MMP-2,MMP-9和TIMP-2启动子区基因多态性与侵袭性牙周炎相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙周病是一类涉及到细菌微生物侵犯和宿主反应等因素影响的常见病之一;细菌是牙周炎的始动因素,但是细菌的作用可能会被宿主反应不同所改变。侵袭性牙周炎是常发生在全身健康的青少年和年轻成年人、以牙周支持组织快速降解破坏为特征的一类牙周炎;大量的遗传学研究认为罹患侵袭性牙周炎的个体涉及遗传易感因素。
     迄今大多数遗传基因易感因素和牙周病相关性研究主要采用候选基因多态性(polymorphisms)的关联研究;已有研究多关注免疫系统和炎性因子的基因,包括白介素-1(IL-1),人类白细胞抗原(HLA),维生素D受体,Fcγ受体等基因;实际上炎性因子刺激宿主细胞产生过量的基质金属蛋白酶(matrix metalloproteinases, MMPs),最终导致了牙周组织的降解和破坏。MMPs家族是由20多种锌离子依赖性内切酶组成,在胚胎发育、炎症反应和肿瘤侵袭转移等中发挥重要作用;尤其在炎症反应中加速白细胞募集、细胞因子释放和促进基质降解改建。明胶酶是MMPs家族的主要成员,包括MMP-2(明胶酶A)和MMP-9(明胶酶B);它们作用底物广泛,包括IV型胶原、明胶、弹性蛋白等。MMP-2主要由成纤维细胞、内皮细胞和破骨细胞表达;MMP-9主要由中性粒细胞、巨噬细胞和单核细胞产生。MMPs的表达活化受到转录调控、底物特异性、内源性抑制剂—组织金属蛋白酶抑制剂(tissue inhibitors of metalloproteinases,TIMPs)三方面的平衡调节。大量临床研究证实在牙周炎活跃期的龈沟液、牙龈中包括MMP-2、MMP-9在内的MMPs水平明显升高,MMPs/TIMPs比例失衡。
     近年来国内外学者发现在不同种族中MMP-1启动子区的单核苷酸多态性(single nucleotide polymorphism,SNP)与慢性牙周炎或侵袭性牙周炎易感性有一定相关性。促使人们把目光投向非炎症系统的MMPs家族基因作为候选基因,探寻其基因多态性和牙周炎的关系。近来在MMP-2基因启动子区发现-1306bp位点胞嘧啶替换为胸腺嘧啶(C→T)形成SNP,改变了CCACC盒而影响转录水平;在MMP-9启动子区-1562bp位点C→T产生的SNP对转录也产生显著影响,T等位基因表达水平升高;TIMP-2基因启动子区-418bp位点上鸟嘌呤转换为胞嘧啶(G→C),影响到Sp1结合位点导致TIMP-2基因转录水平的下调,进而可能影响到TIMP-2和MMP-2之间的平衡。本课题将对MMP-2,MMP-9和TIMP-2启动子区基因多态性与侵袭性牙周炎相关性进行研究。
     牙周专科电子病历是对牙周病临床病例样本进行牙周临床指标统计分析的理想工具,对牙周临床科研工作的开展起着不可替代的作用。随着牙周病学研究的快速发展和口腔数字化管理的普及,亟需牙周专科电子病历,加快国内牙周电子病历的研制开发势在必行。为此本课题开发构建了牙周专科电子病历。
     本课题还利用临床搜集的AgP患者牙龈组织标本,应用免疫组织化学法对MMP-9、TIMP-2的表达进行定位及半定量分析,探讨了MMP-9、TIMP-2在侵袭性牙周炎不同基因型牙龈组织中的表达情况。
     第一部分牙周电子病历的构建
     本研究采用微软IIS(Internet Information Server)的ASP(Active Server Page)服务器脚本语言和ACCESS数据库,实现了牙周临床指标数据录入统计和牙周健康状况全景形象展示,较为全面细致地反映患者牙周状况,可以满足牙周专科和本课题临床病例牙周指数统计的需要,为发展国内牙周专科电子病历做出有益探索。
     第二部分MMP-2,MMP-9和TIMP-2启动子区基因多态性与侵袭性牙周炎相关性研究
     研究样本为79名广泛型侵袭性牙周炎(generalized aggressive periodontitis,G-AgP)患者和128名临床牙周健康对照者;本研究样本的检验效能为75%,样本量大小符合检测效能的要求。Chelex-100法从颊拭子脱落细胞中提取DNA,采用聚合酶链反应-变性高效液相色谱法(denaturing high- performance liquid chromatography,DHPLC)和限制性片段长度多态性分析(restriction fragment length polymorphism , RFLP)法分别检测样本MMP-2-1306bpC/T,MMP-9-1562 C/T和TIMP-2-418G/C启动子区基因多态性;分析两组中基因型分布、等位基因频率,以及MMP-2和TIMP-2复合基因单体型。
     结果:Chelex-100法所提取DNA完全可以满足本实验候选基因的SNP检测;G-AgP组和对照组按照年龄和性别t检验p = 0.157和0.124,两组的性别、年龄匹配。经卡方检验两组中MMP-2,-9,和TIMP-2基因型符合哈代-温伯格平衡(Hardy-Wenberg equilibrium)(χ2= 0.001~0.83,p>0.05)。卡方检验均经过耶茨校正(Yates’correction),多重卡方检验校正p<0.017为有显著性意义。MMP-2-1306C/T、MMP-9-1562C/T启动子区基因多态性在G-AgP组和对照组中最常见的基因型为CC,而TT基因型少见,各基因型在两组的分布没有差异(p>0.05)。等位基因频率在两组中也没有显著性差异(p=0.707,0.858)。TIMP-2启动子区基因多态性在G-AgP组和对照组中基因型和等位基因频率的分布:在G-AgP组GC+CC基因型(48.1%)比对照组(32.0%)明显增多[p = 0.030; OR: 1.97, 95% CI: (1.11;3.50)],这种差异经过多重卡方检验校正后失去显著性意义(p>0.017);TIMP-2-418G和-418C等位基因频率在G-AgP组分别为71.5%和28.5%,而在对照组分别为82.4%和17.6%,等位基因-418C在G-AgP组的检出频率显著高于对照组[p=0.013; OR: 1.87, 95% CI: (1.17;2.99)]。MMP-2和TIMP-2复合基因单体型分析以常见的MMP-2-1306 CC+TIMP-2-418GG基因型作参照,两组中复合基因型分布差异没有显著性意义(p>0.05),即没有显示出MMP-2和TIMP-2复合基因的叠加作用和我国汉族人群侵袭性牙周炎有相关性。
     结论:MMP-2-1306C/T、MMP-9-1562C/T启动子区基因多态性可能不是我国汉族人群侵袭性牙周炎的遗传易感因素;TIMP-2-418G/C启动子区基因多态性与我国汉族人群广泛型侵袭性牙周炎有相关性,TIMP-2-418C等位基因可能是我国汉族人群广泛型侵袭性牙周炎的遗传易感因素。
     第三部分MMP-9, TIMP-2在不同基因型侵袭性牙周炎患者牙龈组织中的表达
     本部分对6例健康牙龈标本和9例AgP患者牙龈标本,应用免疫组织化学染色法,按照MMP-9-1562bpC/T、TIMP-2-418G/C不同基因型分组,观察牙龈组织中MMP-9、TIMP-2的表达,目的在于分析MMP-9、TIMP-2在侵袭性牙周炎不同基因型的龈组织表达情况。
     结果:在正常牙龈标本中MMP-9和TIMP-2几乎不表达,而在侵袭性牙周炎患者的牙龈组织中MMP-9和TIMP-2表达明显。MMP-9主要在固有层炎性细胞密集区阳性表达;TIMP-2多在上皮层表达。在病例组,含有MMP-9-1562T等位基因和不含MMP-9-1562T等位基因的牙龈组织中MMP-9表达阳性细胞数量和平均灰度值无显著差别;不含TIMP-2-418C等位基因的牙龈组织中TIMP-2表达阳性细胞平均灰度值虽然高于含有TIMP-2-418C等位基因的牙龈组织,但无统计学意义;两种基因型的TIMP-2表达阳性细胞数量统计也无显著性差异。
     结论:MMP-9和TIMP-2参与了侵袭性牙周炎牙龈组织的病变,但没有发现不同基因型AgP牙龈组织中MMP-9和TIMP-2表达水平有相应的变化。
Periodontal diseases, involving microbial challenge and host responses, are one group of the most common disorders. Although bacteria are an initial factor for human periodontitis, their impact may be modified by an individual’s predisposition. Generalized aggressive periodontitis (G-AgP), as a subgroup of periodontitis, is characterized by rapid degradation and destruction of periodontal supporting tissue in otherwise clinically healthy the juvenile or early adult subjects. AgP is less common than chronic periodontitis (CP) and differ in many respects with regard to their etiology and pathogenesis. It has been suggested that there is a genetic basis and a predisposition for individuals to suffer from AgP.
     Most of the association studies to date have utilized the candidate gene polymorphisms approach to identify the gene variation related to periodontitis. Previous studies have focused on the relationship between genetic variation in the candidate genes of the immune and pro-inflammatory systems and periodontitis. These genes include interleukin-1, human leukocyte antigen, vitamine D receptor, and Fc gamma receptor et al.. Actually, these pro-inflammatory cytokines stimulate cells of the host to produce a number of matrix metalloproteinases (MMPs), which are eventually responsible for degradation of periodontal connective tissues in the pathogenesis of periodontitis. MMPs are a family consisting of over 20 related zinc-dependent endopeptidases, most of which have been demonstrated to be associated significantly with many biological or pathological processes, such as embryogenesis, inflammation, and cancer metastasis et al.. Furthermore, MMPs perform multiple roles in the host response to the procession of infection, facilitating leucocyte recruitment, cytokine and chemokine processing and matrix remodeling. Both resident cells and infiltrating inflammatory cells produce excessive MMPs that are thought to be mediators in pathogeneses of periodontitis. The important members of MMPs exampled by MMP-2 and MMP-9 (named as gelatinase A and gelatinase B), mainly cleaving type IV collagen and gelatins, are also believed to play important roles in tissue destruction in periodontitis. MMP-2 is synthesized by various fibroblasts, endothelial cells and osteoblasts, while MMP-9 is expressed by polymorphonuclear leukocytes (PMN), macrophages, and epithelial cells. Besides transcriptional regulation and substrate specificity, the activity of MMPs is also regulated by endogenous factors, including a family of anti-proteinases known as tissue inhibitors of metalloproteinases (TIMPs). Elevated MMP-2 and MMP-9 levels of tissue or gingival crevicular fluid (GCF) have been observed in inflammatory sites in periodontitis.
     Several studies so far focus on the association between MMP1 polymorphism and chronic periodontitis (CP) or AgP among MMPs. These results demonstrate that a single nucleotide polymorphism in the MMP1 promoter region of -1607bp is associated with generalized aggressive periodontitis (G-AgP) in the Chinese population, with severe CP in the Brazilian population and slightly with CP in the Czech population. As non-inflammatory mediators, MMPs are highlightened in the candidate gene polymorphisms related to aggressive periodontitis. Several functional single nucleotide polymorphisms in the MMP-2 and MMP-9 promoter region have distinct effects on MMP expression, which might enhance susceptibility to periodontitis. A cytosine (C) to thymine (T) substitution at position -1306bp of MMP-2 promoter region changes cis-regulatory elements by disrupting a Sp1-type promoter site (CCACC box). This functional polymorphism displays a strikingly different promoter activity between the C and T allele. Other studies indicate that the position -1562bp in the MMP-9 promoter region also has a C to T substitution, which has an allele-specific effect on MMP-9 transcription. In vitro experiments using the reporter assay technique have showed that the -1562T allele has higher promoter activity in driving gene expression than the -1562 C allele. Of the four members in the TIMP family, TIMP-2 is particularly interesting because of its dual functions in terms of regulating MMP-2 activity. A guanine (G) to C transition located at -418bp has also been identified in the consensus sequence for the Sp1-binding site in the promoter region of TIMP-2. It is reasonable to postulate that the polymorphism may down-regulate TIMP-2 expression and consequently cause an imbalance between the activities of TIMP-2 and MMP-2, which is believed to have a significant impact on periodontitis development and progression. Further research is therefore needed on the relationship between MMP-2, -9, TIMP-2 polymorphisms and AgP.
     Compute-based Patients Record (CPR), which is used for department of periodontology, is the perfect tool for the statistical analysis of periodontal indices in the research of clinical samples. It is indispensable for CPR to develop the research of clinical periodontology. Due to the development of periodontology and the digital management, the utilization and criteria of CPR need to be further completed and improved. In the present study, we established the new model of patients’record based on computer in stead of traditional periodontal record.
     Additionally, healthy and diseased gingival sample were collected from the patients with AgP or the the controls. Immunohistochemical method was used to analysis the localization and semi-quantitive expression of MMP-9 and TIMP-2. We aimed for understanding the level of expression in gingival specimen with different genotypes by the result of Part two.
     As mentioned above, the goal of the present study was to evaluate the genotype distribution and allele frequencies of the MMP-2,9 and TIMP-2 of G-AgP patients in a Chinese population and also to investigate whether genetic variations of MMP-2, 9 and TIMP-2 are gene biomarkers for susceptibility to G-AgP.
     Part one Establishment of Compute-based Periodontal case Record
     In the present study, active server page and access of internet information server were used to process the Compute-based Patient Record of periodontal indices importing. In sequence, the whole image of periodontal condition of individual can be formed in the screen of the computer in clinical practice. The designed CPR could facilitate the daily clinincal data collection and processing at department of periodontology. To the best of our knowledge, this is the first software to record periodontal indices in China.
     Part two Analysis of the MMP-2, MMP-9 and TIMP-2 gene promoter polymorphisms in patients with generalized aggressive periodontitis in a Chinese population
     A total of 207 unrelated Chinese individuals were selected for the study population, consisting of 79 G-AgP patients and 128 periodontally healthy volunteers serving as the control group. All participants were ethnically homogeneous Han Nationality. The power calculations performed for this study show that the power of sample size was larger than 75%, which was enough to detect association with an acceptable level of confidence. Genomic DNA was extracted from oral mucosa swab sample of the study subject by Chelex-100 method. MMP-2-1306bpC/T genotypes were determined by PCR-based denaturing high performance liquid chromatography analysis while MMP-9-1562 C/T and TIMP-2-418G/C genotypes were identified by a PCR-based restriction fragment length polymorphism. The genotypes distributions and allele frequencies of three candidate genes were evaluated by Chi-square test, so were a potential composite MMP-2 and TIMP-2 halpotypes.
     Results The extraction of DNA from swab sample using Chelex-100 is more efficient and rapid than conventional phenol-chloroform extraction for studying genetic polymorphism. Two groups were comparable in terms of gender and age (p = 0.157 and 0.124, respectively). The mean ages of the patients and the controls were 27.3 and 28.5 years old respectively. The distribution of MMP-2, MMP-9 and TIMP-2 genotype in the G-AgP patients and the controls was in accordance with Hardy-Weinberg equilibrium by Chi-square test (χ2 = 0.001 to 0.83, P >0.05). Chi-square test after Yates’correction was used to investigate the possible association of the genotypes with the G-AgP. Corrected p values were calculated for multiple testing by the Bonferroni method. If 3 separate comparisons had been made, then the corrected significance level would be 0.017. In the patients and the controls, the most common genotype of MMP-2 and MMP-9 gene was CC, while the TT homozygote patients were very rare. No significant difference was observed in the distributions of the genotypes and alleles in MMP-2 and MMP-9 between the patients and the controls (p>0.05). The homozygotes and heterozygote of TIMP-2 appeared to be distributed evenly in the two groups. Yates’correction showed a marked difference of the distribution of TIMP-2 GC and CC genotypes in the groups (p=0.030; OR: 1.97, 95% CI: [1.11; 3.50]), which would be no significant after adjusted p-values level for multiple comparison. The frequencies of the alleles TIMP-2-418G and -418C were 71.5%and 28.5% in the patients and 82.4% and 17.6% in the controls, respectively. A significant increase in the allele C of the patients compared to the controls occurred (p =0.013; OR: 1.87, 95% CI: [1.17; 2.99]). Because the MMP2 -1306 TT and TIMP-2-418 CC homozygotes were rare in the present study, these genotypes were respectively combined with the MMP2 -1306 CT and TIMP-2 -418 GC heterozygotes for estimation of susceptibility to G-AgP. Using the most common genotype MMP-2CC and TIMP-2GG as a reference, however, no significant synergistic effect on the occurrence of G-AgP was observed in subjects carrying the composite genotypes of MMP-2 and TIMP-2 variants (p >0.05).
     Conclusion Although gene polymorphisms for MMP-2 and MMP-9 did not show any association with the G-AgP, the analysis of the TIMP-2 -418G to C gene polymorphism revealed significant differences between the patients and controls. Compared with controls, a significant increasing trend of TIMP-2 -418C carrier in the G-AgP patients occurred (p=0.013). The carriers of TIMP-2 -418C polymorphism in the Chinese subjects may be more at risk of suffering from G-AgP.
     Part three Expressions of MMP-9 and TIMP-2 in the gingival tissues of AgP patients with different genotypes.
     Six healthy gingival tissues and nine AgP gingival samples were obtained in the procedure of periodontal surgery. By using immunohistochemistry and computerized image analysis, the expression level of MMP-9 and TIMP-2 was assessed on the different groups in according to MMP-9-1562bpC/T and TIMP-2-418G/C genotypes.
     Results Rare expression of MMP-9 and TIMP-2 was observed in the healthy gingival tissues. The distribution of MMP-9 was trended to the connective tissue nearby inflammatory cell. The TIMP-2 was often observed in epithelium layer. As to the amount and the gray value of the MMP-9 positive cells, there was no significant difference between both the groups, with or without MMP-9-1562T alleles. Similarly, no significant difference was found in the amount and the gray value of TIMP-2 positive cells between both the groups, with or without TIMP-2 -418C alleles.
     Conclusion MMP-9 and TIMP-2 are involved in the pathological gingiva of AgP. Aciassaton between MMP-9/TIMP-2 expression level and their respective genotypes in gingival sample can not be demonstrated.
引文
1 Tonetti MS, Mombelli A. Early-onset periodontitis. Annals of periodontology / the American Academy of Periodontology, 1999,4(1):39-53.
    2 Armitage, G.C. Development of a classification system for periodontal diseases and conditions. Annals of periodontology / the American Academy of Periodontology,1999. 4(1): 1-6.
    3 Meng H, Xu L, Li Q, Determinants of host susceptibility in aggressive periodontitis. Periodontology 2000, 2007,43:133-159.
    4 Llorente, M.A, Griffiths, G.S. Periodontal status among relatives of aggressive periodontitis patients and reliability of family history report. J Clin Periodontol,2006. 33(2): 121-125.
    5 Hart TC, Marazita ML, McCanna KM, Reevaluation of the chromosome 4q candidate region for early onset periodontitis. Human genetics, 1993,91(5):416-422.
    6 Marazita ML, Burmeister JA, Gunsolley JC, Evidence for autosomal dominant inheritance and race-specific heterogeneity in early-onset periodontitis. Journal of periodontology, 1994,65(6):623-30.
    7 Shapira, L, Schlesinger, M, Bimstein, E. Possible autosomal-dominant inheritance of prepubertal periodontitis in an extended kindred. J Clin Periodontol,1997. 24(6): 388-393.
    8 Saxen L, Nevanlinna HR. Autosomal recessive inheritance of juvenile periodontitis: test of a hypothesis. Clinical genetics, 1984,25(4):332-335.
    9 Saxen L. Heredity of juvenile periodontitis. Journal of clinical periodontology, 1980,7(4):276-288.
    10 张兰, 林田. 青少年牙周炎遗传方式的研究. 西安医科大学学报, 1996,17(1):48-50.
    11 Saglam F, Atamer T, Onan U, Infantile genetic agranulocytosis (Kostmann type). A case report. Journal of periodontology, 1995,66(9):808-810.
    12 Cury VF, Costa JE, Gomez RS, A novel mutation of the cathepsin C gene in Papillon-Lefevre syndrome. Journal of periodontology, 2002,73(3):307-312.
    13 Ullbro, C, El-Samadi, S, Boumah, C, Phenotypic variation and allelic heterogeneity in young patients with Papillon-Lefevre syndrome. Acta Derm Venereol,2006. 86(1): 3-7.
    14 Hewitt C, McCormick D, Linden G, The role of cathepsin C in Papillon-Lefevre syndrome, prepubertal periodontitis, and aggressive periodontitis. Human mutation, 2004,23(3):222-228.
    15 Spektor MD, Vandesteen GE, Page RC. Clinical studies of one family manifesting rapidly progressive, juvenile and prepubertal periodontitis. Journal of periodontology, 1985,56(2):93-101.
    16 Hart TC, Marazita ML, Schenkein HA, No female preponderance in juvenile periodontitis after correction for ascertainment bias. Journal of periodontology, 1991,62(12):745-749.
    17 Potter RH. Etiology of periodontitis: the heterogeneity paradigm. Journal of periodontology, 1989,60(10):593-597.
    18 Stabholtz A, Mann J, Agmon S, Soskolne WA. The descriptionof a unique population with a very high prevalence of localized juvenile periodontitis. J Clin Periodontol, 1998,25(11):872-878.
    19 Boughman JA, Beaty TH, Yang P, Problems of genetic model testing in early onset periodontitis. Journal of periodontology, 1988,59(5):332-337.
    20 Beaty TH, Boughman JA, Yang P, Genetic analysis of juvenile periodontitis in families ascertained through an affected proband. American journal of human genetics, 1987,40(5):443-452.
    21 Hewitt, C, McCormick, D, Linden, G, The role of cathepsin C in Papillon-Lefevre syndrome, prepubertal periodontitis, and aggressive periodontitis. Hum Mutat,2004. 23(3): 222-228.
    22 Hernandez, A, Aguirre-Negrete, M.G, Ramirez-Soltero, S, A distinct variant of the Ehlers-Danlos syndrome. Clin Genet,1979. 16(5): 335-339.
    23 Straub, A.M, Grahame, R, Scully, C, Severe periodontitis in Marfan's syndrome: a case report. J Periodontol,2002. 73(7):823-826.
    24 Meyle, J, Gonzales, J.R. Influences of systemic diseases on periodontitis in children and adolescents. Periodontol 2000,2001. 92-112.
    25 Vandesteen GE, Altman LC, Spektor M, Leukocyte function, microflora, and antibody studies of four families with periodontitis. Journal of periodontal research, 1982,17(5):498-499.
    26 Irfan UM, Dawson DV, Bissada NF. Assessment of familial patterns of microbial infection in periodontitis. Journal of periodontology, 1999,70(11):1406-418.
    27 Kinane DF, Hart TC. Genes and gene polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med JT - Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists, 2003,14(6):430-449.
    28 Boughman JA, Stick MJ, Peterson DA, Linkage analysis and predicting geneticdisease.Clinics in laboratory medicine, 1992,12(3):449-461.
    29 MacDougall M, Jeffords LG, Gu TT, Genetic linkage of the dentinogenesis imperfecta type III locus to chromosome 4q. Journal of dental research, 1999,78(6):1277-1282.
    30 Li, Y, Xu, L, Hasturk, H, Localized aggressive periodontitis is linked to human chromosome 1q25. Hum Genet,2004. 114(3):291-297.
    31 Kornman KS, Crane A, Wang HY, The interleukin-1 genotype as a severity factor in adult periodontal disease. Journal of clinical periodontology, 1997,24(1):72-77.
    32 Sachidanandam R, Weissman D, Schmidt SC, A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001,409(6822):928-933.
    33 Scapoli C, Trombelli L, Mamolini E, Linkage disequilibrium analysis of case-control data: an application to generalized aggressive periodontitis. Genes and immunity, 2005,6(1): 44-52.
    34 Quappe L, Jara L, Lopez NJ. Association of interleukin-1 polymorphisms with aggressive periodontitis. Journal of periodontology, 2004,75(11):1509-1515.
    35 Parkhill JM, Hennig BJ, Chapple IL, Association of interleukin-1 gene polymorphisms with early-onset periodontitis. Journal of clinical periodontology, 2000,27(9):682-689.
    36 Diehl SR, Wang Y, Brooks CN, Linkage disequilibrium of interleukin-1 genetic polymorphisms with early-onset periodontitis. Journal of periodontology, 1999,70(4):418-430.
    37 Hodge PJ, Riggio MP, Kinane DF. Failure to detect an association with IL1 genotypes in European Caucasians with generalised early onset periodontitis. Journal of clinical periodontology, 2001,28(5):430-436.
    38 Sakellari D, Katsares V, Georgiadou M, No correlation of five gene polymorphisms with periodontal conditions in a Greek population. Journal of clinical periodontology, 2006,33(11):765-770.
    39 Tai, H, Endo, M, Shimada, Y, Association of interleukin-1 receptor antagonist gene polymorphisms with early onset periodontitis in Japanese. J Clin Periodontol,2002. 29(10): 882-888.
    40 Walker SJ, Van Dyke TE, Rich S, Genetic polymorphisms of the IL-1alpha and IL-1beta genes in African-American LJP patients and an African-American control population. Journal of periodontology, 2000,71(5):723-728.
    41 Anusaksathien O, Sukboon A, Sitthiphong P, Distribution of interleukin-1beta(+3954) and IL-1alpha(-889) genetic variations in a Thai population group. Journal ofperiodontology, 2003,74(12):1796-1802.
    42 李启艳,赵红珊,孟焕新,等. 白细胞介素-1 基因多态性与侵袭性牙周炎的关系. 上海口腔医学, 2005,14(4):333-337.
    43 Li QY, Zhao HS, Meng HX, Association analysis between interleukin-1 family polymorphisms and generalized aggressive periodontitis in a Chinese population. Journal of periodontology, 2004,75(12): 1627-1635.
    44 Michel J, Gonzales JR, Wunderlich D, Interleukin-4 polymorphisms in early onset periodontitis. Journal of clinical periodontology, 2001,28(5):483-488.
    45 Gonzales JR, Kobayashi T, Michel J, Interleukin-4 gene polymorphisms in Japanese and Caucasian patients with aggressive periodontitis. Journal of clinical periodontology, 2004,31(5):384-389.
    46 Kinane DF, Hodge P, Eskdale J, Analysis of genetic polymorphisms at the interleukin-10 and tumour necrosis factor loci in early-onset periodontitis.Journal of periodontal research, 1999,34(7):379-386.
    47 Moreira PR, de Sa AR, Xavier GM, A functional interleukin-1 beta gene polymorphism is associated with chronic periodontitis in a sample of Brazilian individuals.Journal of periodontal research, 2005,40(4):306-311.
    48 Brett PM, Zygogianni P, Griffiths GS, Functional gene polymorphisms in aggressive and chronic periodontitis. Journal of dental research, 2005,84(12):1149-1153.
    49 Loos BG, Leppers-Van de Straat FG, Van de Winkel JG, Fcgamma receptor polymorphisms in relation to periodontitis. Journal of clinical periodontology, 2003,30(7):595-602.
    50 Chung HY, Lu HC, Chen WL, Gm (23) allotypes and Fcgamma receptor genotypes as risk factors for various forms of periodontitis. Journal of clinical periodontology, 2003,30(11):954-960.
    51 Kobayashi T, Sugita N, van der Pol WL, The Fcgamma receptor genotype as a risk factor for generalized early-onset periodontitis in Japanese patients. Journal of periodontology, 2000,71(9): 1425-1432.
    52 Fu Y, Korostoff JM, Fine DH, Fc gamma receptor genes as risk markers for localized aggressive periodontitis in African-Americans. Journal of periodontology, 2002,73(5):517-523.
    53 Yasuda K, Sugita N, Kobayashi T, FcgammaRIIB gene polymorphisms in Japanese periodontitis patients. Genes and immunity, 2003,4(8):541-546.
    54 张华湘,谢昊,任铁冠. FcγR ⅢB 基因、G2m(23)因子与侵袭性牙周炎的研究. 中华口腔医学杂志, 2003,38(2):129-131.
    55 Hennig BJ, Parkhill JM, Chapple IL, Association of a vitamin D receptor gene polymorphism with localized early-onset periodontal diseases. Journal of periodontology, 1999,70(9):1032-1038.
    56 Yoshihara A, Sugita N, Yamamoto K, Analysis of vitamin D and Fcgamma receptor polymorphisms in Japanese patients with generalized early-onset periodontitis. Journal of dental research, 2001,80(12):2051-2054.
    57 Inagaki K, Krall EA, Fleet JC, Vitamin D receptor alleles, periodontal disease progression, and tooth loss in the VA dental longitudinal study. Journal of periodontology, 2003,74(2):161-167.
    58 de Souza, A.P, Trevilatto, P.C, Scarel-Caminaga, R.M, Analysis of the MMP-9 (C-1562 T) and TIMP-2 (G-418C) gene promoter polymorphisms in patients with chronic periodontitis. J Clin Periodontol,2005. 32(2):207-211.
    59 de Souza, A.P, Trevilatto, P.C, Scarel-Caminaga, R.M, MMP-1 promoter polymorphism: association with chronic periodontitis severity in a Brazilian population. J Clin Periodontol,2003. 154-8.
    60 Itagaki, M, Kubota, T, Tai, H, Matrix metalloproteinase-1 and -3 gene promoter polymorphisms in Japanese patients with periodontitis. J Clin Periodontol,2004.31(9) 764-769.
    61 Cao, Z, Li, C, Jin, L, Association of matrix metalloproteinase-1 promoter polymorphism with generalized aggressive periodontitis in a Chinese population. J Periodontal Res,2005. 40(6):427-431.
    62 Shapira, L, Eizenberg, S, Sela, M.N, HLA A9 and B15 are associated with the generalized form, but not the localized form, of early-onset periodontal diseases. J Periodontol,1994. 65(3): 219-223.
    63 Takashiba S, Noji S, Nishimura F, Unique intronic variations of HLA-DQ beta gene in early-onset periodontitis. Journal of periodontology, 1994,65(5):379-386.
    64 Ohyama H, Takashiba S, Oyaizu K, HLA Class II genotypes associated with early-onset periodontitis: DQB1 molecule primarily confers susceptibility to the disease. Journal of periodontology, 1996,67(9):888-894.
    65 Hodge PJ, Riggio MP, Kinane DF. No association with HLA-DQB1 in European Caucasians with early-onset periodontitis. Tissue antigens, 1999,54(2):205-207.
    66 Bonfil, J.J, Dillier, F.L, Mercier, P, A "case control" study on the role of HLA DR4 in severe periodontitis and rapidly progressive periodontitis. Identification of types andsubtypes using molecular biology (PCR.SSO). J Clin Periodontol,1999. 26(2):77-84.
    67 Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. Journal of periodontology, 1999,70(10):1194-1201.
    68 Zhang, Y, Syed, R, Uygar, C, Evaluation of human leukocyte N-formylpeptide receptor (FPR1) SNPs in aggressive periodontitis patients. Genes Immun,2003. 4(1): 22-29.
    69 Jones BE, Miettinen HM, Jesaitis AJ, Mutations of F110 and C126 of the formyl peptide receptor interfere with G-protein coupling and chemotaxis. Journal of periodontology, 2003,74(4):475-484.
    70 束蓉,雷建强,等. 侵袭性牙周炎与 FMLP 受体单核苷酸多态性. 牙体牙髓牙周病学杂志, 2003,13(3):119-122.
    71 Newman, M.G. Genetic risk for severe periodontal disease. Compend Contin Educ Dent,1997. 18(9): 881-884,.
    1 Sorsa, T, Tjaderhane, L, Salo, T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis,2004. 10(6):311-318.
    2 Sternlicht, M.D, Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol,2001. 17: 463-516.
    3 Ingman, T, Sorsa, T, Lindy, O, Multiple forms of gelatinases/type IV collagenases in saliva and gingival crevicular fluid of periodontitis patients. J Clin Periodontol,1994. 21(1): 26-31.
    4 Reynolds, J.J. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis,1996. 2(1): 70-76.
    5 Beaudeux, J.L, Giral, P, Bruckert, E, Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med,2004. 42(2): 121-131.
    6 Kahari, V.M, Saarialho-Kere, U. Matrix metalloproteinases in skin. Exp Dermatol,1997. 6(5): 199-213.
    7 Strongin AY, Collier I, Bannikov G, Mechanism of cell surface activation of 72-KDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. The Journal of biological chemistry, 1995,270(10):5331-5338.
    8 Seguier, S, Gogly, B, Bodineau, A, Is collagen breakdown during periodontitis linked to inflammatory cells and expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gingival tissue?. J Periodontol,2001. 72(10): 1398-1406.
    9 Nagase, H. Activation mechanisms of matrix metalloproteinases. Biol Chem,1997. 378(3-4): 151-160.
    10 Awakura, Y, Ito, N, Nakamura, E, Matrix metalloproteinase-9 polymorphisms and renal cell carcinoma in a Japanese population. Cancer Lett,2006. 241(1):59-63.
    11 Lind AK, Dahm-Kahler P, Weijdegard B, Gelatinases and their tissue inhibitors during human ovulation: increased expression of tissue inhibitor of matrix metalloproteinase-1. Molecular human reproduction, 2006,12(12):725-736.
    12 Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix. Current Opinion in Cell Biology,1995. 7(5): 728-735.
    13 Birkedal-Hansen, H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol,1993. 64(5): 474-484.
    14 Choi, B.K, Jung, J.H, Suh, H.Y, Activation of matrix metalloproteinase-2 by a novel oral spirochetal species Treponema lecithinolyticum. J Periodontol,2001. 72(11): 1594-1600.
    15 Ding, Y, Uitto, V.J, Firth, J, Modulation of host matrix metalloproteinases by bacterial virulence factors relevant in human periodontal diseases. Oral Dis,1995. 1(4): 279-286.
    16 Miller, C.S, King, C.P, Jr, Langub, M.C, Salivary biomarkers of existing periodontal disease: a cross-sectional study. J Am Dent Assoc,2006. 137(3):322-329.
    17 Mantyla P, Stenman M, Kinane D, Monitoring periodontal disease status in smokers and nonsmokers using a gingival crevicular fluid matrix metalloproteinase-8-specific chair-side test.Journal of periodontal research, 2006,41(6):503-512.
    18 Smith PC, Munoz VC, Collados L, In situ detection of matrix metalloproteinase-9 (MMP-9) in gingival epithelium in human periodontal disease.Journal of periodontal research, 2004,39(2):87-92.
    19 Tiranathanagul, S, Yongchaitrakul, T, Pattamapun, K, Actinobacillus actinomycetemcomitans lipopolysaccharide activates matrix metalloproteinase-2 and increases receptor activator of nuclear factor-kappaB ligand expression in human periodontal ligament cells. J Periodontol,2004. 75(12):1647-1654.
    20 Pozo P, Valenzuela MA, Melej C, Longitudinal analysis of metalloproteinases, tissue inhibitors of metalloproteinases and clinical parameters in gingival crevicular fluid from periodontitis-affected patients.Journal of periodontal research, 2005,40(3):199-207.
    21 Dahan, M, Nawrocki, B, Elkaim, R, Expression of matrix metalloproteinases in healthy and diseased human gingiva. J Clin Periodontol,2001. 28(2): 128-136.
    22 Ejeil, A.L, Igondjo-Tchen, S, Ghomrasseni, S, Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. J Periodontol,2003. 74(2): 188-195.
    23 Westerlund, U, Ingman, T, Lukinmaa, P.L, Human neutrophil gelatinase and associated lipocalin in adult and localized juvenile periodontitis. J Dent Res,1996. 75(8):1553-1563.
    24 Kumar MS, Vamsi G, Sripriya R, Expression of matrix metalloproteinases (MMP-8 and -9) in chronic periodontitis patients with and without diabetes mellitus. Journal of periodontology, 2006,77(11):1803-1808.
    25 Furuholm J, Sorsa T, Qvarnstrom M, Salivary matrix metalloproteinase-8 in patients with and without coronary heart disease may indicate an increased susceptibility to periodontal disease.Journal of periodontal research, 2006,41(5):486-489.
    26 Naesse EP, Schreurs O, Helgeland K, Matrix metalloproteinases and their inhibitors in gingival mast cells in persons with and without human immunodeficiency virus infection.Journal of periodontal research, 2003,38(6):575-582.
    27 Tuter, G, Kurtis, B, Serdar, M. Effects of phase I periodontal treatment on gingivalcrevicular fluid levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. J Periodontol,2002. 73(5): 487-493.
    28 Maeso G, Bravo M, Bascones A. Levels of metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-1 in gingival crevicular fluid of patients with periodontitis, gingivitis, and healthy gingiva. Quintessence international (Berlin, Germany : 1985), 2007,38(3):247-252.
    29 Ryan, M.E, Golub, L.M. Modulation of matrix metalloproteinase activities in periodontitis as a treatment strategy. Periodontology 2000,2000. 24: 226-238.
    30 Gendron, R, Grenier, D, Sorsa, T, Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol,1999. 6(3): 437-439.
    31 Chakraborti S, Mandal M, Das S, Regulation of matrix metalloproteinases: an overview. Molecular and cellular biochemistry, 2003,253(1-2):269-285.
    32 Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. Journal of cellular physiology, 2007,211(1):19-26.
    33 Ye, S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol,2000. 19(7): 623-629.
    34 Holla, L.I, Fassmann, A, Vasku, A, Genetic variations in the human gelatinase A (matrix metalloproteinase-2) promoter are not associated with susceptibility to, and severity of, chronic periodontitis. J Periodontol,2005.76(7) 1056-1060.
    35 Zhang B, Y.S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation,1999. 99(14): 1788-1794.
    36 de Souza, A.P, Trevilatto, P.C, Scarel-Caminaga, R.M, Analysis of the MMP-9 (C-1562 T) and TIMP-2 (G-418C) gene promoter polymorphisms in patients with chronic periodontitis. J Clin Periodontol,2005. 32(2): 207-211.
    1 Siteman E, Businger AC, Gandhi TK, Clinicians recognize value of patient review of their electronic health record data. AMIA . Annual Symposium proceedings / AMIA Symposium. AMIA Symposium, 2006:1101.
    2 吴巧敏, 谷卫. 浅谈的发展. 国外医学:社会医学分册, 2005,22(1):23-25.
    3 吕 孟 涛 , 李 道 苹 , 吴 静 . 电 子 健 康 档 案 现 状 分 析 与 展 望 . 医 学 与 社 会 , 2006,19(7):60-61,F0003.
    4 Heins PJ, Fuller WW, Fries SE. Periodontal probe use in general practice in Florida. Journal of the American Dental Association, 1989,119(1):147-150.
    5 Breen HJ, Rogers PA, Johnson NW. Improvements in methods of periodontal probing: comparison of relative attachment level data selected by outlier reduction protocols from Florida disc probe measurements. Journal of clinical periodontology, 2002,29(8):679-687.
    6 曹采方. 牙周病学. 第二版. 北京:人民卫生出版社,2004.
    7 Jan Lindhe. Textbook of Clinical Periodontology. 2nd edition ed:Munksgaard Intl Pub Ltd,1984.
    8 Walter B, Hall. Critical Decisions in Periodontology. Fourth Edtion ed. London:BC Decker Inc. Hamilton,2003.
    9 袁晓君,刘宏立,袁晓文. Delphi 计算机语言函数应用. 北京:科学出版社,2000.
    10 刘瑞新. DHTML 动态网页高级编程. 北京:人民邮电出版社,2000.
    11 刘瑞新. ASP 编程基础及应用教程. 北京:机械工业出版社,2004.
    12 Gibbs CH, Hirschfeld JW, Lee JG, Description and clinical evaluation of a new computerized periodontal probe--the Florida probe. Journal of clinical periodontology, 1988,15(2):137-144.
    13 汪东生, 黎晓新. 眼科电子病历网络信息系统的开发与应用. 中华眼科杂志, 2006,42(3):267-272.
    14 Hammond WE, Hales JW, Lobach DF, Integration of a computer-based patient record system into the primary care setting. Computers in nursing, 1997,15(2 Suppl):S61-68.
    15 Linder JA, Schnipper JL, Tsurikova R, Barriers to Electronic Health Record Use during Patient Visits. Annual Symposium proceedings / AMIA Symposium. AMIA Symposium, 2006:499-503.
    16 杨伯泉,金国健,莫经刚,等. 试行开展电子病历的紧迫性. 中国现代临床医学, 2004,3(10):102-104.
    17 黄穗,刘剑,DonaldYu. 一种牙髓病尖周病电子病历的设计和实现. 牙体牙髓牙周病学杂志, 2005,15(4):211-215.
    18 Fleming NS, Herrin J, Roberts W, Patient-centeredness and timeliness in a primary care network: baseline analysis and power assessment for detection of the effects of an electronic health record. Proc (Bayl Univ Med Cent), 2006,19(4):314-319.
    19 Kim E, Mayani A, Modi S, Evaluation of patient-centered electronic health record to overcome digital divide. Conf Proc IEEE Eng Med Biol Soc JT - Conference proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2005,2:1091-1094.
    20 Martin D, Mariani J, Rouncefield M. Managing integration work in an NHS electronic patient record (EPR) project. Health informatics journal, 2007,13(1):47-56.
    21 王利顺, 周宏宇. 影响电子病历质量的原因及其对策. 中华现代医院管理杂志, 2005,3(11):973-974.
    1 Cox, S.W, Eley, B.M, Kiili, M, Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases. Oral Dis,2006. 34-40.
    2 Sachidanandam R, Weissman D, Schmidt SC, A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928-933.
    3 Price, S.J, Greaves, D. R,Watkins, H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem,2001. 276(10): 7549-7558.
    4 Zhang B, Y.S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation,1999. 99(14):1788-1794.
    5 Reynolds, J.J. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis,1996.2(1) 70-76.
    6 Hirano, K.S, T.Uchida, Y.Morishima, Y.Masuyama, K.Ishii, Y.Nomura, A.Ohtsuka, M.Sekizawa, K. Tissue inhibitor of metalloproteinases-2 gene polymorphisms in chronic obstructive pulmonary disease. Eur Respir J,2001. 748-752.
    7 de Souza, A.P, Trevilatto, P.C, Scarel-Caminaga, R.M, MMP-1 promoter polymorphism: association with chronic periodontitis severity in a Brazilian population. J Clin Periodontol,2003. 154-158.
    8 Cao, Z, Li, C, Jin, L, Association of matrix metalloproteinase-1 promoter polymorphism with generalized aggressive periodontitis in a Chinese population. J Periodontal Res,2005. 40(6):427-431.
    9 段海燕,章锦才,等. 四种方法获取 DNA 用于检测 IL—1 基因多态性的比较分析. 华西口腔医学杂志, 2001,19(1):11-13.
    10 Baechtel FS, Presley KW, Smerick JB. D1S80 typing of DNA from simulated forensic specimens. Journal of forensic sciences, 1995,40(4):536-545.
    11 Ding Y, Uitto VJ, Firth J, Modulation of host matrix metalloproteinases by bacterial virulence factors relevant in human periodontal diseases. Oral diseases, 1995,1(4):279-286.
    12 Walsh DJ, Corey AC, Cotton RW, Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. Journal of forensic sciences, 1992,37(2): 387-395.
    13 van Schie RC, Wilson ME. Saliva: a convenient source of DNA for analysis of bi-allelicpolymorphisms of Fc gamma receptor IIA (CD32) and Fc gamma receptor IIIB (CD16). Journal of immunological methods, 1997,208(1):91-101.
    14 de Lamballerie X, Zandotti C, Vignoli C, A one-step microbial DNA extraction method using "Chelex 100" suitable for gene amplification. Research in microbiology, 1992,143(8):785-90.
    15 Yoshimi N, Suzuki M, Wang A, One step procedure of PCR-DNA extraction from paraffin-embedded materials by Chelex-100. Acta pathologica japonica, 1993,43(12):790-791.
    16 Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 1991,10(4):506-513.
    17 Polski JM, Kimzey S, Percival RW, Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100. Molecular pathology : MP, 1998,51(4):215-217.
    18 Thomson DM, Brown NN, Clague AE. Routine use of hair root or buccal swab specimens for PCR analysis: advantages over using blood. Clinica chimica acta; international journal of clinical chemistry, 1992,207(3):169-174.
    19 Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation.- The Journal of biological chemistry, 2001,276(10):7549-7558.
    20 Vasku A, Goldbergova M, Izakovicova Holla L, A haplotype constituted of four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) is associated with coronary triple-vessel disease. Matrix biology : journal of the International Society for Matrix Biology, 2004,22(7):585-591.
    21 Miao X, Yu C, Tan W, A functional polymorphism in the matrix metalloproteinase-2 gene promoter (-1306C/T) is associated with risk of development but not metastasis of gastric cardia adenocarcinoma. Cancer research, 2003,63(14):3987-3990.
    22 Xu E, Lai M, Lv B, A single nucleotide polymorphism in the matrix metalloproteinase-2 promoter is associated with colorectal cancer. Biochemical and biophysical research communications, 2004,324(3):999-1003.
    23 Tonetti MS, Mombelli A. Early-onset periodontitis. Annals of periodontology / the American Academy of Periodontology, 1999,4(1):39-53.
    24 Armitage GC. Development of a classification system for periodontal diseases and conditions. Annals of periodontology / the American Academy of Periodontology, 1999,4(1):1-6.
    25 Zhou Y, Yu C, Miao X, Substantial reduction in risk of breast cancer associated with genetic polymorphisms in the promoters of the matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 genes. Carcinogenesis, 2004,25(3):399-404.
    26 Devlin B, Roeder K, Wasserman L. Analysis of multilocus models of association.Genetic epidemiology, 2003,25(1):36-47.
    27 Ejeil, A.L, Igondjo-Tchen, S, Ghomrasseni, S, Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. J Periodontol,2003. 188-195.
    28 Holla, L.I, Fassmann, A, Vasku, A, Genetic variations in the human gelatinase A (matrix metalloproteinase-2) promoter are not associated with susceptibility to, and severity of, chronic periodontitis. J Periodontol,2005. 76(7)1056-1060.
    29 Loos, B.G, John, R.P, Laine, M.L. Identification of genetic risk factors for periodontitis and possible mechanisms of action. J Clin Periodontol,2005. 159-179.
    30 Xu, E, Lai, M, Lv, B, DHPLC analysis of the matrix metalloproteinase-1 promoter 1G/2G polymorphism that can be easily used to screen large population. J Biochem Biophys Methods,2005. 222-227.
    31 Blankenberg S, Rupprecht HJ, Poirier O, Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation, 2003,107(12):1579-1585.
    32 张荣葆,何权瀛,杨瑞红,等. 中国北方汉族人基质金属蛋白酶 1、9、12 基因多态性与慢性阻塞性肺疾病易感性的研究. 中华流行病学杂志, 2005,26(11):907-910.
    33 Peres, R.C, Line, S.R. Analysis of MMP-9 and TIMP-2 gene promoter polymorphisms in individuals with hypodontia. Braz Dent J,2005. 231-236.
    34 Keles GC, Gunes S, Sumer AP, Association of matrix metalloproteinase-9 promoter gene polymorphism with chronic periodontitis. Journal of periodontology, 2006,77(9):1510-1514.
    35 De Clerck, Y, Darville, M, Eeckhout, Y, Characterization of the promoter of the gene encoding human tissue inhibitor of metalloproteinases-2 (TIMP-2). Gene,1994. 185-191.
    1 Ejeil AL, Igondjo-Tchen S, Ghomrasseni S, Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. Journal of periodontology, 2003,74(2):188-95.
    2 Sorsa T, Ding Y, Salo T, Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. Annals of the New York Academy of Sciences, 1994,732:112-131.
    3 Reynolds JJ, Hembry RM, Meikle MC. Connective tissue degradation in health and periodontal disease and the roles of matrix metalloproteinases and their natural inhibitors. Advances in dental research, 1994,8(2):312-9.
    4 Meikle MC, Hembry RM, Holley J, Immunolocalization of matrix metalloproteinases and TIMP-1 (tissue inhibitor of metalloproteinases) in human gingival tissues from periodontitis patients.Journal of periodontal research, 1994,29(2):118-26.
    5 Maeso G, Bravo M, Bascones A. Levels of metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-1 in gingival crevicular fluid of patients with periodontitis, gingivitis, and healthy gingiva. Quintessence Int JT - Quintessence international (Berlin, Germany : 1985), 2007,38(3):247-52.
    6 Makela M, Salo T, Uitto VJ, Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. Journal of dental research, 1994,73(8):1397-406.
    7 Seguier, S, Gogly, B, Bodineau, A, Is collagen breakdown during periodontitis linked to inflammatory cells and expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gingival tissue?. J Periodontol,2001. 72(10): 1398-1406.
    8 Tervahartiala, T, Pirila, E, Ceponis, A, The in vivo expression of the collagenolytic matrix metalloproteinases (MMP-2, -8, -13, and -14) and matrilysin (MMP-7) in adult and localized juvenile periodontitis. J Dent Res,2000. 79(12): 1969-1977.
    9 Westerlund U, Ingman T, Lukinmaa PL, Human neutrophil gelatinase and associated lipocalin in adult and localized juvenile periodontitis. Journal of dental research, 1996,75(8):1553-1563.
    10 Golub LM, Sorsa T, Lee HM, Doxycycline inhibits neutrophil (PMN)-type matrix metalloproteinases in human adult periodontitis gingiva. Journal of clinical periodontology, 1995,22(2):100-109.
    11 Soell M, Elkaim R, Tenenbaum H. Cathepsin C, matrix metalloproteinases, and their tissue inhibitors in gingiva and gingival crevicular fluid from periodontitis-affected patients. Journal of dental research, 2002,81(3):174-178.
    12 Reynolds JJ. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral diseases, 1996,2(1):70-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700