电力系统低频振荡的分析和控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模的不断扩大,电力系统的动态稳定性问题越来越突出,系统互联引发的区域低频振荡问题严重威胁到互联电力系统的安全稳定运行,有必要深入研究互联系统中低频振荡的诱发机理及影响因素,进而找到有效的抑制措施。
     本文研究了理想对称多机系统中的振荡情况,研究表明系统的振荡情况可等效为一个两机系统和一个单机-无穷大系统的振荡。继而在典型的三机系统中,分析了系统结构、运行方式以及参数的改变对振荡频率的影响;在一定的参数条件下,系统的多个振荡频率可较接近。当系统电气量中某两个主导振荡模式的频率差较小且振荡幅值相当时,该电气量会出现频率较低的差频振荡,其振荡频率约为这两个振荡频率的差值;当频率差足够小时,将产生超低频振荡现象。
     本文从多方面分析比较了电力系统低频振荡的正规形法和模态级数法这两种非线性模式分析法的有效性。定义了指标EI来分析正规形法二阶参与因子的有效性,并定性比较了正规形方法和模态级数法的参与因子。为了比较低频振荡分析方法所得近似解逼近时域仿真解的程度,定义了误差指标err,并引入近似算法的有效域概念。继而从有效域和不同非线性程度下的有效性两个方面,比较了模态级数法、正规形法和线性模式分析法的有效性。在正规形法原有指标的基础上定义了一非线性指标,并以振荡模式的实际响应与线性响应的差,定性分析了系统模式的非线性程度,验证了该非线性指标的有效性。
     本文研究了阻尼低频振荡的电力系统稳定器PSS的配置问题。指出若某机组参与因子的相位在二、三象限,即使其参与因子数值较大,在该机组上配置PSS反而会恶化系统的阻尼,因此,转速参与因子相位对阻尼控制效果有较大影响。提出了配置PSS的综合参与指标,该指标同时考虑了PSS输入信号以及闭环控制两方面的影响,可兼顾系统的多种运行方式,比传统的参与因子配置法更合理更有效。
     本文进一步探讨了电力系统稳定器PSS广域反馈信号的选择问题。提出了用来选择信号的留数指标,并用实际留数的幅值和相角验证了该留数指标的有效性,该指标只需利用状态矩阵的左右特征向量,非常简便。分析了系统运行方式改变对参与因子和留数的影响,分析表明发电机转速的留数与其参与因子的变化趋势相同,这为广域反馈信号的选择提供了参考。在4机2区系统中,比较了局部信号、区域内组合信号以及区域间组合信号作为反馈信号的有效性和鲁棒性。
With the growing scale and complexity of power system, the power system dynamic stability issue became a critical problem. The inter-area low frequency oscillations caused by the interconnection of weakly coupled power systems threaten the security and stability of the interconnected power systems badly. It is an urgent task to investigate the mechanism and influencing factors of the inter-area low frequency oscillations, and design effective measures to damp the inter-area oscillations.
     When analyzing the oscillation phenomenon in certain ideal and uniform multi-machine system, it is indicated that the oscillation frequencies are equivalent to the frequencies of two separate systems, where one system is a simple system with two generators while the other is the single-machine infinite bus system. By the example of a typical 3-generator system, the influences of system structure, operating conditions and parameters on the low oscillation frequency are studied. System frequencies might be comparable under certain parameter conditions. When the frequency difference of two system oscillation modes is small and the amplitudes of these two modes in some electric variable are comparable, this electric variable will present differential frequency oscillation with relatively low frequency. Furthermore, if the frequency difference is small enough, the phenomena of ultra low frequency oscillation will result.
     The validity of two non-linear analysis methods for low frequency oscillation in power systems, i.e. normal form method and modal series method, are analyzed and compared from many aspects in this dissertation. An index El is defined to analyze the validity of the second-order participation factors of normal form method. Then the second-order participation factors of normal form method are qualitatively compared with that of modal series method. To evaluate the solution precision of different low frequency oscillation analysis methods, an error index err describing the closeness between the analysis result and the nonlinear simulation result is defined. The concept of valid region is then derived, which refers to the region in parameter space satisfying certain error index. The validity of normal form method, modal series method and linear modal method is compared through valid regions and the validity under different system stress condition. Besides, a nonlinearity index for normal form method is defined based on its original counterpart. The rationality of proposed index is proofed through comparing the real response and linear response of system modes.
     The most suitable location for power system stabilizer(PSS) to damp low frequency oscillations is investigated in this dissertation. When the phase of some generator's speed-participation factor is in the second or third quadrant, the damping can be worsened when this generator is equipped with PSS even if the generator has a large speed participation factor. So the phase of speed-participation factor has a prominent influence on the damping control. A composite participation index that takes into account both the input and control effect of PSS controllers is proposed to identify the best PSS location, which can compromise the requirements of multiple system operating conditions. Hence it is a more reasonable and effective method than the conventional participation factor method.
     The wide area feedback signal of power system stabilizer(PSS) is also discussed in this dissertation. A residue index is proposed to select the feedback signal for damping controllers and its validity is verified by the value and phase of real residues. This residue index is very convenient for it just needs the left and right eigenvectors of characteristic matrix. Through analyzing the influence of system operating condition on participation factors and residues, it is indicated that the change direction of generator speed residue is just the same as its participation factor. This gives some clues to select the wide area feedback signal for damping controller. By the example of a typical 2-area 4-generator power system, the validity and robustness of local signal, inner-area composite signals, inter-area composite signals used as feedback signal is compared.
引文
[1] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. Van Cutsem, V. Vittal. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions [J]. IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401.
    [2] P. Kundur. Power system stability and control [M]. McGraw-Hill Inc., New York, 1994.
    [3] 韩祯洋,吴国炎.电力系统分析[M].浙江杭州:浙江大学出版社,1997.
    [4] G.Rogers.Power System Oscillations[M].Kluwer Academic Publishers,USA,2000.
    [5] 王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [6] F.R. Schleif, et al. Damping for the northwest-southwest tieline oscillations-an analog study [J]. IEEE Transactions on Power Apparatus and Systems. Vol. 85, No.12, Dec. 1966.
    [7] D.K. Kosterev, C. Taylor, W.A. Mittelstadt. Model validation for the August 10, 1996 WSCC system outage [J]. IEEE Transactions on Power Systems, 1999, 14(3): 967-979.
    [8] D.K. Kosterev, W.A. Mittelstadt, M. Viles, et al. Modal validation and analysis of WSCC system oscillations following Alberta separation on August 4, 2000. Final Report by Bonneville Power Administration and BC Hydro, 2001.
    [9] 李庚银,邵俊松,周明.电力系统低频振荡及振荡解列策略研究综述[C].全国高等学校的电力系统及其自动化专业第十六届学术年会论文集,吉林省吉林市,2000.
    [10] 王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
    [11] 张晓明,庞晓燕,陈苑文,刘增煌,田芳.四川电网低频振荡及控制措施[J].中国电力,2000,33(6):35-39.
    [12] 周小兵,林常青,魏威.华中与川渝联网低频振荡仿真计算研究[J].华中电力,2004,1(17):4-7.
    [13] 汤涌,李晨光,朱方,陈葛松,蒋宜国.川电东送工程系统调试[J].电网技术,2003,27(12):14-21.
    [14] 朱方,汤涌,张东霞,张文朝.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术,2004,28(15):1-5.
    [15] 赵学强,杨增辉.华东—福建联网低频振荡问题分析[J].华东电力,2006,34(2):21-24.
    [16] F.P. de Mello. Concepts of synchronous machine stability as affected by excitation control [J]. IEEE Transactions on Power Apparatus and Systems, Vol. 88, No. 4, pp. 316-329.
    [17] M. Klein, G.J. Rogers, P. Kundur. A fundamental study of inter-area oscillations in power systems[J]. IEEE Transaction on Power Systems, 1991, 6(3): 914-921.
    [18] Graham Rogers. Power system structure and oscillations [M]. IEEE Computer Applications in Power, 1999.
    [19] J.V. Milanovic, I.A. Hiskens. Effects of load dynamics on power system damping [J]. IEEE Transactions on Power Systems, 1995, 10(2): 1022-1028.
    [20] I.A. Hiskens, J.V. Milanovic. Load modeling in studied of power system damping [J]. IEEE Transactions on Power Systems, 1995, 10(4): 1781-1788.
    [21] I.A. Hiskens, J.V. Milanovic. Locating dynamic loads which significantly influence damping [J]. IEEE Transactions on Power Systems, 1997, 12(1): 255-261.
    [22] Wen-Shiow Kao. The effect of load models on unstable low-frequency oscillation damping in taipower system experience w/wo power system stabilizers[J]. IEEE Transactions on Power Systems, 2001, 16(3): 463-472.
    [23] A.E. Sarasua, Ch. Rehtanz, E. Handschin, P. E. Mercado. Analysis of system-inherent oscillations in power systems with several load models[C]. IEEE Porto Power Tech Conference, 2001.
    [24] 孙衢,徐光虎,陈陈.负荷模型动态特性不确定性对低频振荡的影响[J].电力系统自动化,2003,27(10):11-14,66.
    [25] 余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J],中国电机工程学报,2005,25(11):6-11.
    [26] D.Y. Wong, G.J. Rogers, B. Porretta, P. Kundur. Eigenvalue analysis of very large power system[J]. IEEE Transactions on Power Systems. 1988, 3(2): 472-480.
    [27] R.J. Piwko, H.A. Othman, O.A. Alvarez, C.Y. Wu. Eigenvalue and frequency-domain analysis of the intennountain power project and the WSCC network [J]. IEEE Transactions on Power Systems, 1991, 6(1): 238-244.
    [28] E.Z. Zhou. Functional sensitivity concept and its application to power system damping analysis[J]. IEEE Transactions on Power Systems, 1994, 9(1): 518-524.
    [29] L. Rouco. Eigenvalue-based methods for analysis and control of power system oscillations [C]. IEE Colloquium on Power System Dynamics Stabilization, 1998.
    [30] H.F. Wang. On the connections among the electric torque, residue, functional sensitivity, participation and partial multi-modal decomposition[C]. UKACC international conference on Control, 1998.
    [31] C.D. Vouras, N. Krassas, B.C. Papadias. Analysis of forced oscillations in a multimachine power system[C]. International Conference on Control, 1991, Vol. 1: 443-448.
    [32] 汤涌.电力系统强迫功率振荡分析[J].电网技术,1995,19(12):6-10.
    [33] 汤涌.电力系统强迫功率振荡的基础理论[J].电网技术,2006,30(10):29-33.
    [34] 王铁强.电力系统低频振荡共振机理的研究[D].华北电力大学博士学位论文,2001.
    [35] 王铁强,贺仁睦,王卫国,徐东杰,魏立民,肖利民.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(2):21-25.
    [36] 徐东杰.互联电力系统低频振荡分析方法与控制策略研究[D].华北电力大学博士学位论文,2004.
    [37] 韩志勇,贺仁睦,徐衍会.由汽轮机脉动引发电力系统共振机理的低频振荡研究[J].中国电机工程学报,2005,25(21):14-18.
    [38] E.H. Abed, P. Varaiya. Nonlinear oscillations in power system[J]. Electric Power and Energy Systems, 1984, 6(1): 37-43.
    [39] 邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究[J].中国电机工程学报,1997,17(6):391-394,398.
    [40] 邓集祥,马景兰.电力系统中非线性奇异现象的研究[J].电力系统自动化,1999,23(22):1-4.
    [41] Juan Li, V. Venkatasubramanian. Study of Hopf bifurcations in a simple power system model[C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 3074-3079.
    [42] Frederic Howell, V. Venkatasubramanian. Transient stability assessment with unstable limit cycle approximation[J], IEEE Transactions on Power Systems, 1999, 14(2): 667-677.
    [43] Juan Li, V. Venkatasubramanian. Study of unstable limit cycles in power system models [C]. Power Engineering Society Summer Meeting, 2000, Vol. 2: 842-847.
    [44] Y. Mitani, P. Miao, K. Tauji. A numerical method to evaluate bifurcation aspects around generator stability limit[C]. IEEE International Symposium on Circuits and Systems, 2000; Geneva, Switzeriand.
    [45] Masayuki Watanabe, Yasunori Mitani, Kiichiro Tsuji. Assessment of power system global stability determined by unstable limit cycle [C]. 14th PSCC, Secilla, 2002.
    [46] Masayuki Watanabe, Yasunori Mitani, Kiichiro Tsuji. A numerical method to evaluate power system global stability determined by limit cycle [J]. IEEE Transactions on Power Systems, 2004, 19(4): 1925-1934.
    [47] V. Venkatasubramanian, Yuan Li. Computation of unstable limit cycles in large-scale power system models [C]. IEEE International Symposium on Circuits and Systems, 2006.
    [48] H.D. Chiang, C.W. Liu, P. Varaiya, et al. Chaos in a simple power system [J]. IEEE Transactions on Power Systems, 1993, 8(4): 1407-1417.
    [49] Weijun Ji, V. Venkatasubramanian. Hard-limit induced chaos in a single-machine-infinite-bus power sytem[C]. Proceedings of the 34th Conference on Decision and Control, New Orieans, LA, 1995.
    [50] 张卫东,张伟年.电力系统混沌振荡的参数分析[J].电网技术,2000,24(12):17-20.
    [51] 贾宏杰,余贻鑫.王成山.考虑励磁顶值与PSS的混沌和分岔现象[J].电力系统自动化,2001,25(1):11-14.
    [52] H.G. Kwatny, X.M. Yu. Energy analysis of load-induced flutter instability in classical modes of electric power networks[J]. IEEE Transactions on Circuits and Systems, 1989, 38: 1544-1557.
    [53] I. Dobson, J. Zhang, S. Greene, et al. Is strong modal resonance a precursor to power system oscillation[J]. IEEE Trans on Circuits and Systems Ⅰ, 2001, 48(3): 340-349.
    [54] F.P. de Mello, T.E Laskowski. Concepts of power system dynamic stability [J]. IEEE Transactions on Power Apparatus and Systems, Vol. 94, No. 3, pp. 827-833.
    [55] P. Pourbeik, M.J. Gibbard. Damping and synchronizing torque coefficients induced on generators by FACTS stabilizers in multi-machine power systems [J]. IEEE Tans., Vol. PWRS-11, No. 4, pp. 1920-1930.
    [56] F.J. Swift, H.F. Wang. The connection between modal analysis and electric torque analysis in studying the oscillation stability of multi-machine power systems [J]. Electrical Power & Energy Systems, 19(5): 321-330.
    [57] P. Kundur, D.C. Lee, H.M. Zein EI-Din. Power system stabilizers for thermal units: analytical technique and on-site validation [J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(1): 81-95.
    [58] N. Martins. Efficient eigenvalue and frequency response methods applicd to power system small-signal stability studies[J]. IEEE Tans., Vol. PWRS-1, No.1, pp. 217-226.
    [59] 樊爱车,雷宪章,刘红超,李兴源.研究大规模互联电网区域间振荡的特征值分析方法[J].电网技术.2005,29(17):35-39.
    [60] G. Angelidis, A. Semlyen. Improved methodologies for the calculation of critical eigenvalues in small signal stability, analysis[J]. IEEE Transactions on Power Systems, 1996, 11(3): 1209-1217.
    [61] L. Rouco, I.J. Perez-Arriga. Multi-area analysis of small signal stability in large electric power systems bv SMA [J]. IEEE Transactions on Power Systems, 1993, 8(3): 1257-1265.
    [62] P. Kundur, G.J. Rogers, D.Y. Wong, L. Wang, M.G. Lauby. A comprehensive computer program package for small signal stability analysis of power systems [J]. IEEE Transactions on Power Systems, 1990, 5(4): 1076-1083.
    [63] P.W. Sauer, C. Rajagopalan, M.A. Pal. An explanation and generalization of the AESOPS and PEALS algorithms [J]. IEEE Transactions on Power Systems, 1991, 6(1): 293-299.
    [64] D.J. Stadnicki, J.V. Ness. Invariant subspace method for eigenvalue computation [J]. IEEE Tansaction on Power Systems, 1993, 8(2): 572-580.
    [65] L. Wang, A. Semlyen. Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems [J]. IEEE Transactions on Power Systems, 1990, 5(4): 635-642.
    [66] S. Duff, J.A. Scott. Computing selected eigenvalues of sparse unsymmetric matrices using subspace iteration. ACM Transaction on Mathematrical Software, 1993, 19(2): 137-159.
    [67] J.A. Scott. An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices. ACM Transaction on Mathematrical Software, 1995, 21(4): 432-475. s
    [68] 杜正春,刘伟,方万良,夏道止.基于JACOBI-DAVIDSON方法的小干扰稳定性分析中关键特征值计算[J].中国电机工程学报,2005,25(14):19-24.
    [69] N. Martins, L. Lima, H. Pinto. Computing dominant poles of power system transfer funtions [J]. IEEE Transactions on Power Systems, 1996, 11(1): 162-170.
    [70] N. Martins. The dominant pole spectrum eigensolver[J]. IEEE Transactions on Power Systems, 1997, 12(1): 245-254.
    [71] P. Korba, M. Larsson, C. Rehtanz. Detection of oscillations in power systems using Kalman filtering techniques [J]. IEEE Conference on Control Applications, 2003, vol. 1: 183-188
    [72] 张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析[J].电力系统自动化,2004,28(16):32-35.
    [73] J.F. Hauer, C.J. Demeure, L.L. Scharf. Initial results in Prony analysis of power system response signals [J]. IEEE Transactions on Power systems, 1990, 5(1): 80-89.
    [74] J.F. Hauer. Application of Prony analysis to the determination of modal content and equivalent models for measured power system response [J]. IEEE Transactions on Power systems, 1991, 6(3): 1062-1068.
    [75] C. E. Crund, J.J. Paserba, J.F. Hauer, S. Nilsson. Comparison of Prony and eigenanalysis for power system control design [J]. IEEE Transactions on Power System, 1993, 8(3): 964-971.
    [76] Johnson M. A., Zarafonitis I.P., Calligaris M.. Prony analysis and power system stability-some recent theoretical and applications research [C]. Power Engineering Society Summer Meeting, 2000, Vol. 3: 1918-1923.
    [77] D.J. Trudnowski, J.M. Johnson, J.F. Hauer. SIMO system identification from measured ringdowns[C]. Proceedings of the American Control Conference, Philadelphia. Pennsylvania, Jun. 1998.
    [78] D.J. Trudnowski. J.M. Johnson, J.F. Hauer. Making Prony analysis more accurate using multiple signals[J]. IEEE Transactions on Power systems, 1999. 14(1): 226-231.
    [79] D.A. Pierre, D.J. Trudnowski, M.K. Donnelly. Initial results in electromechanical mode identification from ambient data [J]. IEEE transactions on Power System, 1997, 12(3): 1245-1252.
    [80] 李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法[J].电力系统自动化,2007,31(1):14-19.
    [81] 王铁强,贺仁睦,徐东杰.王昕伟.Prony算法分析低频振荡的有效性研究[J].中国电力,2001,11(34):38-41.
    [82] 肖晋宁,谢小荣,胡志祥,韩英铎.电力系统低频振荡在线辨识的改进Prony算法[J].清华大学学报(自然科学版),2004,44(7):883-887.
    [83] 鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡[J].中国电机工程学报,2005,25(22):56-60.
    [84] D.J. Trudnowski, J.R. Smith, T.A. Short, D.A. Pierre. An application of Prony methods in PSS design for Multimachine systems [J]. IEEE Transactions on Power Systems, 1991, 6(1): 118-126.
    [85] D.A. Pierre, D.J. Trudnowski, J.F. Hauer. Identifying linear reduced-order models for systems with arbitary initial conditions using Prony signal analysis [J]. IEEE Transactions on Automatic Control, 1992, 37(6): 831-835.
    [86] J.R. Smith, F. Fatehi, C.S. Woods, J.F. Hauer, D.J. Trudnowski. Transfer function identification in power system applications [J]. IEEE Transactions on Power Systems, 1993, 8(3): 1282-1290.
    [87] M. Amono, M. Watanabe, M. Banjo. Self-testing and self-tuning of power system stabilizers using Prony analysis [C]. IEEE Power Engineering Society Winter Meeting, 1999, Vol. 1: 655-660.
    [88] 卢晶晶,郭剑,田芳,吴中习.基于Prony方法的电力系统振荡模式分析及PSS参数设计[J].电网技术,2004,28(15):31-34.
    [89] 管秀鹏,程林,孙元章,张剑云,吴琛,李文云.基于Prony方法的大型互联电网PSS参数优化设计[J].电力系统自动化,2006,30(12):7-11.
    [90] 李建伟,许宝杰,韩秋实.非平稳振动信号分析中Hilbert-Huang变换的对比研究[J].机械强度,2006,28(2):165-169.
    [91] S. Liu, A.R. Messina, V. Vittal. Characterization of nonlinear modal interaction using Hilbert analysis and normal form theory[C]. IEEE Power Engineering Society General Meeting, New York, 2004, Vol. 2: 1113-1118.
    [92] J.J. Sanchez Gasca, V. Vittal, M.J. Gibbard, D.J. Vowles, S. Liu, U.D. Annakage. Analysis of higher order terms for small signal stability analysis [C], IEEE Power Engineering Society General Meeting, San Francisco, 2005, Vol. 2: 1745-1753.
    [93] A.R. Messina, V. Vittal. Nonlinear, non-stationary analysis of interarea oscillations via Hilbert Spectral analysis [J]. IEEE Transactions on Power Systems, 2006, 21(3): 1234-1241.
    [94] 李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报,2006,26(14):24-30.
    [95] V. Vittal, N. Bhatia, A.A. Fouad. Analysis of the inter-area mode phenomena in power systems following large disturbances [J]. IEEE Trans on Power Systems, 1991, 6(4): 1515-1521.
    [96] 李伟固,正规形理论及其应用[M].北京:科学出版社,2000.
    [97] J.J. Sancbez-Gasca, V. Vittal, M.J. Gibbard, et al. Inclusion of higher order terms for small-signal (modal) analysis: committee report-task force on assessing the need to include higher order terms for small-signal (modal)analysis [J]. IEEE Trans on Power Systems, 2005, 20(4): 1886-1904.
    [98] J. Thapar, V. Vittal, W. Kliemann. et al. Application of the normal form of vector fields to predict interarea separation in power systems [J]. IEEE Trans. on Power Systems, 1997, 12(2): 844-850.
    [99] I. Dobson, E. Barocio. Scaling of normal form analysis coefficients under coordinate change [J]. IEEE Trans on Power Systems, 2004, 19(3): 1438-1444.
    [100] L. Chih-Ming, V. Vittal, W. Kliemann, et al. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields [J]. IEEE Trans on Power Systems, 1996, 11(2): 781-787.
    [101] G. Jang, V. Vittal, W. Kliemann. Effect of nonlinear modal interaction on control performance: Using normal forms technique in control design, Part 1: General theory and procedure [J]. IEEE Trans on Power Systems, 1998, 13(2): 401-407.
    [102] G. Jang, V. Vittal, W. Kliemann. Effect of nonlinear modal interaction on control performance: Using normal forms technique in control design, Part 2: Case studies [J]. IEEE Trans. on Power Systems, 1998, 13(2): 408-413.
    [103] E. Barocio, A.R. Messina. Normal form analysis of stressed power systems: incorporation of SVC models [J]. Electrical Power and Energy Systems, 2003, Vol. 25: 79-90.
    [104] Z.Y. Zou, Q.Y. Jiang, Y.J. Cao, et al. Application of the normal forms to analyze the interactions among the multi-control channels of UPFC [J]. Electric Power and Energy Systems, 2005, 27(8): 584-593.
    [105] 邓集祥,华瑶,韩雪飞.大干扰稳定中低频振荡模式的作用研究[J].中国电机工程学报,2003,23(11):60-64.
    [106] 邓集祥,赵丽丽.大干扰下主导低频振荡模式作用的再研究[J].东北电力学院学报,2004,24(6):1-5.
    [107] 邓集祥,赵丽丽.主导低频振荡模式二阶非线性相关作用的研究[J].中国电机工程学报,2005,25(7):75-80.
    [108] 邓集祥,赵丽丽.励磁调节器对模态非线性相关作用的影响[J].电网技术,2005,29(1):69-74.
    [109] Y.-X. Ni, V. Vittle, W. Kliemann, A.A. Fouad. Nonlinear modal interaction in HVDC/AC power system with DC power modulation [J]. IEEE Transactions on Power Systems, 1996, 11(4): 2011-2017.
    [110] Y. Ni, V. Vittle, W. Kliemann. Investigation of nonlinear modal behavior of HVDC/AC power systems through a scanning, tool via normal form technique [C]. IEEE International Symposium on Circuits and Systems, 1997, Hong Kong.
    [111] 朗鹏越,杨秀.交直流输电系统非线性模型分析.华东电力,2006,34(7):28-31.
    [112] S. Saha, A.A. Fouad, W. Kliemann, et al. Stability boundary approximation of a power system using the real normal form of vector fields [J]. IEEE Trans. on Power Systems, 1997, 12(2): 797-802.
    [113] 李颖晖,张保会.运行非线性理论确定电力系统暂态稳定域的一种新方法[J].中国电机工程学报,2000,20(1):41-44.
    [114] 李颖晖,张保会.运行非线性理论确定电力系统暂态稳定域的应用[J].中国电机工程学报,2000,20(2):24-27.
    [115] 李颖晖,张保会.对Normal Form变换的多值性的分析与研究[J].电力系统自动化,2000,24(6):35-39.
    [116] 李颖晖,张保会.电力系统稳定边界的研究[J].中国电机工程学报,2002,22(3):72-77.
    [117] I. Dobson. Strong resonance effects in normal form analysis and subsvnchronous resonance [C]. Bulk Power System Dynamic and Control V, 2001, Onomichi, Japan.
    [118] V. Auvray, I. Dobson, L. Wehenkel. Modifying eigenvalue interactions near weak resonance [C]. Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 5: 992-95.
    [119] N. Kakimoto, A. Nakanishi, K. Tomiyama. Instability of interarea oscillation mode by autoparametric resonance [J]. IEEE Trans on Power Systems, 2004, 19(4): 1961-1970.
    [120] S.K. Starrett, A.A. Fouad. Nonlinear measures of mode-machine participation [J]. IEEE Trans. on Power Systems, 1998, 13(2): 389-394.
    [121] 徐东杰,贺仁睦,胡国强,许涛.正规形方法在互联电网低频振荡分析中的应用[J].中国电机工程学报,2004,24(3):18-23.
    [122] 徐东杰.互联电力系统低频振荡分析方法与控制策略的研究[D].华北电力大学博士学位论文,2004.
    [123] S. Liu, A.R. Messina, V. Vittal. Assessing placement of controllers and nonlinear behavior using normal form analysis [J]. IEEE Trans. on Power Systems, 2005, 20(3): 1486-1495.
    [124] Shu Liu, A.R. Messina and V. Vittal. A normal form analysis approach to siting power system stabilizers (PSSs) and assessing power system nonlinear behavior [J]. IEEE Trans on Power Systems, 2006, 21(4): 1755-1760.
    [125] N. Pariz, H.M. Shanechi, E. Vaahedi. Explaining and validating stressed power systems behavior using modal series [J]. IEEE Trans on Power Systems, 2003, 18(2): 778-785.
    [126] N. Pariz, H.M. Shanechi, E. Vaahedi. General nonlinear modal representation of large scale power systems[J]. IEEE Trans on Power Systems, 2003, 18(3): 1103-1109.
    [127] 刘红超.交/直流互联电力系统的非线性模态分析和柔性协调控制[D].四川大学博士学位论文,2004.
    [128] 郑云海,李兴源.基于模态级数法的交直流系统的非线性模式交互作用分析[J].电工电能新技术,2005,24(3):45-48.
    [129] 邓集祥,许自然.应用模态级数方法分析电力系统模态谐振[J].现代电力,2006,23(3):11-15.
    [130] 陈予恕,唐云,陆启韶等.非线性动力学中的现代分析方法[M].北京:科学出版社,2000.
    [131] 张琪昌,王洪礼,竺致文,沈菲,任爱娣,刘海英.分岔与混沌理论及应用[M].天津大学出版社,2005.
    [132] V. Ajjarapu, B. Lee. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system [J]. IEEE Transactions on Power Systems, 1992, 7(1): 424-431.
    [133] K.G. Rajesh, K.R. Padiyar. Bifurcation analysis of a three node power system with detailed models [J]. Electrical Powerand Enemy Systems, 1999, Vol. 21: 375-393.
    [134] 廖浩辉,唐云,肖炏.单机无穷大系统中的非线性振荡[J].清华大学学报(自然科学版),2001,41(4/5):1-4.
    [135] 张强,王宗华,杨成梧.电力系统周期振荡的失稳分析[J].电网技术,2004,28(22):15-19.
    [136] 王庆红,周双喜.考虑励磁限制的典型三节点电力系统分岔分析[J].华北电力大学学报,2004,31(1):5-10,14.
    [137] Jarmes Torl. Learning to live with power system oscillation [C]. IEE Colloquium on Power System Dynamics Stabilization, 1998.
    [138] F.P. de Mello, P.J. Nolan. T.F. Laskowski, J.M. Undrill. Coordinated application of stabilizers in multimachine power systems [J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(3): 892-901.
    [139] Y.Y. Hsu, C.L. CHEN. Identification of optimum location for stabilizer applications Using participation factors [J]. IEE Proceedings on Generation, Transmission and Distribution, 1987, 134(3): 238-244.
    [140] C.L.Chen and Y.Y.Hsu. An efficient algorithm for design of decentralized output feedback power system stabilizer [J]. IEEE Trans on Power Systems, 1988, 3(3): 999-1004.
    [141] 马大强.电力系统机电暂态过程[M].北京:水利电力出版社,1988.
    [142] 倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [143] Yan Zhuang, All Febiachi. Identification of optimal location for power system stabilizers. Proceedings of the 20th Southeastern Symposium on System Theory [C], 1988, Page(s): 236-238.
    [144] Venkataramana Ajjarapu. Reducibility and eigenvalue sensitivity for identifying critical generators in multimachine power systems [J]. IEEE Transactions on Power Systems, 5(3): 712-719.
    [145] K.W. Wang, C.Y. Chung, C.T. Tsc, K.M. Tsang. Probabilistic eigenvalue sensitivity indices for robust PSS site selection [C]. IEE Proceedings on Generation, Transmission and Distribution, 2001, 148(6): 603-609.
    [146] Ali Feliachi, Xiaqing Yang. Identification of power system stabilizers locations [C]. Proceedings of the 28th Conference on Decision and Control, 1989, Tampa, Florida.
    [147] Nelson L, Limba Leonardo TG. Determination of suitable locations for power system stabilizers and static VAR compensators for damping electromechanical oscillations in large scale power systems [J]. IEEE Trans on Power Systems, 1990, 5(4): 1445-63.
    [148] Wenyan Gu, K.E. Bollinger. A self-tuning power system stabilizer for wide-range synchronous generator operation [J]. IEEE Transactions on Power Systems, 1989, 4(3): 1191-1199.
    [149] M. Amano, M. Watanabe, M. Banjo. Self-testing and self-tuning of power system stabilizers using prony analysis [C]. IEEE Power Engineering Society Winter Meeting, 1999, Vol. 1: 655-660.
    [150] J.K. Shiau, J.H. Chow, G. Boukarim. Power swing damping controller design using linear matrix inequality algorithm [C]. Proceedings of IEEE International Conference on Control Applications, 1996, Page(s): 727-732.
    [151] A.F. Snyder. A robust damping controller for power system using linear matrix inequalities [C]. Proceedings of the IEEE Power Engineering Society Winter Meeting, 1999, Vol.1: 519-523.
    [152] M. Chilali, P. Gahinet. H∞ design with pole placement constraints: an LMI approach [J]. IEEE Transactions on Automatic Control, 1996, 41(3): 358-367.
    [153] G. Chen, T. Sugie. μ-analysis and synthesis of state feedback systems based on multipliers and LMI's [C]. Proceedings of the American Control Conference, 1998, Page(s): 537-541.
    [154] CHENG Shi-jie, ZHOU Ru-jing, GUAN Lin. An on-line self-learning power system stabilizer using a neural network method [J]. IEEE Transaction on Power Systems, 1997, 12(2): 926-931.
    [155] Y. Zhang, O.P. Malik, G.P. Chen. Artificial neural network power system stabilizers in multi-machine power system environment [J]. IEEE Transaction on Energy Conversion, 1995, 10(1): 147-155.
    [156] G.N. Taranto, D.M. Falcao. A genetic-based control design for damping power system inter-area oscillations [C]. Proceedings of the 35th Conference on Decision and Control, 1996, Vol.4: 4389-4394.
    [157] K. Kongesombut, Y. Mitani. Implementation of advanced genetic algorithm to modern power system stabilization control [C]. Power Systems Conference and Exposition, 2004, Vol.2: 1050-1055.
    [158] M.A.M. Hassan, O.P. Malik, G.S. Hope. A fuzzy logic based stabilizer for a synchronous machine [J]. IEEE Transactions on Energy Conversion, 1991, 6(3): 407-413.
    [159] 文劲宇,程时杰,张克元.基于遗传算法的模糊式电力系统稳定器自寻优设计法[J].电工技术学报,1999,14(4):21-26.
    [160] Y. Ruhua, H.J. Eghbali, M.H. Nehrir. An online adaptive neuron-fuzzy power system stabilizer for multimachine systems [J]. IEEE Transactions on Power Systems, 2003, 18(1): 128-135.
    [161] E.V. Larsen, J.J. Sanchez-Gasca, J.H. Chow. Concept for design of FACTS controllers to damp power swings [J]. IEEE Transactions on Power Systems, 1995, 10(2): 948-956.
    [162] 王海风,李乃湖,陈珩.近似模态控制分析法及其在选择灵活交流输电稳定器安装地点与反馈信号中的应用[J].中国电机工程学报,1999,19(6):60-64.
    [163] 吴国红,贺家李,余贻鑫,横山明彦,陈礼义.FACTS装置最佳设置点的选择指标[J].电力系统自动化,1998,22(9):57-60.
    [164] H.F. Wang. Selection of robust installing locations and feedback signals of FACTS-based stabilizers in multi-machine power systems [J]. IEEE Transactions on Power Systems, 1999, 14(2): 569-574.
    [165] M.M. Farsangi, Y.H. Song, Kwang Y. Lee. Choice of FACTS device control inputs for damping interarea oscillations [J]. IEEE Transactions on Power Systems, 2004, 19(2): 1135-1143.
    [166] D. Povh. Modeling of FACTS in power system studies [J]. Power Engineering Society Winter Meeting, 2000, Vol. 2: 1435-1439.
    [167] U.P. Mhaskar, A.M. Kulkarni. Power oscillation damping using FACTS devices: modal controllability, observability in local signals, and location of transfer function zeros [J]. IEEE Transactions on Power Systems, 2006, 21(1): 285-294.
    [168] Jianhong Chen, Tjing T. Lie, D.M. Vilathgamuwa. Damping of power system oscillations using SSSC in real-time implementation [J]. Electrical Power and Energy Systems, 2004, 26(5): 357-364.
    [169] Qun Gu, Anupama Pandey, Shelli K. Starter. Fuzzy logic control schemes for static VAR compensator to control system damping using global signal [J]. Electrical Power and Energy Systems, 2003, Vol. 67: 115-122.
    [170] 杨晓东,房大中,刘长胜,宋文南.阻尼联络线低频振荡的SVC自适应模糊控制器研究[J].中国电机工程学报,2003,23(1):55-63.
    [171] 马幼捷,周雪松,相伟.SVC综合非线性控制器在交直流混合系统中的应用[J].中国电机工程学报,2004,24(9):19-23.
    [172] 常勇,徐政.SVC广域辅助控制阻尼区域间低频振荡[J].电工技术学报,2006,21(12):40-46.
    [173] Lingling Fan, Ali Feliachi. Robust TCSC control design for damping inter-area oscillations [C]. Proceedings of the IEEE Power Engineering Society Summer Meeting, 2001, Vol.2: 15-19.
    [174] D. Del Rosso, A. Canizares, M. Dona. A study of TCSC controller design for power system stability improvement [J]. IEEE Transactions on Power Systems, 2003, 18(4): 1487-1496.
    [175] 郭春林,童陆园.多机系统中可控串补(TCSC)抑制功率振荡的研究[J].中国电机工程学报.2004,24(6):1-6.
    [176] 林宇锋,徐政,黄莹.TCSC功率振荡阻尼控制器的设计.电网技术,2005,29(22):35-39.
    [177] Lingling Fan, A. Feliachi. Damping enhancement by TCSC in the Western US Power System [C]. Power Engineering Society Winter Meeting, 2002, 1(1): 550-555.
    [178] C. Liu, M. Ishimaru, R. Yokoyama, K.Y. Lee. Allocation of TCSCs for mitigating low-frequency oscillation on a tie-line in an interconnected power systems [C]. 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy.
    [179] R.L. Cresap, D.N. Scott, W.A. Mittelstadt. Small-signal modulation of the Pacific HVDC inter-tie [J]. IEEE Transactions on Power Apparatus and Systems, 1976, 95(2): 536-541.
    [180] R.L. Cresap, D.N. Scott, W.A. Mittelstadt. Operating experience with modulation of the Pacific HVDC inter-tie [J]. IEEE Transactions on Power Apparatus and Systems, 1978, 97(4): 1053-1059.
    [181] D.E. Martin, W.K. Wong, D.L. Dickmander, et al. Increasing WSCC power system performance with modulation controls on the intermountain Power Project HVDC system [C]. Proceedings of the 1991 IEEE Power Engineering Society Transmission and Distribution Conference, 1991, Pages: 797-803.
    [182] L.A.S. Pilotto, M. Szechtman, A. Wey, et al. Synchronizing and damping torque modulation controllers for multi-infeed HVDC systems [J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1505-1513.
    [183] 杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题[J].电网技术,2000,24(8):13-17.
    [184] 荆勇,洪潮,杨晋柏,王远游.直流调制抑制南方电网局域功率振荡的研究[J].电网技术,2005,29(20):53-56.
    [185] 徐光虎,孙衢,陈陈.HVDC模糊协调阻尼控制器的设计[J].电力系统自动化,2004,28(12):18-23.
    [186] 朱浩骏,兰洲,蔡泽祥,甘德强,倪以信.交直流互联系统鲁棒自适应直流功率调制[J].电力系统自动化,2006,30(7):21-26.
    [187] M.A. Abido. A novel approach to conventional power system stabilizer design using tabu search [J]. Electrical Power and Energy Systems, 1999, 21(6): 443-454.
    [188] M.A. Abido. Pole placement technique for PSS and TCSC-based stabilizer design using simulated annealing [J]. Electrical Power and Energy Systems, 2000, 22: 543-554.
    [189] P.X. Zhang, Y.J. Cao, S.J. Cheng. Coordination of multiple PSSs using multi-objective genetic algorithm [C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, 5040-5044.
    [190] 房大中,牛伟,周保荣.多机系统中电力系统稳定器与可控串联补偿器阻尼控制器的协调设计[J].天津大学学报,2006,39(8):895-900.
    [191] 邹振宇,江全元,张鹏翔,曹一家.PSS与SVC多目标协调设计[J].电力系统及其自动化学报,2005,17(4):66-70.
    [192] 金丽成,刘海峰,徐政.多馈入直流输电系统小信号调制器的协调优化整定[J].电力系统自动化,2003,27(16):10-15.
    [193] 刘红超,李兴源,王路.陈凌云.邱晓燕.多馈入直流输电系统中直流调制的协调优化[J].电网技术,2004,28(1):5-9.
    [194] 刘大鹏,雷宪章,陈珩.利用白噪声激励实现多机系统电力系统稳定器的优化与协调[J].电力系统自动化,2001,25(19):15-18.
    [195] 颜泉,李兴源.王路,刘红超,陈树恒.基于PMU的多馈入直流交直流系统的分散协调控制[J].电力系统自动化,2004,28(20):26-30.
    [196] M.E. Aboul-Ela, A.A. Sallam, J.D. McCalley, A.A. Fouad. Damping controller design for power system oscillation using global signals [J]. IEEE Transaction on Power Systems, 1996, 1(11): 767-773.
    [197] 谢小荣,肖晋宇,童陆园,韩英铎.采用广域测量信号的互联电网区间阻尼控制[J].电力系统自动化,2004,28(2):37-40.
    [198] B. Chaudhuri, B.C. Pal. Robust damping of multiple swing modes employing global stabilizing signals with a TCSC [J]. IEEE Transactions on Power Systems, 2004, 19(1): 499-506.
    [199] Hui Ni, G.T. Heydt, L. Mili. Power system stability agents using robust wide area conrol [J]. IEEE Transactions on Power Systems, 2002, 17(4): 1123-1131.
    [200] 袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略[J],电力系统自动化,2006,30(24):11-16.
    [201] Xingjian Jing, Dalong Tan, Yuechao Wang. An LMI approach to stability of systems with severe time-delay [J]. IEEE Transactions on Power Systems, 2004, 49(7): 1192-1195.
    [202] M. Zribi, M.S. Mahmoud, M. Karkoub, T.T. Lie. H∞-controllers for linearised time-delay power systems [C]. IEE Proceedings-Generation, Transmission and Distribution, 2000, 147(6): 401-408.
    [203] Wu Hong-xia, Ni Hui, G.T. Heydt. The impact of time delay on robust control design in power systems [C]. Proceedings of IEEE Power Engineering Society Winter Meeting, 2002, New York, Vol. 2: 1511-1516.
    [204] 江全元,白碧蓉,邹振宇,曹一家.计及广域测量系统时滞影响的TCSC控制器设计[J].电力系统自动化,2006,28(20):21-25.
    [205] 胡志祥,谢小荣,童陆园.广域阻尼控制延迟特性分析及其多项式拟合补偿[J].电力系统自动化,2005,29(20):29-34.
    [206] P.M Anderson, A.A Fouad. Power systems control and stability [M]. The Institute of Electrical and Electronics Engineers Inc., New York, 1993.
    [207] E.Z. Zhou, O. P. Malik and G. S. Hope. Theory and method for selection of power system stabilizer location [J]. IEEE Trans on Power Systems, 1991, 6(2): 170-176.
    [208] 韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制[M].北京:清华大学出版社,1997.
    [209] D.R. Ostojic. Stabilization of multimodal electromechanical oscillation by coordinated application of power system stabilizers [J]. IEEE Trans on Power Systems, 1991, 6(4): 1439-1445.
    [210] CIGRE technical brochure, advanced angle stability controls [M]. United State: CIGRE TF 38.02.17, DEC. 1999.
    [211] 郝玉山,王海风,韩祯祥.电力系统稳定器实现于调速系统之研究—第1部分:可行性分析[J].电力系统自动化,1992,16(5):36-42.
    [212] 郝玉山,王海风.韩祯祥.电力系统稳定器实现于调速系统之研究—第2部分:多机系统中特性分析[J].电力系统自动化,1993,17(3):26-32.
    [213] 杜其友,陈星莺,曹智峰.多机系统调速侧电力系统稳定器GPSS的设计.电网技术,2007,31(3):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700