高效木聚糖酶基因工程菌的构建及重组酶酶学性质与功效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为获得较为优良的木聚糖酶基因工程菌株,本研究以里氏木霉木聚糖酶Ⅱ(Xyn2)的cDNA为目的基因,分别构建了大肠杆菌(Escherichia coli)和毕赤酵母(Pichiapastoris)表达载体,并成功实现了异源表达;在此基础上,为改善重组酶热稳定性,将海栖热袍菌木聚糖酶A(Thermotoga maritima,XynA)的耐热结构域A2融合至Xyn2基因N-末端,实现了杂合基因在毕赤酵母中的分泌表达;系统研究了重组酶酶学性质,并初步评定了该酶在动物生产中的应用效果。主要研究内容及结果如下:
     1.里氏木霉Xyn2基因的克隆和序列分析
     利用RT-PCR技术成功从里氏木霉Rut C-30中扩增出Xyn2的cDNA序列,经序列分析证实,该cDNA开放阅读框全长573 bp,编码191个氨基酸;Rut C-30的Xyn2基因序列与另一诱变株VTT-D-79125完全相同;与野生型菌株QM6α相比,两个变异株Xyn2基因内部有两处碱基发生突变,分别是第13位的C变为T,第272的G变为A;这两个位点的突变导致Xyn2第15位氨基酸残基由His突变为Tyr,而91位的Gly则变为Gln;序列分析证实了这两个突变并非来自PCR扩增,而是在菌株的诱变选育过程中形成的。
     2.里氏木霉Xyn2基因在大肠杆菌中的表达及重组酶酶学性质分析
     将Xyn2基因分别克隆到E.coli高效表达载体pET28α(+)和pET30α(+)上,转化宿主菌后获得了能够诱导产生重组木聚糖酶的E.coli基因工程菌BL21-pET28α-Xyn2和BL21-pET30α-Xyn2,它们表达产生的重组酶Xyn228和Xyn230分子量分别为25kDa和27 kDa;对细胞破碎液酶活分析表明,其产量分别达到21.9 U/mL和39 U/mL;Xyn228和Xyn230最适反应温度均为50℃,最适反应pH均为5.0;与亲本酶相比,两种重组酶的热稳定性较好,在60℃下保温30 min后,Xyn228和Xyn230相对酶活分别维持在71%和65%。
     3.里氏木霉Xyn2基因在毕赤酵母中的分泌表达及重组酶酶学性质分析
     将Xyn2基因克隆到P.pastoris高效表达载体pPICZαA上,转化野生型毕赤酵母X-33后获得了一株基因工程PX-1,在甲醇诱导下,其表达产物PTX2能够有效分泌至培养基中,并且杂蛋白分泌量极少;重组酶PTX2分子量约为21 kDa,与亲本酶一致,在普通摇瓶中诱导,其产酶水平达到了近300 U/mL;PTX2最适反应温度为60℃,最适反应pH为6.0;该酶在50℃下相当稳定,在此温度下保温30 min后,其相对酶活可维持在90%以上;而在60℃下保温30 min后,PTX2相对酶活仅维持在30%左右;PTX2对燕麦木聚糖的亲和力强于桦木木聚糖,其K_m值分别0.9 mg/mL和1.2mg/mL;与亲本酶一样,PTX2不能与纤维素有效结合,但能与木聚糖结合;PTX2为内切型木聚糖酶,当以燕麦木聚糖为底物时,其水解产物主要为木二糖及木二糖以上的木寡糖,另有少量木糖。
     4.耐热木聚糖酶基因Xyn2-A2的构建及其在毕赤酵母中的表达
     通过基因全序列合成,将海栖热袍菌XynA的耐热结构域A2融合至Xyn2基因N-末端,成功构建了耐热木聚糖酶基因及其毕赤酵母表达载体pPICZαA-Xyn2-A2,转化毕赤酵母后获得了能够分泌表达耐热木聚糖酶的基因工程菌PXC-1;其重组酶PTXC2分子量大小为27 kDa,在普通摇瓶中进行诱导获得了约90 U/mL的表达水平:PTXC2最适反应温度为65℃,最适反应pH为6.0;该酶耐热性较PTX2有明显改善,在60℃下保温30 min后,PTXC2残余酶活高达74%;与PTX2和亲本酶相似,PTXC2对纤维素几乎没有结合能力,但PTXC2对木聚糖的结合力强于PTX2。
     5.重组木聚糖酶小规模发酵制备及其应用效果评定
     利用15 L自动发酵系统对毕赤酵母基因工程菌PX-1进行小规模诱导培养,重组酶PTX2产量提高了近一倍,最高达到了560 U/mL,且纯度较高;在仔猪饲粮中添加液体重组酶PTX2(500 U/kg),仔猪平均日增重提高了16.9%;饲粮粗蛋白、灰分、钙和粗纤维的表观消化率分别提高了1.7%、3.4%、2.5%和2.6%,该结果表明,重组酶PTX2能够部分消除饲粮中木聚糖的抗营养作用,改善动物生产性能。
     综上所述,本研究构建了木聚糖酶E.coli基因工程菌,其重组酶活性较强,但表达水平偏低;利用毕赤酵母表达系统成功构建了可实现高效分泌表达的基因工程菌PX-1,其产酶量远高于原核表达系统,且重组酶纯度较高,热稳定性较亲本酶也有一定改善;经动物试验初步评定证实,该重组酶具有较好的应用效果;通过对木聚糖酶基因(Xyn2)结构的改造(耐热域融合)可显著改善重组酶热稳定性,但其表达水平偏低。因此如何兼顾重组酶产量与热稳定性是今后仍需要进一步解决的问题。
To improve xylanase production, the Xyn2 gene from Trichoderma reesei Rut C-30 was successfully expressed in Escherichia coli and Pichia pastoris, respectively. Meanwhile, a hybrid xylanase gene was constructed by fusion of the thermostabilizing domain (A2) from Thermotoga maritima XynA into the N-terminal region of Xyn2, and subsequently expressed in P. pastoris. Both the native and hybrid enzymes were fully characterized. The main results were listed as following:
     1. Cloning and sequencing of the Xyn2 gene
     The Xyn2 gene encoding the main Trichoderma reesei Rut C-30 endo-β-1, 4-xylanase was amplified by PCR from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 573-bp open reading frame that encodes a 191-amino-acid propeptide. The cDNA fragment from T. reesei Rut C-30 is 99% identical to that of T. reesei QM6α, differing for only two base pair substitutions. The two substitutions are at nucleotides 43 and 272 of the Rut C-30 Xyn2 sequence, resulting in two amino acids (Try14/Glu91) in the proprotein being different from those in the proprotein (His14/Gly91) encoded by the QM6αXyn2 gene.
     2. Expression of the Xyn2 gene in Escherichia coli
     The Xyn2 gene was cloned into plasmids pET28α(+) and pET30α(+), and successfully expressed in E. coli BL21 under the control of strong bacteriophage T7 transcription and translation signals. The molecular weight of the recombinant protein Xyn228 and Xyn230 were estimated by SDS-PAGE to be 25 kDa and 27 kDa, respectively. The two recombiannt proteins were purified by Ni~(2+)-NTA affinity chromatography and enzyme activity assay verified the protein as a xylanase. Both Xyn228 and Xyn230 present a temperature optimum at 50℃and a pH optimum at 6.0. Compared with the native Xyn2, both of them had an improved thermostability and retained more than 60% of its activity after 30 mins incubating at 60℃.
     3. Expression of the Xyn2 gene in Pichia pastoris
     The Xyn2 gene was cloned into the expression vector pPICZαA, and successfully expressed in P. pastoris. The desired P. pastoris strain produced as high as 300 U/mL β-xylanase under the control of the methanol incucible alcohol Oxidase 1 (AOX1) promoter. And the secreted protein PTX2 was estimated by SDS-PAGE as 21 kDa. The activity of PTX2 was highest at 60℃which was 5℃higher than native enzyme. In addition, the recombinant enzyme was active over a broad range of pH 3.0-4.0 with maximal activity at pH 6.0. PTX2 was quite stable at 50℃and reatined more than 90% of its activity after 30 mins incubation at this temperature. However, PTX2 was not stable at 60℃, only 30% activity retained. Using Oat spelts xylan and Birchwood xylan, the determined apparent K_m was 0.9 mg/mL and 1.2 mg/mL, respectively. The enzyme was highly specific towards xylan and analysis of the products from xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products.
     4. Construction and expression of the thermostable xylanase gene in Pichia pastoris
     To improve the thermostability of T. reesei Xyn2, the thermostabilizing domain (A2) of XynA from T. maritima has been engineered into the N-terminal region of the Xyn2 gene. The hybrid gene was successfully expressed in P. pastoris, and a level of 90 U/mL was achieved. The hybrid enzyme PTXC2 produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding enzyme PTX2. The temperature and pH optimum of PTXC2 were at 65℃and 6.0, respectively. The hybrid enzyme was more stable than PTX2 at 60℃, and retained more than 74% of its activity after 30 mins incubation at this temperature. Both the hybrid and native enzyme exhibited a low affinity towards cellulosic substrates. However, the binding capacity of PTXC2 toward oat spelt xylan has been improved. These results also suggested that the N-terminal domain (A2) is responsible for both thermostability and substrate-binding capacity of the T. maritima XynA.
     5. Production of recombinant xylanase by small-scale fermetation and primary evaluation of its potential for industrial applications.
     The high-density cultivation of PX-1 was performed in a 15-L automatic fermenter. The highest expression level of 560 U/mL was achieved after 78 h fermentation, which was almost doubled than we achieved in flasks. The culture supernatant was collected and used as a liquid enzyme source. To evaluate its potental for industrial applications, the liquid enzyme (PTX2) was supplemented into a wheat-based diet in weaned piglets. Both the performance and nutrient digestibilities was determined. Results showed that the average body weight gain increased 16.9% when piglets received a diet containing 500 U/kg PTX2 . There also was a positive (0.05
引文
[1] Esteve-Garicia, E., J. Brufau, A. Perez-Vendrell, et al. Bioefficiency of enzyme preparations containing beta-glucanase and xylanase activities in broiler diets based on barley or wheat, in combination with flavomycin. Poult. Sci., 1997, 76: 1728-1737.
    
    [2] Bajpai, P. Application of enzymes in the pulp and paper industry. Biotechnol. Prog., 1999, 15: 147-157.
    [3] Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol., 2005, 67: 577-591.
    [4] Beg, Q. K.., M. Kapoor, L. Mahajan, et al. Microbial xylanases and their industrial applications: a review. Appl. Microbiol Biotechnol., 2001, 56: 326-338.
    [5] La Grange, D. C, I. S. Pretorius, and W. H. Van Zyl. Expression of a Trichoderma reesei β-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl. Environ Microbiol., 1996, 62: 1036-1044.
    [6] Fontes, C. M. G A., G. P. Hazlewood, E. Morag, et al. Evidence for a general role for non-catalytic thermostablizing domains in xylanases from thermophilic bacteria. Biochem J., 1995, 307: 151-158.
    
    [7] Winterhalter, C, P. Heinrich, A. Canndussio, et al. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase of the hyperthermophile bacterium Thermotoga maritima. Mol. Microbiol., 1995, 15: 431-444.
    
    [8] Fenel, R, M. Leisola, J. Janis, et al. A denovo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. J. Biotechnol., 2004, 108: 137-143.
    [9] Wakarchuk, W. W., W. L. Sung, R. L. Campbell, et al. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng., 1994, 7: 1379-1386.
    [10] Georis, J., F. de Lemos, J. Lamotte-Brasseur, et al. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilie family 11 xylanase: structural basis and molecular study. Protein Sci., 2000, 9: 466-475.
    
    [11] Millward-Sadler, S. J., D. M. Poole, B. Henrissat, et al. Evidence for a general role for high affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol., 1994,11:375-382.
    
    [12] Timell, T. E. Studies on opposite wood in conifers Part I : chemical composition. Wood Sci. Technol., 1973, 7: 1-5.
    [13]Sunna,A.,and G.Antranikian.Xylanolytic enzymes from fungi and bacteria.Critical Rev Biotechnol.,1997,12(4):375-378.
    [14]Hoffmann,R.A.,J.P.Kamerling,and J.F.G.Vliegenthart.Structure features of a water-soluble pentosan in rye grain.Carbo Res.,1992,226:303-311.
    [15]Choct,M.,R.J.Hughes,J.Wang,et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of nonstarch polysaccharides in chickens.British Poult.Sci.,1996,37:609-621.
    [16]孙哲,汪儆,雷祖玉 等.小麦可溶性非淀粉多糖对肉仔鸡小肠黏膜二糖酶活性的影响.动物营养学报,2003,15(1):26-30。
    [17]Coughlan,M.P.,and G.P.Hazlewood.β-1,4-D-Xylan-degrading enzyme systems:Biochemistry,molecular biology and applications.Biotechnol.Appl.Biochem.,1993,17:259-289.
    [18]Wong,K.K.Y.,L.U.L.Tan,and J.N.Saddler.Multiplicity of β-1,4-xylanase in microorganisms:function and applications.Microbiol.Rev.,1988,52:305-317.
    [19]Conrad,D.,and W.Noethen.Hydrolysis of cyclodextrins(DP 2-6) by xylanolytic enzymes from Aspergillus niger.Proc 3~(rd) Eur Conr Biotechnol.,1984,2:169-177.
    [20]Selinger,L.B.,C.W.Forsherg,and K.J.Cheng.The rumen:a unique source of enzymes for enhancing livestock production.Anaerobe,1996,2:263-284.
    [21]Mcdermid,K.P.,C.W.Fosberg,and C.R.Mackenzie.Purification and properties of an acetyl xylan esterase from Fibrobacter succinogenes S85.Appl.Environ Microbiol.,1990,56:3805-3810.
    [22]Gilkes,N.R.,B.Henrissat,and D.G.Kilburn,et al.Domains in microbial beta-1,4-glycanases:sequence conservation,function,and enzyme families.Microbiol Mol.Biol Rev.,1991,55:303-315.
    [23]Henrissat,A.B.Classification of glycosyl hydrolases based on amino acid sequence similarities.Biochem J.,1991,280:309-316.
    [24]Zhang,J.X.,J.Martin,and H.J.Flint.Identification of noncatalytic conserved regions in xylanases encoded by the Xynb and Xynd genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens.Mol.Gen.Genet.,1994,245:260-264.
    [25]江正强,李里特,李颖.耐热木聚糖酶研究进展.中国生物工程杂志,2003,23(8):47-51.
    [26]Kulkami,N.,A.Shendye,and M.Rao.Molecular and biotechnological aspects of xylanase.FEMS Microbiol Rev.,1999,23:411-456.
    [27]Subramaniyan,S.,and P.Prema.Biotechnology of microbial xylanases:enzymology,molecular biology,and application.Crit Rev Biotechnol.,2002,22(1):33-64.
    [28]Winterhalter,C.,and W.Liebl.Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSBS.Appl.Environ.Microbiol.,1995,61:1810-1815.
    [29]T(o|¨)rr(o|¨)nen,A.,R.L.Mach,R.Messner,et al.The two major xylanases from Trichoderma reesei:characterization of both enzymes and genes.Biotechnol.,1992,10:1461-1465.
    [30]T(o|¨)rr(o|¨)nen,A.,A.Harkki,and J.Rouvinen.Three-dimensional structure of endo-1,4-β-xylanase Ⅱfrom Trichoderma reesei:two conformational states in the active site.EMBO J.,1994,13:2493-2501.
    [31]Huang,L.,T.H.Hseu,and T.T.Wey.Purification and characterization of an endoxylanase from Trichoderma koningii G-39.Biochem J.,1991,278:329-333.
    [32]Ujiie,C.R.,and M.Yaguchi.Low-molecular-weight xylanase from Trichoderma viride.Appl.Environ Microbiol.,1991,57(6):1860-1862.
    [33]Krisana,A.,S.Rutchadaporn,G.Jarupan,et al.Endo-1,4-β-xylanase B from Aspergillus cf.niger BCC14405 isolated in Thailand:purification,characterization and gene isolation.J.Biochem.Mol.Biol.,2005,38:17-23.
    [34]Jeffries,T.W.Biochemistry and genetics of microbial xylanases.Environ.Biotechnol.,1996,7:337-342.
    [35]刘瑞田,曲音波.木聚糖酶分子的结构区域.生物工程进展,1998,18(6):36-28.
    [36]Derewenda,U.,L.Swenson,R.Green,et al.Crystal structure,at 2.6(?) resolution,of the Streptomyces lividans xylanase A,a member of the F family of beta-1,4-D-glycanases.J.Biol.Chem,1994,269:20811-20814.
    [37]Harris,G.W.,J.A.Jenkins,I.Counnerton,et al.Structure of the catalytic core of the Family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose binding sites.Structure.1994,2:1107-1115.
    [38]Miao,S.C.,L.Ziser,R.Aebersold,et al.Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandaem mass spectrometry.Biochem.,1994,33:7027-7032.
    [39]Wither,S.G.,and R.Aebersold.Approaches to labeling and identification of active-site residues in glycosidases. Protein Sci., 1995,4: 361-372.
    [40] Torronen, A., and J. Rouvinen. Structural comparison of two major endo-1, 4-xylanases from Trichoderma reesei. Biochem., 1995, 34: 847-856.
    [41] Davoodi, J., W. W. Wakarchuk, R. L. Campbell, et al. Abnormally high pKa of an active site glutamic acid residue in Bacillus circulans xylanase-the role of electrostatic interactions. Eur. J. Biochem., 1995,232: 839-843.
    [42] Poole, D. M., G. P. Hazlewood, Huskisson, et al. The role of conserved tryptophan residues in the interaction of a bacterial cellulose binding domain with its ligand. FEMS Microbiol. Lett., 1992, 106: 77-83.
    [43] Kellett, L. E., D. M. Poole, L. M. A. Ferreira, et al. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens ssp. Cellulosa contain identical cellulose binding domains and are encoded by adjacent genes. Biochem J., 1990, 272: 369-376.
    [44] Ferreira, L. M. A., T. M. Wood, G. Williamson, et al. A modular esterase from Pseudomonas fluorescens subsp. Cellulosa contains a noncatalytic cellulose binding domain. Biochem J., 1993, 294: 349-355.
    [45] Gilbort, H. J., J. Hall, C. P. Hazlewood, et al. The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa consitutes a cellulose-binding domain that is distrinct from the catalytic cneter. Mol. Microbiol., 1990. 4: 759-767.
    [46] 邹永龙,王国强.木聚糖降解酶系统.植物生理学通讯,1999,35(5):404-410.
    [47] Meissner, K., D. wassenberg, and W. Liebl. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage β-1, 3/β-1,4-glucan. Mol. Microbiol., 2000, 36 (4): 898-912.
    [48] Black, G. W., G. P. Hazlewood, S. J. Millwardsadler, et al. A modular xylanase containing a novel noncatalytic xylan specific binding domain. Biochem J., 1995, 307: 191-195.
    [49] Irwin, D., E. D. Jung, and D. B. Wilson. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol., 1994,60: 763-770.
    [50] Gilbert, H. J., and G. P. Hazlewood. Bacterial cellulases and xylanases. J. Gener Microbiol., 1993, 139: 187-194.
    [51] Lee, Y. E., S. E. Lowe, and J. G. Zeikus. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol., 1993, 59: 3134-3137.
    
    [52] 胡沂淮,邵蔚蓝.木聚糖酶.生命的化学,2002,12(8):281-285
    [53] Ko, E. P., H. Akatsuka, H. Moriyania, et al. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem. J., 1992, 288: 117-121.
    [54] Tsrrsnen, A., A. Harkki, and J. Rouvinen. Three-dimensional structure of endo-1, 4-β-xylanase II from Trichoderma reesei-two conformational states in the active site. EMBO J., 1994, 13: 2493-2501.
    [55] Poon, D. K., P. Webster, S. G Withers, et al. Characterizing the pH-depentent stability and catalytic mechanism of the family 11 xylanase from the alkalophilie Bacillus agaradhaerens. Carbohydr Res., 2003, 338: 415-421.
    [56] Tephtsky, A., A. Mechaly, V. Stojanoff, et al. Sturcter determination of the extracellular xylanase from Geobacillus stearothermophilus by selenometlnonyl MAD phasing. Acta. Crystallogr D Biol Crystallogr., 2004, 60: 836-848.
    [57] Chen, Y. L., T. Y. Tang, and K. J. Cheng. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol., 2001,47: 1088-1094.
    [58] Kreuzer, P., D. Gartner, and W. Hillen. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol., 1989, 171: 3840-3845.
    [59] Yang, R. C. A., C. R. Mackenzie, D. Bilous, et al. Hyperexpression of a Bacillus circulans xylanase gene in Escherichia coli and characterization of the gene product. Appl. Environ Microbiol., 1989, 55: 1192-1195.
    [60] Baba, T, R. Shinke, and T. Nanmori. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl. Environ Microbiol., 1994, 60: 2252-2258.
    [61] Luthi, E., D. R. Love, and J. McAnulty, et al. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum". Appl. Environ Microbiol., 1990, 56: 1017-1024.
    [62] Chang, P., W. S. Tsai, C. L. Tsai, et al. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firums. Biochem. Biophy Res. Comm., 1995, 79: 422-428.
    [63] Kinoshita, K., M. Takano, T. Koseki, et al. Cloning of the xynNB gene encoding xylanase B from Aspergillus niger and its expressin in Aspergillus kawachii. J. Ferment. Bioeng., 1995, 79: 422-428.
    [64]刘稳,高培基.半纤维素的分子生物学.纤维素科学与技术,1998,6(1):9-15.
    [65]Devillard,E.,C.J.Newbold,K.P.Scott,et al.Axylanase produced by the rumen anerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanase from Gram-positive bacteria FEMS Microbiol Lett.,1999,194:145-152.
    [66]Suzuki,M.,A,Kato,N.Nagata,et al.A xylanase,AtXynl,is predominantly expressed in vascular bundles,and four putative xylanase genes were identified in the Arabidopsis thaliana genome.Plant Cell Physiol.,2002,43:759-767.
    [67]Yang,R.C.A.,C.R.Mackenzie,D.Bilous,et al.Molecular cloning and expressino of a xylanase gene from Bacillus polymyxa in Escherichia coli.Appl.Environ Microbiol.,1988,54:1023-1029.
    [68]Huang,J.L.,G.X.Wang,and L Xiao.Cloning,sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli.Bioresource Technol.,2006,802-808.
    [69]Zhou,C.Y.,J.Y.Bai,S.S.Deng,et al.Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli.Bioresource Technol.,2008:831-838.
    [70]Honda,H.,T.Kudo,and K.Horikoshi.Molecular cloning and expression of the xylanase gene of alkalophilic Bacillus sp.Strain C-125 in Escherichia coli.J.Bacteriol.,1985,161:784-785.
    [71]Jung,K.H.,and M.Y.Pack.Expression of a Clostridium thermocellum xylanase gene in Bacillus subtilis.Biotechnology Letters,1993,15:115-126.
    [72]Ghangas,G.S.,Y.J.Hu,and D.B.Wilson.Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans.J Bacteriol.,1989,171:2963-2969.
    [73]Ruanglek,V.,R.Sriprang,and N.Ratanaphan,et al.Cloning,expression,characterization,and high cell-density production of recombinant endo-1,4-β-xylanase from Aspergillus niger in Pichia pastoris.Enzyme and Microbial Technol.,2007,41:19-25.
    [74]聂国兴,王俊丽,明红.木聚糖酶的应用现状与研发热点.工业微生物,2008,38:53-53.
    [75]Turunen,O.,M,Vuorio,and F.Fenel.Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase Ⅱincreases the thermotolerance and shifts the pH optimum towards alkaline pH.Protein Eng.,2002,15:141-145.
    [76]Moreau,A.,M.Roberge,and C.Manin,et al.Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans.Biochem J.,1994,302:291-295.
    [77] Paloheimo, M., A. Mantyla, and J. Kallio, et al. Increased production of xlylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei. Appl. Environ Microbiol., 2007, 73: 3215-3224.
    [78] Paloheimo, M., A. Mantyla, and J. Kallio, et al. High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei require a carrier polypeptide with an intact domain structure. Appl. Environ Microbiol., 2003, 69: 7073-7082.
    [79] Sun, J. Y., M. Q. Liu, and Y. L. Xu, et al. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expression and Purification, 2005,42: 122-130.
    [80] Jeong, M. Y, S. Kim, and C. W. Yun, et al. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bscillus stearothermophilus No. 236. J. Biotechnol., 2007, 127: 300-309.
    [81] Morris, D. D., M. D. Gibbs, and C. W. Chin, et al. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.l and action of the gene product on kraft pulp. Appl. Environ Microbiol., 1998, 64: 1759-1765.
    [82] Dahlberg, L., O. Hoist, and J. K. Kristjansson. Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Mivribiol. Biotechnol., 1993,40: 63-68.
    [83] Chen, C. C, R. Adolphson, J. F. D.Dean, et al. Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermotoga maritima. Enzyme Microb Technol., 1997, 20: 39-45.
    [84] Wassenberg, D., H. Schurig, W. Liebl, et al. Xylanase XynA from the hyperthermophile Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci., 1997, 6: 1718-1726.
    [85] Sunna, A., and G Antranikian. Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl. Microbiol Biotechnol., 1996, 45: 671-676.
    [86] Luthi, E., K. Reif, N. B. Jasmat, et al. In vitro mutagenesis of a xylanase from the extreme thermophile Caldocellum saccharolyticum. Appl. Microbiol Biotechnol., 1992, 36: 503-506.
    [87] Wakarchuk W. W., R. L. Campbell, W. L. Sung, et al. Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Sci., 1994, 3: 467-475.
    [88]Mrabet,N.T.,A.Van den Broeck,I.,Van den Brande,et al.Arginine residues as stabilizing elements in proteins.Biochemistry,1992,31:2239-2253.
    [89]Vogt,G.,S.Woell,and P.Argos.Protein thermal stability,hydrogen bonds,and ion pairs.J.Mol.Biol.,1997,269:631-643.
    [90]朱国萍,滕脉坤,王玉珍.脯氨酸对蛋白质热稳定性的贡献.生物工程进展,2000,20(4):48-51.
    [91]Ebanks,R.,M,Dupont,F.Shareck,et al.Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase.J.Ind.Microbiol.Biotechnol.,2000,25:310-314.
    [92]Walsh,D.J.,and P.L.Bergquist.Expression and secretion of a thermostable bacterial xylanase in Kluyveromyces lactis.Appl.Environ Microbiol.,1997,63:3297-3300.
    [93]Cosson,T,A.M.P.Vendrell,B.G.Teresa,et al.Enzymatic assays for xylanase and β-glucanase feed enzymes.Animal Feed Science and Technology,1999,77:345-353.
    [94]Kim,J.C.,P.H.Simmins,B.P.Mullan,et al.The digestible energy value of wheat for pigs,with special reference to the post-weaned animal.Animal Feed Science and Technology,2005,122:257-287.
    [95]Preston,C.M.,K.J.Mccracken,and A.Mcallister.Effect of diet form and enzyme supplementation on growth,efficiencey and energy utilization of wheat-based diets for broilers.British Poultry Science,2000,41:324-331.
    [96]Lazzaro,R.,M.Garcia,M.J.Aranibar,et al.Effect of enzyme addition to wheat-,barley- and rye-based diets on nutrient digestibility and performance of laying hens.British Poultry Science,2003,44:256-265.
    [97]Kim,J.C.,B.P.Mullan,and J.R.Pluske.A comparison of waxy versus non-waxy wheats in diets for weaner pigs:effects of particle size,enzyme supplementation,and collection day on total tract apparent digestibility and pig performance.Animal Feed Science and Technology,2005,120:51-65.
    [98]Danicke,S.,H.Jeroch,W.Bottcher,et al.Interactions between dietary fat type and enzyme supplementation in broiler diets with high pentosan contents:effects on precaecal and total tract digestibility of fatty acids,metabolizability of gross energy,digesta viscosity and weights of small intestine.Animal Feed Science and Technology,2000,84:297-294.
    [99]Ciftci,I,E.Yenice,and H,Eleroglu.Use of triticale alone and in combination with wheat or maize:effects of diet type and enzyme supplementation on hen performance,egg quality,organ weights,intestinal viscosity and digestive system characteristics.Animal Feed Science and Technology,2003,105:149-161.
    [100]Hogberg,A.,and J.E.Lindberg.Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets.Animal Feed Science and Technology,2004,116:113-128.
    [101]Kim,J.C.,P.H.Simmins,B.P.Mullan,et al.The digestible energy value of wheat for pigs,with special reference to the post-weaned animal.Animal Feed Science and Technology,2005,122:257-287.
    [102]Vahjen,W.,K.Glaser,K.Schafer.et al.Influence of the xylanase supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks.Journal of Agricultural Science,1998,130:489-500.
    [103]高峰,江芸,周光宏,等.小麦基础日粮添加酶制剂对断奶仔猪生长、代谢和血液IL-2水平的影响.南京农业大学学报,2002,25(1):14-17.
    [104]Autio,K.Effects of cell wall components on the functionality of whet gluten.Biotechnology Advances,2006,24:633-635.
    [105]Uysal,H.,N.Bilgicli,A.Elgun,et al.Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies.Journal of Food Engineering,2007,78:1074-1078.
    [106]Jiang,Z.Q.,X.T.Li,G.X.Gu,et al.Improvement of the bread-making quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritima.Food Research International,2005,28(1):37-43.
    [107]Tabka,M.G.,I.H.Gimbert,and F.Monod.Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment.Enzyme and Microbial Technology,2006,39:897-902.
    [108]Vazquez,M.J.,G,Garrote,J.L.Alonso,et al.Refining of auto-hydrolysis liquors for manufacturing xylooligosaccharides:evaluation of operational strategies.Bioresource Technology,2005,96:889-896.
    [109]毛连山,余世袁.木聚糖酶在纸浆漂白中应用的研究现状.中国造纸学报,2006,21(3):93-98.
    [110]Saha,B.C.,L.B.Iten,M.A.Cotta,et al.Dilute acid pretreatment,enzymatic saccharification and fermentation of whet straw to ethanol.Process Biochemistry,2005,40:3693-3700.
    [111]Ohgren,K.,R.Bura,J.Saddler,et al.Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.Bioresource Technology,2007,98:2503-2510.
    [112]Bailey,M.J.,and K.M.H.Nevalainen.Induction,isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulose.Enzyme Microb.Technol,,1981,3:153-157.
    [113]Sheir-Neiss,G.,and B.S.Montenecourt.Characterization of the secreted cellulases of Trichoerma reesei wild type and mutants during controlled fermentations.Appl.Environ.Biotechnol.,1984,20:46-53.
    [114]Janis,J.,J.Rouvinene,and M.Leisola,et al.Thermostability of endo-1,4-β-xylanase Ⅱ from Trichoderma reesei studied by electrospray ionization fourier-transform ino cyclotron resonance MS,hydrogen/deuterium-exchange reactions and dynamic light scattering.Biochem J.,2001,356:453-460.
    [115]Studier,F.W.,and B.A.Moffatt.Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.J.Mol.Biol.,1996,189:113-130.
    [116]Srivastava,P.,K.J.Mukherjee.Cloning,characterization,and expression of xylanase gene from Bacillus lyticus in Escherichia coli and Bacillus subtilis.Prep Biochem Biotechnol.,2001,31:389-400.
    [117]张红莲,姚斌,王亚茹等.链霉菌Streptomyces olivaceoviridis A1木聚糖酶基因XynA在大肠杆菌及毕赤酵母中的高效表达.生物工程学报,2003,19(1):41-45.
    [118]Stader,J.A.,and T.J.Silhavy.Engineering Escherichia coli to secrete heterologous gene products.Meth.Enzymol.,1990,185:166-187.
    [119]Schein,C.H.,and M.H.M.Noteborn.Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature.Bio/Technology,1988,6:291-294.
    [120]Tenkanen,M.,J.Puls,and K.Potanen.Two major xylanases of Trichoderma reesei.Enzyme and Microbial Techonol.,1992,14:566-574.
    [121]Royer,J.C.,and J.P.Nakas.Simple,sensitive zymogram technique for detction of xylanase activity in polyacrylamide gels.Appl.Environ.Microbiol.,1990,56:1516-1517.
    [122]Romanos,M.A.,C.A.Scorer,and J.J.Clare.Foreign gene expression in yeast:a review.Yeast, 1992.8:423-488.
    [123]欧阳嘉,王向明,张清等.里氏木霉木聚糖酶XynⅡ基因在毕赤酵母中的分泌表达.林产化学与工业.2007,27:83-88.
    [124]Bailey,M.J.,J.Buchert,and L.Viikari.Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media.Appl.Environ.Microbiol.,1993,40:224-229.
    [125]Jiang,Z.Q.,W.Deng,Y.P.Zhu,et al.The recombinant xylanase B from thermotoga maritima is highly xylan specific and produceds exclusively xylobiose from xylans,a unique character for industrial applications.Journal of Molecular Catalysis B:Enzymatic.2004,27:207-213.
    [126]顾赛红,孙建义,李卫芬等.里氏木霉(Trichoderma reesei)产β-葡聚糖酶和木聚糖酶的条件研究.浙江大学学报(农业与生命科学版).2003,29(5):545-549..
    [127]毛连山,勇强,姚春才,余世袁.木聚糖相对分子量分布对里氏木霉合成木聚糖酶的影响.林产化学与工业.2005,25(2):59-62.
    [128]Roberge,M.,F,Shareck,R.Morosoli,et al.Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans.Protein Engineering.1999,12:251-257.
    [129]Tenkanen,M.,J.Buchert.,and L.Viikari:Binding of hemicellulases on isolated polysaccharide substrates.Enzyme Microb Technol.,1995,17:499-505.
    [130]Bray,M.R.,and A.J.Clarke.Identification of an essential tyrosyl residue in the binding site of Schizophyllum commune xylanase A.Biochemistry,1995,34:2006-2014.
    [131]Kumar,S.,C.J.Tsai,and R.Nussinov.Factors enhancing protein thermostability.Protein Engineering,2000,13:179-191.
    [132]Gilkes,N.R.,B.Henrissat,D.G.Kilburn,et al.Domains in microbial β-1,4-glycanases:sequence conservation,function and enzyme families.Microbiol.Rev.,1991,55:305-315.
    [133]Tomme,P.,R.A.Warren,and N.R.Gilkes.Cellulose hydrolysis by bacteria and fungi.Adv Microb Physiol.,1995,37:1-81.
    [134]Shibuya,H.,S.Kaneko,and K.Hayashi.Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling.Biochem.J.,2000,349:651-656.
    [135]刘明启,孙建义,郭爽.木聚糖酶嗜酸性、热稳定性研究进展.中国饲料,2004,13:21-25.
    [136]Ruile,P.,C.Winterhalter,and W.Liebl.Isolation and analysisi of a gene encoding α-glucuronidase,an enzyme with a novel primary structure involved in the breakdown of xylan.Mol.Microbiol.,1997,23:267-279.
    [137]阎瑞香,吴仲,侯建华等.重组巴斯德毕赤酵母发酵生产几丁质酶的条件优化研究.微生物学通报.2007,34(3):468-471.
    [138]章如安,邱荣德.巴斯德毕赤酵母表达系统研究及进展.2000,27(5):371-373
    [139]杨胜.饲料分析及饲料质量检测技术.北京:北京农业大学出版社,1993.
    [140]周素梅,王璋,许时婴.面粉中戊聚糖含量测定方法的探讨.食品工业科技,2000,21(6):70-72
    [141]Mellange,J.,J.Inborr,and B.P.Gill.Enzyme supplementation of wheat,barley or sugarbeet pulp based diets for early-weaned piglets:Effects on performance and faecal nutrient digestibility.Anim.Prod.,1992,54:483-484.
    [142]Eun,J.S.,K.A.Beauchemin,S.H.Hong,et al.Exogenous enzymes added to untreated or ammoniated rice straw:Effects on in vitro fermentation characteristics and degradability.Animal Feed Science and Technology,2006,131:86-101.
    [143]Bedford,M.R.Exogenous enzymes in monogastric mutrition-their current value and future benefits.Animal Feed Science and Technology,2000,86:1-13.
    [144]Partridge,G.G.,and B.P.Gill.New approaches with pig weaner diets:Recent Advancees in Animal Nutrition.Nottingham Univ.Press.Loughborough,U.K.,2000,p221-248.
    [145]Dusel,A.J.,F.C.van der Heeft,and P.H.G.Randsdorp.Viscometric determination of beta-glucanase and endoxylanase activity in feed.J.AOAC Int,1996,79:1019-1025.
    [146]Jeroch,H.D.,H.Dusel,and H.Nonn.The effectiveness of microbial xylanase in piglet rations based on wheat,wheat and rye or barley,respectively:Landbauforschumg Volkenrode,FAL.Braunschweig,Germany,1999,p223-228.
    [147]Diebold,G.,R.Mosenthin,H.P.Piepho,et al.Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces.2004,82:2647-2656.
    [148]黄金秀,陈代文,张克英.木聚糖酶对不同木聚糖含量的仔猪饲粮养分消化率的影响.中国畜牧杂志,2008,44(7):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700