斜卧青霉木质纤维素酶系的合成调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,木质纤维素降解酶系已广泛地应用于能源、纺织、印染、造纸、洗涤、食品、饲料、酿酒等多个行业,显示了巨大的市场潜力。随着资源短缺、环境污染和能源危机的加剧,利用廉价的木质纤维素类可再生资源生产液体燃料和生物化工产品,不仅能够节粮代粮,缓解能源危机,同时还可以保护环境,促进全球经济的可持续发展。但木质纤维素酶系的产量和酶的比活力低,以及酶系组成不合理一直是制约木质纤维素酶系实际应用的重要原因。就我们的理解,木质纤维素、生物质降解酶和微生物这三个要素构成一个动态互作系统,深入研究每个要素及其之间的关系是提高生物质能源的生产能力、缓解能源危机的便捷之路。在这三个要素中,人们对微生物的关注主要集中于优良菌株的选育和改良,包括菌株的筛选和诱变。目前用到的方法有常规理化诱变、基因组重排、细胞融合和分子插入诱变等,但这些方法都属于随机的菌株改良策略,不仅工作量大,而且没有针对性。具有针对性的菌株的定向工程改良近来受到人们的重视,但其前提是弄清酶的合成调控机制。因此,研究微生物木质纤维素酶系的合成与调控不仅具有重要的理论意义,而且有助于通过改进营养策略和生物过程设计或通过定向工程改良,提高酶的生产和应用。
     研究表明,不同来源的木质纤维素酶系的酶系组成及合成调控机理往往存在差异,而目前国内外的研究主要围绕木霉和曲霉的合成调控展开的,对其它丝状真菌尤其是青霉木质纤维素酶系合成调控的研究较少。本论文从改进木质纤维素、生物质降解酶和微生物这一动态互作系统的角度出发,以我们实验室选育的斜卧青霉为实验材料,研究了其木质纤维素酶系的合成调控机理,丰富了对相关领域的认识,同时为菌株的定向工程改良和生物过程设计,提供了可靠的实验数据和理论依椐。本论文的主要研究结果如下;
     1克隆了青霉木质纤维素酶系合成调控因子基因creA与acel,初探了菌株JU-A10的抗降解物阻遏突变机理
     利用TAIL-PCR和RT-PCR技术克隆了青霉木质纤维素酶系合成调控因子编码基因creA与acel。creA基因全长为1251bp,不含有内含子,编码417个氨基酸。CRE A蛋白理论分子量和等电点分别为44956.072 Da和pI 9.735。acel基因全长为2836 bp,含有3个内含子,大小分别为129 bp、165 bp和58 bp。acel基因共编码827个氨基酸。ACE I蛋白的理论分子量和等电点分别为89871.29 Da和pI 5.685。转录分析表明斜卧青霉的creA与acel基因是组成性表达的。通过对斜卧青霉114-2及其突变菌株JU-A10的creA与acel基因的序列和转录比较发现,两菌株的creA与acel基因的序列和转录情况相同。因此,菌株JU-A10的抗降解物阻遏特征不是由于碳源代谢抑制因子CRE A或ACE I的突变而引起的。结合已有的知识和分析,菌株JU-A10的脱阻遏特征应该是由产能代谢发生了变化引起的。
     2揭示了斜卧青霉基础性与诱导性纤维素酶的组成及区别
     通过对诱导与阻遏条件下斜卧青霉胞外纤维素酶活力测定和活性染色进行分析,发现斜卧青霉的胞外存在基础性纤维素酶,基础性纤维素酶由内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶组成。其中基础性与诱导性表达的内切葡聚糖酶组分是不同的,部分诱导性内切葡聚糖酶组分只有在诱导条件下才合成。转录分析表明,斜卧青霉的主要纤维素酶基因cbh1、cbh2、egl1、egl2和bgl1均存在低水平的基础性转录,除了β-葡萄糖苷酶和外切葡聚糖酶外,只有部分内切葡聚糖酶基因转录后进行了翻译并分泌到胞外,这部分组分才是真正的基础性内切葡聚糖酶。
     基础性内切葡聚糖酶由4个组分组成,分子量大小分别为43 kDa,39 kDa、36 kDa和34 kDa。其中34 kDa蛋白是最先表达的关键基础性内切葡聚糖酶。对纯化的34 kDa基础性内切葡聚糖酶和45 kDa诱导性内切葡聚糖酶的性质比较显示,斜卧青霉中基础性的与诱导性的内切葡聚糖酶不是由同一基因编码。3纯化了斜卧青霉的主要纤维素酶组分并构建了其肽质量指纹图谱库
     利用多种色谱分离技术相结合方法从斜卧青霉114-2发酵液中分离得到了1个纯β-葡萄糖苷酶和6个内切葡聚糖酶组分。β-葡萄糖苷酶的分子量大小为124kDa。其对底物水杨素的Km值为0.0007 mol/L。β-葡萄糖苷酶最适作用温度和pH分别为65℃和pH 4-5。6个内切葡聚糖酶的分子量大小分别约为100 kDa、60 kDa、49 kDa、45 kDa、34 kDa和24 kDa。其中45 kDa和34 kDa内切葡聚糖酶达到了电泳纯,二者对底物CMC-Na的Km值分别为0.7793 g/L和0.8365g/L。45 kDa与34 kDa内切葡聚糖酶的最适作用温度均为55-60℃,最适作用pH分别为pH 4.5和pH 5.0。这2种内切葡聚糖酶及β-葡萄糖苷酶在50℃以下及偏酸性的条件下能保持较好的稳定性。
     通过将纯化的纤维素酶进行SDS-PAGE后胶内酶解和MALDI-TOF质谱分析,并结合对斜卧青霉纤维素酶基因或基因片段编码蛋白序列的分析,构建了斜卧青霉纤维素酶的肽质量指纹图谱(PMF)库。本PMF库中包含1种β-葡萄糖苷酶、6种内切葡聚糖酶和2种外切葡聚糖酶的肽质量指纹图。
     4建立了斜卧青霉胞外差异蛋白组研究技术体系
     通过条件优化,建立了稳定可靠的斜卧青霉胞外蛋白的双向电泳实验方法。比较诱导与阻遏条件下斜卧青霉114-2胞外蛋白的双向电泳图谱发现,在诱导与阻遏条件下共同存在的蛋白点约23个,而在诱导条件下,斜卧青霉胞外蛋白的种类和数量较阻遏条件下明显增多,多出的蛋白点近40个。
     我们比较了三种蛋白鉴定方法;一种是采用MASCOT搜索引擎对蛋白的PMF在NCBInr数据库中检索;第二种是通过软件GPMAW 6.0或手工方法对蛋白的PMF在我们构建的斜卧青霉纤维素酶的PMF数据库中检索。第三种是采用MASCOT搜索引擎对串联质谱结果在NCBInr数据库中检索。通过比较,验证了通过纯化蛋白构建数据库用于蛋白鉴定的方法可行性。采用这种方法,我们共鉴定出2个β-葡萄糖苷酶、13个内切葡聚糖酶。其中2个β-葡萄糖苷酶和2个内切葡聚糖酶是基础性表达的。
     5分析了麦麸中各组分对斜卧青霉生物质降解酶系合成的影响,找出了促进纤维素酶合成的关键因子之一是可溶性的纤维类寡糖
     在不同成分含量的碳源培养条件下,通过测定斜卧青霉菌体生长量和胞外生物质降解酶活力发现;麦麸中的淀粉可以诱导斜卧青霉淀粉酶的合成,但不能提供菌体生长需要的生长因子,过量时会抑制纤维素酶与木聚糖酶的合成。麦麸中的蛋白能帮助斜卧青霉生长,但添加过量蛋白也会抑制斜卧青霉纤维素酶、木聚糖酶与蛋白酶的合成。麦麸中的木聚糖可以诱导斜卧青霉纤维素酶与木聚糖酶的合成,但对纤维素酶的诱导能力明显低于对木聚糖酶的。
     研究表明促进斜卧青霉纤维素酶合成的关键因子主要在麦麸汁中。通过对麦麸汁的成分分析及添加纤维寡糖实验,证明了麦麸中促进斜卧青霉纤维素酶合成的关键因子之一是其可溶性成分中的纤维类寡糖。因此,测定和控制培养基中淀粉、蛋白和纤维类寡糖含量是稳定和提高斜卧青霉纤维素酶产量的重要措施。
At present,lignocellulose-degrading enzymes have been widely used in many industries such as energy,textile,dyeing,pulp and paper,detergent,food,feed and brewing.Therefore,they have huge market potentials.With the intensification of resource shortage,environment pollution and energy crisis,liquid fuel derived from renewable resource such as lignocellulose are becoming an alternative that can dramatically boost economic growth,alleviate energy crisis,and protect environment. As is well known,low production yield and specific activity,and unbalanced composition of enzyme system,are always the important factors that restrict the actual application of lignocellulose-degrading enzymes.To our understanding, lignocellulose,biomass-degrading enzymes and microorganisms form a dynamic and interactional system,and studying each factor and revealing their relationship will help us to improve biomass energy production and alleviate the energy crisis.For the improvement of microorganisms,most attentions have been focused on the selection and breeding of fine strains.Current methods,such as traditional physical or chemical mutation,genome shuffling,cell fusion and molecular mutation belong to random strategy for strain improvement,which are always time consuming and aimless.Therefore,directional engineering renovation of microorganisms is of high interest recently.But it is on the premise that the regulation mechanisms of enzyme synthesis are well clarified.So understanding the synthesis and regulation of lignocellulose-degrading enzymes in microorganisms is not only important for theoretical studies,but also helpful to enhance the production and application of lignocellulose-degrading enzymes by the improvement of nutritional strategy, bioprocess designing or directional engineering renovation of cellulolytic microorganisms.
     Lignocellulose-degrading enzymes from different sources often have different compositions and regulation mechanisms of synthesis.However,Current research is mainly around the synthesis regulation of Trichoderma and Aspergillus,few research regarding the regulation of cellulase synthesis in other filamentous fungi especially Penicillium is available.For the sake of improving the dynamic systems consisting of lignocellulose,biomass-degrading enzymes and microorganisms,in the thesis,the regulation mechanisms of the synthesis of lignocellulose-degrading enzymes in P. decumbens were studied.That would be helpful to deepen our understanding in related fields and provide reliable experimental data and theoretical basis for bioprocess designing and directional engineering renovation of cellulolytic fungi. The main results of the thesis are as follows;
     1 Cloning of creA and acel encoding cellulase regulation factors in P.decumbens and the mutation mechanism of strain JU-A10.
     creA and acel encoding cellulase regulation factors in P.decumbens were cloned by TAIL-PCR and RT-PCR.DNA sequencing results showed that creA had an open reading frame of 1251 bp without introns and encoded a polypeptide of 417 amino acids with relative molecular weight of 44956.072 Da and isoelectric points(pI)of 9.735.acel was composed of 2836 bp long containing 3 introns(129 bp,165 bp and 58 bp)and encoded a polypeptide of 827 amino acids with relative molecular weight of 89871.29 Da and isoelectric points(pI)of 5.685.Transcriptional analysis showed that creA and acel were expressed at constitutive level in P.decumbens.By comparing the sequences and transcription of creA and ace1 in P.decumbens 114-2 with its mutant JU-A10,we found that the catabolite repression-resistant characteristics of strain JU-A10 were not caused by the mutation of catabolite repressors CRE A or ACE I.Based on previous knowledge and analysis,it is proposed that the catabolite repression-resistant characteristics of strain JU-A10 are caused by the change of energy-yielding metabolism.
     2 The composition of basal cellulases and their difference from induced celluloses of P.decumbens.
     Enzyme activity determination and activity staining of P.decumbens extracellular cellulase under induction and repression conditions showed that the basal cellulase existed extracellularly.Basal cellulase was composed of endoglucanase, cellobiohydrolase andβ-glucosidase.The compositions of basal and induced endoglucanases were different,and partial induced endoglucanases were synthesized only under induction condition.Transcripts of the main cellulase genes cbh1,cbh2, egl1,egl2 and bgl1 were detected in P.decumbens cells grown with glucose or cellulose,whereas the transcriptional levels of the five cellulase genes and especially that of cbhl and egll were lower under glucose-repression conditions.With the exceptions ofβ-glucosidase and cellobiohydrolase,only a subset of the endoglucanase transcripts was translated with the protein then being secreted from the cells,and these comprised the real basal endoglucanases.
     The basal endoglucanase contained four components with molecular weights of about 43 kDa,39 kDa,36 kDa and 34 kDa,and the 34-kDa protein was the first basal endoglucanase to be expressed.A comparison of two purified endoglucanase with molecular weights of 34 kDa(basal cellulase)and 45 kDa(induced cellulase), revealed that basal and induced endoglucanases were encoded by different genes.
     3 Purification of the main cellulose components from P.decumbens and construction of its peptide mass fingerprinting database.
     Oneβ-glucosidase and six endoglucanases were purified or partly purified from P. decumbens 114-2 fermentation broth by the combination of several steps of chromatographies.The molecular weight of theβ-glucosidase was 124 kDa,and the Km toward salicin was 0.0007 mol/L.The optima temperature and pH of theβ-glucosidase were 65℃and pH 4-5,respectively.The molecular weights of the six endoglucanases were 100 kDa,60 kDa,49 kDa,45 kDa,34 kDa and 24 kDa, respectively.The endoglucanases of 45 kDa and 34 kDa were purified to electrophoretic homogeneity for further study.The two endoglucanases had similar affinity toward CMC-Na with a Km of 0.8365 g/L and 0.7793 g/L respectively,and the same optimal temperature of 55℃to 60℃.The optimum pH of the two endoglucanases was pH 4.5 and pH 5.0,respectively.The activities of the two endoglucanases and theβ-glucosidase were stable when the temperature was below 50℃and in the acidic environment.
     By combining MALDI-TOF-MS analysis of the purified cellulases after SDS-PAGE,and sequence analysis of cellulase genes(or gene fragments)of P. decumbens,the peptide-mass-fingerprinting(PMF)database of cellulase from P. decumbens was constructed.The PMF database contains oneβ-glucosidase,six endoglucanases and two cellobiohydrolases.
     4 Establishment of the research system of extracellular differential proteomics of P.decumbens.
     Stable and reliable two-dimensional electrophoresis method of extracellular proteins of P.decumbens was established by optimization of conditions.By comparind of 2DE maps of the extracellular proteins of P.decumbens 114-2 under induction and repression conditions,it was showed that about 23 spots existed under both conditions,while under induction condition,the type and quantity of extracellular proteins increased obviously,with nearly 40 protein spots observed.
     Three methods for protein identification were compared,the first method was via searching the protein's PMF in NCBInr database using MASCOT search tool;the second method was via searching the protein's PMF in P.decumbens cellulase PMF database using GPMAW 6.0 search tool or manual method;the third method was via searching the results of tandem mass spectrometry in NCBInr database using MASCOT search tool.The method for protein identification through protein purification and database construction was proved to be feasible.By using this method,twoβ-glucosidase and 13 endoglucanases were found to be extracellular proteins of P.decumbens,in which twoβ-glucosidase and two endoglucanases were expressed at basal level.
     5 The effects of wheat bran composition and soluble cello-oligosaccharides on the production of biomass-hydrolyzing enzymes by P.decumbens.
     Determination of biomass and activities of extracellular biomass-hydrolyzing enzymes of P.decumbens cultured with different carbon-resource components showed that the starch content of wheat bran is an important,potentially negative factor.As high starch contents could stimulate amylase production,but could not maintain high levels of mycelial growth,excessive starch could inhibit cellulase or xylanase production.Similarly,although the addition of high amounts of wheat protein did not inhibit the growth of P.decumbens,it did result in a reduction in the levels of cellulase,xylanase and protease released to the medium.Xylan in wheat bran could induce the synthesis of cellulase and xylanase in P.decumbens,but induced less cellulase than xylanase.
     The significant factors inducing cellulase synthesis of P.decumbens most possibly originated from the wheat bran juice.Analysis of the wheat bran juice compositions and the experimental results of adding cell-oligosaccharides revealed that the soluble cello-oligosacchaddes present in wheat bran(concentrations that are much higher than in cellulose-only preparations)was one of most positive factors for cellulase production by P.decumbens.As a result,measuring and regulating the composition of starch,protein and cell-oligosaccharides in wheat bran used as a fermentation supplement may allow for improved induction of cellulase production by P. decumbens.
引文
[1]Abrahao-Neto J,Rossini CH,el-Gogary S,Henrique-Silva F,Cdvellaro O,and el-Dotty H(1995).Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei.Biochemistry,34(33);10456-10462.
    [2]艾云灿(1995).β-葡萄糖苷酶介导的纤维素酶诱导合成调控机制探索—从遗传改良系统方法学到诱导调节机理分子生物学.山东大学博士后研究工作报告.
    [3]Ai YC(艾云灿),Gao PJ(高培基),Kubicek CP,Meng FM(孟繁梅),Huang F(黄峰)(1999).Major transglycosylation products of β-glucosidase and their induction effects on cellulase biosynthesis.Acta Seientiarum Naturalium Universitatis Sunyatseni中山大学学报(自然科学版),38(2);70-74.
    [4]Ai YC(艾云灿),Meng FM(孟繁梅),Gao PJ(高培基),Kubicek CP(2000).Basis of specificity of induction and repression by cellobiose on cellulase biosynthesis in fungi.Acta Sciemiarurn Naturalium Universitatis Sunyatseni中山大学学报(自然科学版),39(3);73-77.
    [5]Alcoeer MJ,Furniss CS,Kroon PA,Campbell M,and Archer DB(2003).Comparison of modular and non-modular xylanases as carder proteins for the efficient secretion of heterologous proteins from Penicillium funiculosum.Appl Microbiol Biotechnol,60(6);726-732.
    [6]Aro N,Saloheimo A,Ilmen M,and Penttila M(2001).ace2,a novel transcriptional activator involved in regulation of eellulase and xylanase genes of Trichoderma reesei.J Biol Chem,276;24309-24314.
    [7]Aro N,Ilme'n M,Saloheimo A,and Penttila M(2002).ACE I is a repressor of eellulase and xylanase genes in Trichoderma reesei.Appl Environ Microbiol,69;56-65.
    [8]Aro N,Ilmen M,Saloheimo A,and Penttila M(2003).ACE I of Trichoderma reesei is a repressor of cellulase and xylanase expression.App Environ Microbiol,69(1);56-65.
    [9]Bailey MJ,Biely P,and Boutanen K(1992).Interlaboratory testing of methods for assay of xylanase activity.J Bioteehnol,23;257-270.
    [10]Biely P,Vrsanska M,and Claeyssens M(1991).The EG I from Trichoderma reesei;action on 13-1,4-oligomers and polymers derived from D-glucose and D-xylose.Eur J Bioehem,200;157-163.
    [11]Bisaria VS,and Mishra S(1989).Regulatory aspects of cellulase biosynthesis and secretion.CRC Crit Rev Biotechnol,9;61-103.
    [12]Bradford MM(1976).A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,72; 248-254.
    [13]Brillouet JM,and Mercier C(1981).Fractionation of wheat bran carbohydrates.Journal of the Science of Food and Agriculture,32;243-251.
    [14]Brutus A,Villard C,Durand A,Tahir T,Furniss C,Puigserver A,Juge N,and Giardina T(2004).The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors.Biochim Biophys Acta,1701(1-2);121-128.
    [15]Bussink HJ,Buxton FP,and Visser J(1991).Expression and sequence comparison of the Aspergillus niger and Aspergillus tuigensis genes encoding polygalacturonase Ⅱ.Curr Genet,19;467-474.
    [16]Carle-Urioste JC,Eseobar-Vera J,el-Gogary S,Henrique-Silva F,Torigoi E,Crivellaro O,Herrera-Estrella A,and el-Dorry H(1997).Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression.J Biol Chem,272;10169-10174.
    [17]Carre B,and Brillouet JM(1986).Yield and composition of cell wall residues isolated from various feedstuffs used for non-ruminant farm animals.Journal of the Science of Food and Agriculture,37;341-351.
    [18]Chahal DS(1985).Solid-state fermentation with Trichoderma reesei for cellulase production.Appl Environ Microbiol,49;205-210.
    [19]Chanzy H,Henrissat B,and Vuog R(1983).The aeti0n of 1,4-β-gluean CBH on valonia cellulose microerystals.FEBS Lett,153;113.
    [20]Chen BY(陈炳元),Pan CL(潘承兰),Chen ZF(陈中孚),Shen RQ(沈仁权)(1985).Studies on the nature of a glucose tolerant mutation of Bacillus sterothermophilus N-34.Journal of Fudan University(Natural Science)复旦学报(自然科学版),1985,24(2);10-15.
    [21]Chikamatsu G,Shirai K,Kato M,Kobayashi T,and Tsukagoshi N(1999).Structure and expression properties of the endo-β-1,4-glucanase A gene from the filamentous fungus Aspergillus nidulans.FEMS Microbiol Lett,175;239-245.
    [22]Chomczynski P(1993).A reagent for the single-step simultaneous isolation of RNA,DNA and protein from cell and tissue samples.Biotechniques,15(3);532-537.
    [23]Chow CM,Yague E,Raguz S,Wood DA,and Thurston CF(1994).The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source.Appl Environ Mierobiol,60;2779-2785.
    [24]Claeyssens M,van Tilbeurgh H,Krameding JP,Berg J,Vrsanska M,and Biely P(1990).Studies on the cellulolytie system of the filamentous fungus Trichoderma reesei QM9414;substrate specificity and transfer activity of EG I.Bioehem J,270;251-256.
    [25]Covert SF,vanden Wymelenberg A,and Cullen D(1992).Structure,organization,and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium.Appl Environ Microbiol,58(7);2168-2175.
    [26]Curach NC,Te'o VS,Gibbs MD,Bergquist PL,and Nevalainen KM(2004).Isolation,characterization and expression of the hexl gene from Trichoderma reesei.Gene,331;133-140.
    [27]Cziferszky A,Mach RL,and Kubicek CP(2002).Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Crel of Hypocrea jecorina(Trichoderma reesei).J Biol Chem,277;14688-14694.
    [28]Dale MP,Ensley HE,and Kern K(1985).Reversible inhibitors of β-glucosidase.Biochemistry,1985,24;3530-3539.
    [29]Deshpande MV,Edksson KE,and Pettersson LG(1984).An assay for selective determination of exo- 1,4-β-glueanases in a mixture of cellulolytic enzymes.Anal Biochem,138;481-487.
    [30]de Souza DF,Tychanowicz GK,de Souza CG M,and Peralta RM(2006).Co-production of ligninolytic enzymes by Pleurotus pulmonarius on wheat bran solid state cultures.J Basic Microbiol,46(2);126-134.
    [31]Ding SJ,Ge W,and Buswell JA(2001).Endoglucanase I from the edible straw mushroom,Volvariella volvacea.Purification,characterization,cloning and expression.Eur J Biochem,268;5687-5695.
    [32]段新源(2004).内切纤维素酶的合成调控、功能及新型纤维素酶的寻找.山东大学博士学位论文.
    [33]Dons JJ,Mulder GH,Rouwendal GJ,Springer J,Bremer W,and Wessels JG(1984).Sequence analysis of a split gene involved in fruiting from the fungus Schizophyllum commune.EMBO J,3(9);2101-2106.
    [34]Du BH(杜秉海),Zhang WF(张万福),Huang XS(黄雪松),Chai JQ(柴家前)(1995).Studies on solid-state fermentation of starch wastes for cellulase production.Heilongjiang Animal Science and Veterinary Medicine(黑龙江畜牧兽医),1;15-16.
    [35]Durand H,Clanet H,and Tiraby G(1988).Enetic improvement of Trichoderma reesei for large scale cellulase production.Enzyme Microbiol Technol,10;41-46.
    [36]el-Dorry H,Crivellaro O,Leite A,Abrahao-Neto J,Hendque-Silva F,Escobar-Vera J,Matheucci Junior E,Carle-Urioste JC,Pereira GG,Carraro-Pereira DM,and el-Gogary S(1996).Transcriptional control of the cellulase genes in Trichoderma reesei.Braz J Med Biol Res,29(7);905-909.
    [37]el-Gogary S,Leite A,Crivellaro O,Eveleigh E,and el-Dorry H(1989).Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei.Proc Natl Acad Sci USA,86;6138-6141.
    38Felenbok B,Flipphi M,and Nikolaev Ⅰ(2001).Ethanol catabolism in Aspergillus nidulans;a model system for studying gene regulation.Prog Nucl Acid Res Mol Biol,69;149-204.
    39Foreman PK,Brown D,Dankmeyer L,Dean R,Diener S,Dunn-Coleman NS,Goedegebuur F,Houfek TD,England GJ,Kelley AS,Meerman HJ,Mitchell T,Mitchinson C,Olivares HA,Teunissen PJ,Yao J,and Ward M(2003).Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei.J Biol Chem,278(34);31988-31997.
    40Fowler T,and Brown RD Jr(1992).The bgll gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex.Mol Microbiol,6;3225-3235.
    41Fujimoto H,Nishida H,and Ajisaka K(1988).Enzymatic synthesis of glucobioses by a condensation reaction with α-glucosidase,β-glucosidases and glucoamylase.Agric Biol Chem,52;1345-1351.
    42Furniss CS,Belshaw NJ,Alcocer MJ,Williamson G,Elliott GO,Gebruers K,Haigh NP,Fish NM,and Kroon PA(2002).A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors.Biochim Biophys Acta,1598(1-2);24-29.
    43Furniss CSM,Williamson G,and Kroon PA(2005).The substrate specificity and susceptibility to wheat inhibitor proteins of Penicillium funiculosum xylanases from a commercial enzyme preparation.J Sci Food Agric,85;574-582.
    44Gao PJ(高培基)(1985).Concerning the screening method of cellulase mutant with glycerol as repressor.Journal of Shandong University(Natural Science)山东大学学报(自然科学版),20(2);133-142.
    45Garber RC,and Yoder OC(1983).Isolation of DNA from filamentous fungi and separation into nuclear,mitochondrial,ribosomal,and plasmid components.Anal Biochem,135(2);416-422.
    46Ghose TK(1987).Measurement of cellulose activities.Pure Appl Chem,59;257-272.
    47Gielkens MM,Visser J,and de Graaff LH(1997).Arabinoxylan degradation by fungi;characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis.Curr Genet,31;22-29.
    48Gielkens MM,Dekkers E,Visser J,and de Graaff LH(1999a).Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression.Appl Environ Microbiol,65;4340-4345.
    49Gielkens MM,Gonza'lez-Candelas L,Sa'nchez-Torres P,van de Vondervoort P,de Graaff L,Visser J,and Ramo'n D(1999b).The abfB gene encoding the major a-L-arabinofuranosidase of Aspergillus nidulans;nucleotide sequence,regulation and construction of a disrupted strain.Microbiology,145;735-741.
    [50]Gilkes NR,Kilbum DG,Miller RC,and Warren RAJ(1991).Bacterial cellulases.Biores Technol,36;21-35.
    [51]Gilly JA,and Sands JA(1991).Electrophoretic karyotype of Trichoderma reesei.Biotechnol Lett,13;477-482.
    [52]Gorary SEL,Leite A,and Dorry HEL(1989).Mechanism by which cellulose triggers CBH I gene expression in Trichoderma reesei.Proc Natl Acad Sci USA,86;6138-6144.
    [53]Gritzali M,and Brown RD(1979).The cellulase system of Trichoderma;relationships between purified extracellular enzymes from induced or cellulose-grown cells.Adv Chem Ser,181;237-260.
    [54]郭尧君(1999).蛋白质电泳实验技术.北京;科学出版社.
    [55]Hamada N,Fuse N,Shimosaka M,Kodaira R,Amano Y,Kanda T,and Okazaki M(1999).Cloning and characterization of a new exo-eellulase gene,cel3,in Irpex lacteus.FEMS Microbiol Lett,172;231-237.
    [56]Hasper AA,Visser J,and de Graaff LH(2000).The Aspergillus niger transcriptional activator XlnR,which is involved in the degradation of the polysaceharides xylan and cellulose,also regulates D-xylose reduetase gene expression.Mol Microbiol,36;193-200.
    [57]Henrique-Silva F,el-Gogary S,Carle-Urioste JC,Matheucci E,Crivellaro O,and el-Dorry H(1996).Two regulatory regions controlling basal and cellulose induced expression of the gene encoding eellobiohydrolase I of Trichoderma reesei are adjacent to its TATA box.Biochem Biophys Res Commun,228;229-237.
    [58]Holm J,Bjorck I,Drews A,and Asp NG(1986).A rapid method for the analysis of starch.Starch/Starke,38;224-229.
    [59]Hou Y,Wang TH,Long H,and Zhu HY(2007).Cloning,sequencing and expression analysis of the first eellulase gene encoding cellobiohydrolase I from a cold-adaptive Penicillium chrysogenum FS010.Acta Biochim Biophys Sin(Shanghai),39(2);101-107.
    [60]Hrmova M,Petrakova E,and Biely P(1991).Induction of cellulose- and xylan-degrading enzyme systems in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose.J Gen Microbiol,137;541-547.
    [61]Ilmen M,Ormela ML,Klemsdal S,Keranen S,and Penttila M(1996a).Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei.Mol Gen Genet,253;303-314.
    [62]Ilmen M,Thrane C,and Penttila M(1996b).The glucose repressor gene crel of Trichoderma; isolation and expression of a full-length and a truncated mutant form.Mol Gen Genet,251;451-460.
    [63]Ilmen M,Saloheimo A,Onnela ML,and Penttila ME(1997).Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei.Appl Environ Microbiol,63;1298-1306.
    [64]Johnston M,Flick JS,and Pexton T(1994).Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.Mol Cell Bioi,14;3834-3841.
    [65]Jorgensen H,Morkeberg A,Krogh KBR,and Olsson L(2005).Production of cellulases and hemieellulases by three Penicillium species;effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis.Enzyme and Microbial Technology,36;42-48.
    [66]Joubert R,Strub JM,Zugmeyer S.Kobi D,Carte N.van Dorsselaer A,Boucherie H,and Jacquet-Gutfreund L(2001).Identification by mass spectrometry of two-dimensional gel eleetrophoresis-separated proteins extracted from lager brewing yeast.Electrophoresis,22;2969-2982.
    [67]Karaffa L,Fekete E,Gamauf C,Szentirmai A,Kubicek CP,and Seiboth B(2006).D-Galaetose induces cellulase gene expression in Hypocrea jecorina at low growth rates.Microbiology,152;1507-1514.
    [68]Karhunen T,Mantyla A,Nevalainen KM,and Suominen PL(1993).High frequency one-step gene replacement in Trichoderma reesei I;Endoglucanase I overproduction.Mol Gen Genet,241(5-6);515-522.
    [69]Kinnaird JH,and Fineham JR(1983).The complete nueleotide sequence of the Neurospora crassa am(NADP-speeific glutamate dehydrogenase)gene.Gene,26(2-3);253-260.
    [70]Koch A,Weigel CT,and Sehulz G(1993).Cloning,sequencing,and heterologous expression of a cellulase-encoding eDNA(cbhl)from Penicillium janthinellum.Gene,124(1);57-65.
    [71]Kolbe J,and Kubicek CP(1990).Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent assay(ELISA).Appl Microbiol Biehem,34;26-30.
    [72]Krogh KB,Morkeberg A,Jorgensen H,Frisvad JC,and Olsson L(2004).Screening genus Penicillium for producers of eellulolytic and xylanolytic enzymes.Appi Biochem Biotechnol,(113-116);389-401.
    [73]Kubieek CP(1983).Beta-glueosidase excretion by Trichoderma strain with cell wall bound β-1,3-glucanase activities.Can J Microbiol,29;163-169.
    [74]Kubicek CP(1987).Involvement of a conidial and a plasma-membrane-bound beta-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei.J Gen Microbiol,133;1481-1487.
    [75]Kubicek CP,Muhlbauer G,Grotz M,John E,and Kubicek-Pranz EM(1988).Properties of the conidial-bound cellulase system of Trichoderma reesei.J Gen Microbiol,134;1215-1222.
    [76]Kubicek CP,Messner R,Gruber F,Mandels M,and Kubicek-Pranz EM(1993a).Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei;involvement of a constitutive sophoroseinducible and glucose-inhibited β-D-glucosidase permease.J Biol Chem,268;19364-19368.
    [77]Kubicek CP,Messner R,Gruber F,Math RL,and Kubicek-Pranz EM(1993b).The Trichoderma cellulase regulatory puzzle;from the interior life of a secretory fungus.Enzyme Microb Teehnol,15;90-99.
    [78]Kubicek CP,and Penttilu M(1998).Regulation of production of plant polysaccharide degrading enzymes by Trichoderma.In;Harman GE,Kubicek CP(eds)Trichoderma & Gliocladium.Taylor & Francis,London,pp 49-72.
    [79]Kumar S,and Ramo'n D(I 996).Purifieation and regulation of the synthesis of a b-xylosidase from Aspergillus nidulans.FEMS Mierobiol Lett,135;287-293.
    [80]Kurasawa T,Yaehi M,Suto M,Kamagata Y,Takao S,and Tomita F(1992).Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum.Appl Environ Microbial,58;106-110.
    [81]Laborda F,Monistrol IF,Luna N,and Fernandez M(1999).Processes of liquefaction/solubilization of Spanish coals by microorganisms.Appl Microbiol Biotechnol,52(1);49-56.
    [82]Lamed R,Settler E,Kenig R,and Bayer EA(1983).The eellulosome;a discrete cell surface organdie of Clostridium thermocellum which exhibits separate antigenic,cellulose-binding and various catalytic activities.Biotech Bioeng Syrup,13;163-181.
    [83]Lin E,and Wilson DB(1987).Regulation of β-1,4-endoglueanase synthesis in Thermonospora fusca.Appl Environ Microbiol,53;1352-1357.
    [84]Lin JQ,Lee SM,and Koo YM(2000).Modeling of typical microbial cell growth in batch culture.Biotechnol Bioprocess Eng,5;382-385.
    [85]Liu YG,and Whittier RF(1995).Thermal asymmetric interlaced PCR;automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics,25;674-681.
    [86]卢圣栋(1999).现代分子生物学实验技术(第二版).北京;科学出版社.
    [87]Mach RL,Seiboth B,Myasnikov A,Gonzalez R,Strauss J,Harkki AM,and Kubicek CP(1995).The bgll gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in eellulase induction by sophorose.Mol Microbiol,16;687-697.
    [88]Mach RL,Strauss J,Zeilinger S,Schindler M,and Kubicek CP(1996).Carbon catabolite repression of xylanase I(xynl)gene expression in Trichoderma reesei.Mol Microbiol,21;1273-1281.
    [89]Mach RL,Zeilinger S,Kristufek D,and Kubicek CP(1998).Ca~(2+)-calmodulin antagonists interfere with xylanase formation and secretion in Trichoderma reesei.Biochem Biophys Acta,1403;281-289.
    [90]Maeda H,Sano M,Maruyama Y,Tanno T,Akao T,Totsuka Y,Endo M,Sakurada R,Yamagata Y,Machida M,Akita O,Hasegawa F,Abe K,Gomi K,Nakajima T,and Iguchi Y(2004).Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using eDNA microarrays and expressed sequence tags.Appl Mierobiol Bioteehnol,65(1);74-83.
    [91]Maes C,and Delcour JA(2002).Structural characterization of water-extractable and water-unextraetable arabinoxylans in wheat bran.Journal of Cereal Science,35;315-326.
    [92]Mamma D,Hatzinikolaou DG,and Christakopoulos P(2004).Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides.Journal of Molecular Catalysis B;Enzymatic,27;183-190.
    [93]Mandels M,and Reese ET(1957).Induction of cellulase in Trichoderma viride as influenced by carbon source and metals.J Bacteriol,73;269-278.
    [94]Mandels M,and Reese ET(1960).Induction of cellulase in fungi by cellobiose.J Bacteriol,79;816-826.
    [95]Margolles-Clark M,Ilme'n M,and Penttila M(1997).Expression patterns of ten hemicellulase genes from filamentous fungus Trichoderma reesei on various carbon sources.J Biotechnol,57;167-179.
    [96]Medve J,Lee D,and Tjemeld F(1998).Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulase cellobiohydrolasse Ⅰ,Ⅱ and endoglucanase by fast protein liquid chromatography.Journal of Chromatography A,808;153-156.
    [97]Memitz G,Koch A,Henrissat B,and Schulz G(1996).Endoglucanase Ⅱ(EG Ⅱ)of Penicillium janthinellum;cDNA sequence,heterologous expression and promotor analysis.Curr Genet,29;490-495.
    [98]Messner R,and Kubieek CP(1990a).Evidence for a single,specific β-glucosidase in cell walls from Trichoderma reesei QM9414.Enzyme Mierob Technol,12;685-690.
    [99]Messner R,Hagspiel K,and Kubicek CP(1990b).Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei.Arch Microbial,154;150-155.
    [100]Messner R,and Kubicek CP(1991).Carbon source control of cellobiohydrolase Ⅰ and Ⅱ formation by Trichoderma reesei.Appl Environ Microbiol,57;630-635.
    [101]Miller L(1959).Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal Chem,31;426-428.
    [102]Mischak H,Hofer F,Messner R,Hayn M,Tomme P,Kuchler E,Esterbauer H,Claeyssens M,and Kubicek CP(1989).Monoclonal antibodies against different domains of CBH Ⅰ and Ⅱ from T.reesei.Biochim Biophys Acta,990;1-7.
    [103]Mishra C,and Rao M(1988).Mode of action and synergism of cellulases from Penicillium funiculosum.Appl Biochem Biotechnol,19(2);139-150.
    [104]Mo H,Zhang X,Li Z(2004).Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture.Process Biochemistry,39;1293-1297.
    [105]Morawetz R,Gruber F,Messner R,and Kubicek CP(1992).Presence,transcription and translation of cellobiohydrolase genes in several Trichoderma species.Curr Genet,21;31-36.
    [106]Nehlin JO,and Ronne H(1990).Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumor finger proteins.EMBO J,9;2891-2898.
    [107]Nogawa M,Goto M,Okada H,and Morikawa Y(2001).L-Sorbose induces cellulase gene transcription in the eellulolytie fungus Trichoderma reesei.Curr Genet,38;329-334.
    [108]Pakula TM,Laxell M,Huuskonen A,Uusitalo J,Saloheimo M,and Penttila M(2003).The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei-Evidence for down-regulation of genes that encode secreted proteins in the stressed cells.J Biol Chem,278(45);45011-45020.
    [109]Palmarola-Adrados B,Choteborska P,Galbe M,and Zacchi G(2005).Ethanol production from non-starch carbohydrates of wheat bran.Bioresource Technology,96(7);843-850.
    [110]Penttila ME(1998).Heterologous protein production in Trichoderma,p.356-383.In Harman GE and Kubicek CP(ed.),Trichoderma and Gliocladium.Enzymes,biological control and commercial applications.Taylor and Francis Ltd.,London,United Kingdom.
    [111]Pin~aga F,Fema'ndez-Espinar MT,Valle's S,and Ramo'n D(1994).Xylanase production in Aspergillus nidulans;induction and carbon catabolite repression.FEMS Microbiol Lett,115;319-342.
    [112]Ponee-Noyola T,and de la Torre M(2001).Regulation of cellulases and xylanases from a derepressed mutant of Cellulomonas flavigena growing on sugar-cane bagasse in continuous culture.Bioresour Technol,78;285-291.
    [113]Pratt JM,Robertson DH,Gaskell S J,Riba-Garcia I,Hubbard S J,Sidhu K,Oliver SG,Butler P,Hayes A,Petty J,and Beynon RJ(2002).Stable isotope labeling in vivo as an aid to protein identification in peptide mass fingerprinting.Proteomics,2;157-163.
    [114]Qu YB(曲音波)(2007).Industrialization of cellulosic ethanol.Progress in Chemistry(化学进展),19(7/8);1098-1108.
    [115]Qu YB(曲音波),Du BH(杜秉海),Gao PJ(高培基)(1992).Improvement of cellulase composition by solid-state mixed culture of Penicillium decumbens and Aspergillus sp..Industrial Microbiology(工业微生物),22(6);1-6.
    [116]Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1984).Screening of catabolite repression-resistant mutants of eellulase producing Penicillium spp.Acta Mycologiea Siniea(真菌学报),3;238-243.
    [117]Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1986).Studies on the cellulase system of Penicillium decumbens Ⅰ.The conditions of enzyme production and reaction of mutant JU1.Journal of Shandong University(Natural Science)山东大学学报(自然科学版),21(1);140-143.
    [118]Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1987).Studies on the cellulase system of Penicillium decumbens Ⅱ.Physiological characters of the mutant JU1 and regulation of its enzymes synthesis.Journal of Shandong University(Natural Science)山东大学学报(自然科学版),22;97-103.
    [119]Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1988).Studies on cellulase system from Penicillium decumbens.Acta Microbiologica Sinica(微生物学报),28(2);121-130.
    [120]Qu YB,Zhao X,Gao P J,Wang ZN(1991).Cellulase production from spent sulfite liquor and paper-mill waste fiber.Appl Biochem Biotechnol,28/29;363-368.
    [121]Ou YB,Zhu MT,Liu K,Bao XM,and Lin JQ(2006).Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China.Biotechnol J,1;1235-1240.
    [122]Racet C,Thomas D,and Legoy MD(1993).Gluco-oligosaccharide synthesis by free and immobilized β-glueosidase.Biotechnol Bioeng,42;303-308.
    [123]Ralet MC,Thibault J F,and Della-Valle G.(1990).Influence of extrusion-cooking on the physicochemieal properties of wheat bran.Journal of Cereal Science,11;793-812.
    [124]Rao M,Gaikwad S,Mishra C,and Deshpande V(1988).Induction and catabolite repression of cellulase in Penicillium funiculosum.Appl Biochem Biotechnol,19(2);129-137.
    [125]Rapp P,Grote E,and Wagner F(1981).Formation and location of 1,4-beta-glueanases and 1,4-beta-glucosidases from Penicillium janthinellum.Appl Environ Microbiol,41(4);857-866.
    [126]Roepstorff P(2000).MALDI-TOF mass spectrometry in protein chemistry.EXS Review,88;81-97
    [127]Ruijter GJ,Vanhanen SA,Gielkens MM,van de Vondervoort PJ,and Visser J(1997).Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes.Microbiology,143;2991-2998.
    [128]Sahasrabudhe NA,and Ranjekar PK(1990).Cloning of the cellulase gene from Penicillium funiculosum and its expression in Escherichia coli.FEMS Microbiol Lett,54(1-3);291-293.
    [129]Saloheimo A,Henrissat B,Hoffren AM,Teleman O,and Penttila M(1994).A novel small endoglucanase gene,egl5 from Trichoderma reesei isolated by expression in yeast.Mol Microbiol,13;219-228.46.
    [130]Saloheimo A,Aro N,Ilmen M,and Penttila M(2000).Isolation of the acel gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbhl of Trichoderma reesei.J Biol Chem,275;5817-5825.
    [131]Saloheimo M,Kuja-Panula J,Ylosmaki E,Ward M,and Penttila M(2002).Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glueosidase BGLII(Cell A).Appl Environ Microbiol,68;4546-4553.
    [132]萨姆布鲁克J,拉赛尔DW(2002).分子克隆实验指南(第三版).北京;科学出版社.
    [133]Schmoll M,and Kubicek CP(2003).Regulation of Trichoderma cellulase formation;lessons in molecular biology from an industrial fungus.Acta Microbiol Immunol Hung,50;125-145.
    [134]Schmoll M,Zeilinger S,Mach RL,and Kubieek CP(2004).Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach.Fungal Genet Biol,41(9);877-887.
    [135]Schwarz WH,Bronnenmeier K,Grabnitz F,and Staudenbauer WL(1987).Activity staining of eellulases in polyacrylamide gels containing mixed linkage β-glucans.Anal Biochem,164;72-77.
    [136]Sehnem NT,de Bittencourt LR,Carnassola M,and Dillon AJ(2006).Cellulase production by Penicillium echinulatum on lactose.Appl Mierobiol Biotechnol,63(6);1-5.
    [137]Seiboth B,Hakola S,Mach RL,Suominen PL,and Kubicek CP(1997).Role of four major eellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei.J Bacteriol,179;5318-5320.
    [138]Seiboth B,Hofmann G,and Kubicek CP(2002).Lactose metabolism and eellulase production in Hypocrea jecorina;the gal7 gene,encoding galactose-1-phosphate uridylyltransferase,is essential for growth on galactose but not for cellulase induction.Mol Genet Genomies,267;
    139Seiboth B,Hartl L,Pail M,Fekete E,Karaffa L,and Kubicek CP(2004).The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose.Mol Microbiol,51;1015-1025.
    140Seiboth B,Hartl L,Salovuori N,Lanthaler K,Robson GD,Vehmaanpera J,Penttila ME,and Kubicek CP(2005).Role of the bgal-encoded extracellular β-galactosidase of Hypocrea jecorina in cellulase induction by lactose.Applied Environmental Microbiology,71;851-857.
    141Selvendran RR,Ring SG,O'Neil MA,and Dupont MS.(1980).Composition of cell wall material from wheat bran used in clinical feeding trials.Chemistry and Industry Nov,15;885-888.
    142Sestak S,and Farkas V(1993).Metabolic regulation of endoglucanase synthesis in Trichoderma reesei;participation of cyclic AMP and glucose-6-phosphate.Can J Microbiol,39;342-347.
    143Sheehan J,and Himmel M(1999).Enzymes,energy,and the environment;a strategic perspective on the U.S.Department of Energy's research and development activities for bioethanol.Biotechnol Prog,15;817-827.
    144Song EJ,and Lee KJ(2001).Identification of proteome molecules by proteomics using two-dimensional gel electrophoresis and MALDI-TOF MS.Exp Mol Med,33;5-18.
    145Stangl H,Gruber F,and Kubicek CP(1993).Characterization of the Trichoderma reesei cbh2 promoter.Curr Genet,23;115-122.
    146Strauss J,Mach R L,Zeilinger S,Stoffler G,Wolschek M,Hartler G,and Kubicek CP(1995).Crel,the carbon catabolite repressor protein from Trichoderma reesei.FEBS Lett,376;103-107.
    147Strauss J,Horvath HK,Abdallah BM,Kindermann J,Mach RL,and Kubicek CP(1999).The function of CreA,the carbon catabolite repressor of Aspergillus nidulans,is regulated at the transcriptional and post-transcriptional level.Mol Microbiol,32;169-178.
    148Suto M,Kurasawa T,Kawamoto S,and Tomita F(1992).Cellulase induction by various saccharides in Penicillium purpurogenum P-26.Microb Util Renew Resour,8;577.
    149Suto M,and Tomita F(2001).Induction and catabolite repression mechanisms of cellulase in fungi.J Bioscience Bioeng,92(4);305-311.
    150Takashima S,Iikura H,Nakamura A,Masaki H,and Uozumi T(1996b).Analysis of Crel binding sites in the Trichoderma reesei cbhl upstream region.FEMS Microbiol Lett,145;361-366.
    151Takashima S,Nakamura A,Hidaka M,Masaki H,and Uozumi T(1999).Molecular cloning and expression of the novel fungal bglucosidase genes from Humicola grisea and Trichoderma reesei.J Biochem(Tokyo),125;728-736.
    [152]Tudzynski B,Liu S,and Kelly JM(2000).Carbon catabolite repression in plant pathogenic fungi;isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes.FEMS Microbiol Lett,184;9-15.
    [153]Umile C,and Kubieek CP(1986).A constitutive,plasma membrane bound β-glucosidase in Trichoderma reesei.FEMS Microbial Lett,34;291-295.
    [154]Vaheri MP,Leisola M,and Kaupinnen V(1979).Transglycosylation products of the cellulase system of Trichoderma reesei.Biotechnol Lett,1;41-46.
    [155]Valkonen M,Penttila M,and Saloheimo M(2003).Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae.Appl Environ Microbiol,69(4);2065-2072.
    [156]Vallier LG,and Carlson M(1994).Synergistic release from glucose repression by migl and ssn mutations in Saccharomyces cerevisiae.Genetics,137;49-54.
    [157]van Peij NN,Visser J,and de Graaff LH(1998a).Isolationand analysis ofxlnR,encoding a transcriptional activator coordinating xylanolytie expression in Aspergillus niger.Mol Microbiol,27;131-142.
    [158]van Peij NN,Gielkens MM,de Vales RP,Visser J,and de Graaff LH(1998b).The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger.Appl Environ Microbiol,64;3615-3619.
    [159]van Tilbeurgh H,Pettersson G,Bhikabhai R,de Boeck H,and Claeyssens M(1985).Studies of the cellulolytie system of Trichoderma reesei QM9414.Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-beta-glucan cellobiohydrolase Ⅱ.Eur J Bioehem,148;329-334.
    [160]Vautard-Mey G,Cotton P,and Fevre M(1999).Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum.Eur J Bioehem,266;252-259.
    [161]Vinzant TB,Adney WS,Decker SR,Baker JO,Kinter MT,Sherman NE,Fox JW,and Himmel ME(2001).Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation.Appl Biochem Biotechnol,91-93;99-107.
    [162]Wang D(王冬),Qu YB(曲音波)(1993).Studies on the synthesis regulation of cellulase in filamentous fungi.Journal 0f Cellulose Science and Technology(纤维素科学与技术),1(2);17-21.
    [163]Wang D,Qu YB,and Gao PJ(1995).Regulation of cellulase synthesis in mycelial fungi;participation of ATP and cyclic AMP.Bioteehnol Lett,17(6);593-598.
    [164]Wang D(王冬),Qu YB(曲音波),Gao PL(高培基)(1996).Studies on the regulation of cellilase system by ATP and cAMP in mycelial fungi.Acta Microbiologica Sinica(微生物学报),36(1);12-18.
    [165]Wang JL,and Gao PJ(1999).PCR-mediated analysis of transcription of CBH Ⅰ and Ⅱ genes from Trichoderma pseudokoningii and Penicillium janthinellum.Biotechnology Letters,21(4)321-324.
    [166]Wang T,Liu XM,Yu Q,Zhang X,Qu YB Gao PJ,and Wang TH(2005).Directed evolution for engineering pH profile of endoglucanase Ⅲ from Trichoderma reesei.Biomolecular Engineering,22;89-94.
    [167]Wayman M,and Chen S(1992).Cellulase production by Trichoderma reesei using whole wheat flour as a carbon source.Enzyme Microbiology Technology,14(10);825-831.
    [168]Weidner G,Steidl S,and Brakhage AA(2001).The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimefic CCAAT-binding complex AnCF and positively regulated by GATA sites.Arch Microbiol,175;122-132.
    [169]Wood TM,McCrae SI,and Macfarlane CC(1980).The isolation,purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase.Biochem J,189(1);51-65.
    [170]Wood TM,and Bhat KM(1988).Methods for measuring cellulase activities.Methods Enzymol,160;87-112.
    [171]Wurleitner E,Pera L,Wacenovsky C,Cziferszky A,Zeilinger S,Kubicek CP,and Mach RL(2003).Transcriptional regulation of xyn2 in Hypocrea jecorina.Eukaryotic Cell,2(1);150-158.
    [172]夏其昌,曾嵘,等(2004).蛋白质化学与蛋白质组学.北京;科学出版社.
    [173]Xu H(徐海),Qian w(钱卫),Zhu MT(朱明田),Cai CP(蔡春萍),Gao PJ(高培基)(1997).Effect of acid-hydrolyzed wheat bran on cellulase production of Penicillium decumbens.Food and Fermentation Industries(食品与发酵工业),23;15-17.
    [174]Xu F J,Chen HZ,Li ZH(2002).Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation.Enzyme and Microbial Technology,30(1);45-48.
    [175]Yang F(杨帆),Lin JF(林俊芳),Miao LF(苗灵风),Guo LQ(郭丽琼)(2006).Cloning of phytase gene from Coriolus versicolor by TAIL-PCR and RT-PCR.Chinese Journal of Applied&Environmental Biology(应用与环境生物学报),12(5);618-622.
    [176]Yague E,Wood DA,and Thurston CF(1994).Regulation of transcription of the cell gene in Agaricus bisporus.Mol Microbiol,12;41-47.
    [177]Yang JS(杨金水),Yuan HL(袁红莉),Chen WX(陈文新)(2004a).Studies on extracellular enzyme of lignite degrading fungi-Penicillium sp.P6.China Environmental Science(中国环境科学),24(1);24-27.
    [178]Yang JS(杨金水),Yuan HL(袁红莉),Liu QH(刘庆洪),Ruan FY(阮芳勇),Wang HX(王贺祥),Chen WX(陈文新)(2004b).Purification and identification of lignin peroxidase from Pencillium documbens P6.Journal of China Agricultural University(中国农业大学学报),9(2);1-5.
    [179]Yang JS(杨金水),Yuan HL(袁红莉),Chen WX(陈文新)(2005).cDNA clone and lignite degradation abilit),of lignin peroxidase from Pen&illium decumbens P6.Acta Scientiarurn Naturalium Universitatis Pekinensis北京大学学报(自然科学版).41(6);833-839.
    [180]Yu HY(郁红艳),Zeng GM(曾光明),Huang GH(黄国和),Huang DL(黄丹莲),Chen YN(陈耀宁)(2005).Lignin degradation by Penicillium simplicissimum.Environmental Science(环境科学),26(2);167-171.
    [181]Yuan HL(袁红莉),Cal YQ(蔡亚岐),Zhou XG(周希贵),Chen WX(陈文新)(1999).Breeding of lignite degrading fungi and analysis of the degraded products.Chin J Appl Environ Biol(应用与环境生物学报),5(Suppl);21-24.
    [182]Zhang X,Mo H,Zhang J,and Li Z(2003).A solid-state bioreactor coupled with forced aeration and pressure oscillation.Biotechnol Lett,25(5);417-420.
    [183]Zhang YHP,Himmel ME,and Mielenz JR(2006).Outlook for cellulase improvement;screening and selection strategies.Biotechnol Adv,24;452-481.
    [184]Zhao X(赵昕),Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1989).Cellulase production using spent sulfite cellulose liquor and paper mill waste aS substrates.Industrial Microbiology(工业微生物),19(5);15-19.
    [185]Zhao X(赵昕),Qu YB(曲音波),Gao PJ(高培基),Wang ZN(王祖农)(1993).The discussion 0n the selection of a cellulase-production strain in black liquoc Journal of Cellulose Science and Technology(纤维素科学与技术),1(2);28-32.
    [186]Zhou XH(周晓宏),Chen HZ(陈洪章),Li ZH(李佐虎)(2003).Experimental observation on cellulosic biodegradation in solid state fermentation.The Chinese Journal of Process Engineering(过程工程学报),3(5);447-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700