旺,黄国平,赵海峰. B/L湍流模型在强压力梯度流场计算中的应用[J].南京航空航天大学学报,1999,31(1): 37~42.
    [366] Chen C.L, Chow C.Y. Computation of Viscous Transonic Flow over Porous Airfoils [R]. AIAA 87-0359, 1987.
    [367] Hung C.M, Buning P.G. Simulation of Blunt-Fin-Induced Shock-Wave and Turbulent Boundary- Layer Interaction[J]. J. Fluid Mech., 1985, 154: 163~185.
    [368]封建湖.超音速进气道流场的数值计算[J].航空计算技术, 1998, 28(1): 40~43.
    [369] Deniau H., Lafon A., Moschetta J M. Progress in the Development and Validation of Turbulence Models for the Computation of 3D Supersonic Flows with Crossflow Separation [R]. AIAA 95-0090, 1995.
    [370] Gerbsch R.A., Agarwal R.K. Computation of Hypersonic Ramjet-Inlet flowfields Using an Upwind Parabolized Navier-Stokes Code [R]. AIAA 88-2828, 1988.
    [371] Gerbsch R.A., Agarwal R.K. Solution of the Parabolized Navier-Stokes Equations Using Osher’s Upwind Scheme [R]. AIAA 90-0392, 1990.
    [372] Wadawadigi G., Tannehill J.C., Buelow P. E., et al. A Three-Dimensional Upwind PNS Code for Chemically Reacting Scramjet Flowfields [R]. AIAA 92-2898, 1992.
    [373] Krishnamurthy R., Barnwell R.W., Brown D.L., et al. A Wall Function Technique for Acceleration PNS Computations of Compressible Flows. AIAA 96-2058, 1996.
    [374]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [375] Thomas, P.D., Lombard, C.K. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids [J]. AIAA Journal, 1979, 17(10): 1030~1037.
    [376] Vinokur, M. An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws [R]. NASA-CR-177416, 1986.
    [377] Jameson, A., Schmidt, W., Turkel, E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes [R]. AIAA 81- 1259, 1981.
    [378]肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究[D].西安:西北工业大学,2003.
    [379] Briley, W.R., McDonald, H. Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method [J]. Journal of Computational Physics, 1977, 24(4): 372~397.
    [380] Beam, R.M., Warming, R.F. An Implicit Factored Scheme for the Compressible Navier-Stokes Equations [J]. AIAA Journal, 1978, 16(4): 393~401.
    [381] Briley, W.R., McDonald, H. An Overview and Generalization of Implicit Navier-Stokes Algorithms and Approximate Factorization [J]. Computers & Fluids, 2001, 30: 807~ 828.
    [382] Mottura, L., Vigevano, L., Zaccanti, M. Factorized Implicit Upwind Methods Applied to Inviscid Flows at High Mach Number [R]. AIAA 98-2822, 1998.
    [383] Jameson, A. Soon, S. Lower-Upper Implicit Scheme with Multiple Grids for the Euler Equations [J]. AIAA Journal, 1987, 25(7): 929~935.
    [384] Yoon, S., Jameson, A. Lower-Upper Symmetric Gauss-Seidel Method for the Euler and Navier-Stokes Equations [R]. AIAA 87-0600, 1987.
    [385] Yoon, S. Jameson, A. Lower-Upper Symmetric Gauss-Seidel Method for the Euler and Navier- Stokes Equations [J]. AIAA Journal, 1988, 26(9): 1025~1026.
    [386] Yoon, S., Kwak, D. Implicit Navier-Stokes Solver for Three-Dimensional Compressible Flows [J]. AIAA Journal, 1992, 30: 2653~2659.
    [387] Shuen, J.S. Upwind Differencing and LU Factorization for Chemical Non-Equilibrium Navier- Stokes Equations [J]. Journal of Computational Physics, 1992, 99: 233~250.
    [388] Shuen, J.S., and Yoon, S., Numerical Study of Chemically Reacting Flows Using a Lower-Upper Symmetric Successive Overrelaxation Scheme [J], AIAA Journal, 1989, 27(12): 1752~1760.
    [389] Sharov, D., Nakahshi, K. Reordering of 3-D Hybrid Unstructured Grids for Vectorized LU-SGS Navier-Stokes Computations [R]. AIAA 97-2102, 1997.
    [390] Sharov, D., Nakahshi, K. Low Speed Precondition and LU-SGS Scheme for 3-D Viscous Flow Computations on Unstructured Grids [R]. AIAA 98-0614, 1998.
    [391] Luo, H., Baum, J.D., Lohner, R. A Fast, Matrix-Free Implicit Method for Computing Low Mach Number Flows on Unstructured Grids [R]. AAIA 99-3315, 1999.
    [392] Luo, H., Baum, J.D., Lohner, R. A Fast, Matrix-Free Implicit Method for Computing Low Mach Number Flows on Unstructured Grids [J]. Journal of Computational Physics, 1998, 146: 664~690.
    [393] Obayashi, S. Guruswamy, G.P. Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations [J]. AIAA Journal, 1995, 33: 1134~1141.
    [394] Chen, R.F., Wang, Z.J. An Improved LU-SGS Scheme with Faster Convergence for Unstructured Grids of Arbitrary Topology [R]. AIAA 99-0935, 1999.
    [395] Yuan, X., Daijuji, H. A Specially Combined Lower-Upper Factored Implicit Scheme for Three-Dimensional Compressible Navier-Stokes Equations [J]. Computers & Fluids, 2001, 30: 339~ 363.
    [396]袁新.一种新的LU型隐式格式及其应用[J].工程热物理学报, 1996, 17(3): 291~ 295.
    [397] Jameson, A. Time Integration Methods in Computational Aerodynamics [R]. 2003 AFOSR Work Shop on Advances and Challenges in Time-Integration of PDEs, Providence, RI, August 18, 2003.
    [398] Arnone, A., et al. Integration of Navier-Stokes Equations Using Dual Time Stepping and a Multigrid Method [J]. AIAA Journal, 1995, 33: 985~990.
    [399] Rango, S.D., Zingg, D.W. Implicit Navier-Stokes Computations of Unsteady Flows Using Sub-Iteration Methods [R]. AIAA 96-2088, 1996.
    [400] Rumsey, C.L., et al. Efficiency and Accuracy of Time-Accurate Turbulent Navier-Stokes Computations [R]. AIAA 95-1835-CP, 1995.
    [401] Edwards, J.R. A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations [R]. AIAA 95-1703-CP, 1995.
    [402] Edwards, J.R. A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations [J]. Computers & Fluids, 1997, 26(6): 635~659.
    [403]张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6(2): 143~164.
    [404]郑敏,张涵信.无波动、无自由参数的耗散差分格式(NND)在喷流计算中的应用[J].空气动力学学报,1989, 7(3): 273~281.
    [405]叶友达,郭智权,高树春等.航天飞机头部无粘绕流的无波动、无自由参数格式的数值计算[J].空气动力学学报,1989, 7(3): 282~289.
    [406]邓小刚,张涵信. NND格式的推广及在粘流计算中的应用[J].空气动力学学报,1994, 12(2): 121~129.
    [407] Chakravarthy, S.R., Osher, S. A New Class of High Accuracy TVD Schemes for Hypersonic Conservation Laws [R]. AIAA 85-0363, 1985.
    [408] van Leer, B. Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to Godunov’s Method [J]. Journal of Computational Physics, 1979, 32(1): 101~ 136.
    [409] Anderson, W.K., Thomas, J.L., van Leer, B. Comparison of Finite Volume Flux Vector Splitting for the Euler Equations [J]. AIAA Journal, 1986, 24(9): 1453~1460.
    [410] Venkatakrishnan, V. On the Accuracy of Limiters and Convergence to Steady State Solutions [R]. AIAA 93-0880, 1993.
    [411] Scott, J.N., Niu, Y.Y. Comparison of Limiters in Flux-Split Algorithms for Euler Equations [R]. AIAA 93-0068, 1993.
    [412]赵兴艳,苏莫明,苗永森.通量限制器对算法性能的影响[J].力学季刊,2000, 21(2): 187~191.
    [413] Krist, S.L. CFL3D User’s Manual (Version 5.0) [R]. NASA-TM-1998-208444, 1998.
    [414]朱自强等.应用计算流体力学[M].北京:北京航空航天大学出版社,1998.
    [415]吴子牛.计算流体力学基本原理[M].北京:科学出版社, 2001.
    [416]封建湖. Navier-Stokes方程粘性项的有限体积离散方法研究[J].航空计算技术, 1995, 4: 43~49.
    [417]王保国,卞荫贵.关于三维Navier-Stokes方程的粘性项计算[J].空气动力学学报, 1994, 12(4): 375~382.
    [418]王保国,刘秋生,卞荫贵.三维湍流高速进气道内外流场的高效高分辨率解[J].空气动力学学报, 1996, 14(2): 168~178.
    [419]王保国,沈孟育.高速粘性内流的高分辨率高精度迎风型杂交格式[J].空气动力学学报, 1995, 13(4): 365~373.
    [420]赵桂萍,周新海.超声速进气道湍流流场的数值模拟[J].推进技术, 1998, 19(3): 33~38.
    [421]孙得川,李江,蔡体敏等.喷管分离流动的数值模拟[J].推进技术,1999, 20(6): 40~ 44.
    [422]封建湖.三维超音速进气道系统流场计算的区域分裂算法[J].数值计算与计算机应用,2000, 6: 127~135.
    [423] Thivet, F. The Exact Jacobian Associated with Steady PNS Equations and Its Use to Define New Numerical Schemes [A]. Sixteenth International Conference on Numerical Methods in Fluid Dynamics [C]. Arcachon, France, 1998: 320-325.
    [424] Vigneron, Y.C., Rahich, J.V., Tannehill, J.C. Calculation of Supersonic Viscous Flow over Delta Wings with Sharp Subsonic Leading Edges [R]. AIAA 78-1137, 1978.
    [425] Morrison, J.H., Korte, J.J. Implementation of Vigneron’s Streamwise Pressure Gradient Approximation in the PNS Equations [R]. AIAA 92-0189, 1992
    [426] Hkkinen, R.J., Greber, I., Trinling, L., et al. The Interaction on an Oblique Shock Wave with a Laminar Boundary Layer [R]. NASA Memorandum 2-18-59W, 1959.
    [427]陈坚强.超声速燃烧流动及漩涡运动的数值模拟[D].四川绵阳:中国空气动力研究与发展中心,1995.
    [428] Rohde, A. Eigenvalues and Eigenvectors of the Euler Equations in General Geometries [R]. AIAA 2001-2609, 2001.
    [429] Hachemin, J.V. Développement d’un Code Navier-Stokes Parabolisépour desécoulements Tridimensionnels en Déséquilibre Thermochimique [D]. Unv. Poitiers, 1994.
    [430] Thompson, D.S., Matus, R.J. Conservation Errors and Convergence Characteristics of Iterative Space-Marching Algorithms [J]. AIAA Journal, 1991, 29(2): 227~234.
    [431] Toro, E.F., Chou, C.C. A Linearized Riemann Solver for the Steady Supersonic Euler Equations [J]. International Journal for Numerical Methods in Fluids, 1993, 16: 173~186.
    [432] Toro, E.F., Chakraborty, A. The Development of a Riemann Solver for the Steady Supersonic Euler Equations [J]. Aeronautical Journal, 1994: 325~339.
    [433]姜正行,徐华舫.飞机内流空气动力学[M].北京:航空工业出版社,1989.
    [434]徐旭,陈兵,王元光.超声速/高超声速进气道性能计算及进发匹配计算[R].中国国防科技报告, 2004.
    [435] Oswatitsch, E. K., Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds (The Efficiency of Shock Diffusers), NACA TM 1140, 1947.
    [436] Waltrup, P.J., Billig, F.S. Structure of Shock Waves in Cylindrical Ducts [J]. AIAA J. 11(10), 1973:1404-1408.
    [437] Herman, H., Rick, H. Propulsion Aspects of Hypersonic Turbo-Ramjet-Engines with Special Emphasis on Nozzle/Afterbody Integration [R]. ASME Paper 91-GT-395, 1991.
    [438] Rao, G.V.R. Exhaust Nozzle Contour for Optimum Thrust [J]. Jet Propulsion, 1958, 38(6): 377~382.
    [439]徐旭,陈兵,蔡国飙.超燃冲压发动机二维尾喷管参数分析及优化设计研究[A]. 2004年航天航空高技术青年学术研讨会论文集[C],成都,2004.
    [440] Kantrowitz, A., Donaldson, C. Preliminary Investigation of Supersonic Diffuser [R]. NACAWRL-713, 1945.
    [441] Holden, M.S., Moselle, J.R. Theoretical and Experimental Studies of the Shock Wave- Boundary Layer Interaction on Compression Surface in Hypersonic Flow [R]. CALSPAN AF-2410-A-1, 1969.
    [442] Tracy, R.R. Hypersonic Flow over a Yawed Circular Cone [R]. Memorandum No.69, California Institute of Technology Graduate Aeronautical Laboratories, 1963.
    [443] Rudman, S., Rubin, S.G. Hypersonic Viscous Flow over Slender Bodies with Shape Leading Edges [J]. AIAA Journal, 1968, 6: 1883~1889.
    [444] Lubard, S.C., Helliwell, W.S. Calculation of the Flow on a Cone at High Angle of Attack [J]. AIAA Journal, 1974, 12: 965~974.
    [445] Xu Xu, Xu Dajun, Wang Yuanguang, Chen Bing and Cai Guobiao. Flow Field Numerical Simulation and Optimization Design of Scramjet [A]. ICHP-2003-17, Beijing, China, Sept. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700