梳型嵌段共聚物聚集态结构的耗散粒子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用耗散粒子动力学(Dissipative Particle Dynamics, DPD)模拟方法,分别研究了梳型嵌段共聚物的微观相行为;溶剂尺寸对分子刷结构和性质的影响;以及梳型嵌段共聚物自组装形成囊泡的性质进行了研究。主要内容包括:
     利用耗散粒子动力学模拟研究了二维体系下梳型嵌段共聚物的微观相分离,得到了相形貌与侧链长度及链段间相互依赖关系,进一步与线形和星形嵌段共聚物的微观相分离进行了对比。模拟结果揭示了影响梳型嵌段共聚物微观相分离的主要因素,包括嵌段共聚物的组成﹑拓扑结构以及不同粒子间的相互作用等。
     通过引入一种能够有效地避免分子链间发生键穿透的DPD模型,我们研究了溶剂尺寸变化对分子刷结构和动力学性质的影响,发现在无热溶液中,随着溶剂尺寸的增大分子刷的均方回转半径相应地减小;然而,相反的结果却出现在亲主链的选择性溶剂中。在小尺寸溶剂中,分子刷的扩散遵循Zimm模型,在较大溶剂尺寸情况下,分子刷的扩散遵循Rouse模型的标度规律。
     通过对梳型嵌段共聚物(主链具有一定刚性)稀溶液的耗散粒子动力学模拟,观察到长管状、球状以及洋葱状囊泡的自发形成过程;通过改变溶剂的性质,构建了表征囊泡形成条件的相图;通过对囊泡自发融合过程的研究,我们发现了一种新的融合机制,即在融合过程中伴随着融合柄与孔的形成,并且在较大体系下也得到了相同的融合方式,排除了体积效应的影响;通过改变溶剂的选择性,研究了囊泡形态的变化。我们的研究结果对于从嵌段共聚物出发,设计具有特殊功能的囊泡,以及研究囊泡的融合行为提供了理论帮助。
As an important branch of“soft materials”, block copolymers have arouse many physicists and material scientists' interests for its many novel behavior, abundant physical connotation and its extensive application background. It had been proved that comb-like block copolymer can be tailored to display a range of novel mechanical, rheological and optical properties; In melt, block copolymer can form lots of ordered nano-materials, which usually present unique properties, such as in the field of optics and spectroscopy. In upper concentration, these block copolymers will form 3D network like gel structures which compose bracket for mesoporous material; In dilute solution, block copolymers have excellent self-assembly ability. They can assembly into complex structures, such as micelle and vesicle because of the selectivity of solvent. Block copolymers assembly to aggregates in selective solvents or micro-phase structure in bulk have great potential application and development prospects in many emerging areas, the most important in which is controlling the release of biologically active molecules. With the rapid development of polymer material and bio-medical disciplines, combine research of drug delivery technology and nano-scale materials became increasingly important in scientific research area. Block copolymer can form micelles or vesicle structure, which can be used in the biomedical field as a carrier, or involved in the control of drug release for its PH value and temperature-sensitive.
     Computer simulation performed by establishing model based on real problems, select appropriate simulation method to depict the real process, and then obtain reinforce results for experiment and theoretical. In principle, the computer can acquire all information of system. Computer simulation can not only provide complement for the experiment data but also to make predictions for the theoretical results. At present, computer simulation, theoretical approaches and experimental science have become three kinds of means to understand the objective world. We carry out the dissipative particle dynamics (DPD) simulations to study the topics we interested in detail. In DPD method, all the particles interact with each other through three pairwise forces: conservative force, dissipative force, and random force. These forces are so soft that the integration time step is larger than that in MD, and the time scale in DPD simulation can be at milliseconds. Some molecules or polymer segments can be coarse grained into one DPD particle due to the soft repulsion potential, thus the DPD method can be used to study the systems at micron length scale.
     The microphase separations of comb-like block copolymer, the influence of solvent size on the structural properties of bottle-brush polymers, and the spontaneous vesicle formation and fusion of comb-like block copolymers with semiflexible hydrophobic backbone are studied via Dissipative Particle Dynamics (DPD).simulations. The main results are as follows:
     (1) Dissipative particle dynamics simulations are carried out to study the microphase separation of comb-like block copolymer in two dimensions. By systematically varying the side chain length and the repulsion strength between the two components, we find various morphologies. For comparison, the linear and the star-like block copolymers are also studied in the simulations. The results reveal the main factors that affect the microphase separation of comb-like block copolymers in melts.
     (2) Dissipative particle dynamics had been successfully applied to study the polymer systems with various complexities. However, because of the soft nature of the interactions, DPD method can not avoid bond-crossing which is important to obtain real physical properties in the simulations. Here we propose a modified three dimensional DPD model based on the traditional DPD to avoid bond crossing. We find that this simulation model can effectively avoid the bond-crossing problem. Based on this model we investigate the effect of solvent size on the structural properties of bottle-brush polymers in dilute solution. We find that with increasing solvent size, the radius of gyration of the bottle-brush polymer decreases considerably in athermal solvent but increases in selective solvent favoring the backbone, respectively.
     (3)The spontaneous vesicle formation and fusion of comb-like block copolymers with semiflexible hydrophobic backbone are studied via DPD simulations. By systemically varying the solvent condition, we construct a phase diagram to indicate the thermodynamically stable region for vesicles. The spontaneous fusion between the vesicles is studied, whose mechanism is as follows: first, a stalk is formed between the vesicles; then, the holes appear in both vesicles near the feet of the stalk; finally, the stalk bends to circle the holes and the fusion process is completed. This fusion pathway is similar to that observed in Monte Carlo simulations and dynamic self-consistent filed theory but different from those reported in coarse-grained molecular dynamics and DPD simulations. The main reason for the difference may be attributed to the molecular structures used in different simulation techniques.
引文
[1] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987.
    [2] FRENKEL D, SMIT B. Understanding Molecular Simulation: From Algorithms to Applications [M]. San Diego: Academic Press, 1996.
    [3] WOOLFSON M M, PERT G J. An Introduction to Computer Simulation [M]. Oxford: Oxford Univ. Press, 1999.
    [4]杨小震.高分子科学的今天与明天:高分子的计算机模拟[M].北京:化学工业出版社,1994: 182-193.
    [5] BINDER K. Monte Carlo and Molecular Dynamics Simulations in Polymer Science [M]. Oxford: Oxford Univ. Press, 1996.
    [6] LIU T W. Flexible polymer chain dynamics and rheological properties in steady flows [J]. J. Chem. Phys., 1989, 90: 5826-5842.
    [7] ZYLKA W, ?TTINGER H C. A comparision between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction [J]. J. Chem. Phys., 1989, 90: 474-480.
    [8] GRASSIA P, HINCH E J. Computer simulations of polymer chain relaxation via Brownian motion [J]. J. Fluid Mech., 1996, 308: 255-288.
    [9] DOYLE P S, SHAQFEH E S G, GAST A P. Dynamics simulation of freely draining flexible polymers in steady linear flows [J]. J. Fluid Mech., 1997, 334: 251-291.
    [10] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19: 155-160.
    [11] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic simulations of hard-sphere suspensions under steady shear[J]. Europhys. Lett., 1993, 21: 363-368.
    [12] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997,107: 4423-4435.
    [13] CHEN S, DOOLEN G D. Lattice boltzmann method for fluid flows [J]. Annu. Rev. Fluid Mech. 1998, 30: 329-364.
    [14] FRAAIJE J G E M, VLIMMEREN VAN B A C, MAURITS N M, et al. The dynamic mean-fiel density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts [J]. J. Chem. Phys., 1997, 106: 4260-4269.
    [15] VLIMMEREN B A C V, MAURITS N M, ZVELINDOVSKY A V, et al. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13 (propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. application of dynamic mean-field density functional theory [J]. Macromolecules, 1999, 32: 646-656.
    [16] FREDRICKSON G H, GANESAN V, DROLET F. Field-theoretic computer simulation methods for polymers and complex fluids [J]. Macromolecules, 2002, 35: 16-39.
    [17] ANDERSON J D. Computational Fluid Dynamics: The basic with application [M].北京:清华大学出版社,2002.
    [18] KONG Y, MANKE C W, MADDEN W G, et al. Simulation of a confined polymer in solution using the dissipative particle dynamics method [J]. Int. J. Themophys., 1994, 15: 1093-1101.
    [19] SCHLIJPER A G, HOOGERBRUGGE P J, MANKE C W. Computer simulation of dilute polymer solutions with the dissipative particle dynamics method [J]. J. Rheol., 1995, 39: 567-579.
    [20] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30: 191-196.
    [21] QIAN H J, LU Z Y, CHEN L J, et al. Computer simulation of Cyclicblock copolymer microphase separation [J]. Macromolecules, 2005, 38: 1395-1401.
    [22] GROOT R D, MADDEN T J. Dynamic simulation of diblock copolymer microphase separation [J]. J. Chem. Phys., 1998, 108: 8713-8724.
    [23] REKVIG L, HAFSKJOLD B, SMIT B. Chain length dependencies of the bending modulus of surfactant monolayers [J]. Phys. Rev. Lett., 2004, 92: 116101-116104.
    [24] YAMAMOTO S, HYODO S. Budding and fission dynamics of two-component vesicles [J]. J. Chem. Phys., 2003, 118: 7937-7943.
    [25] LARADJI M, SUNIL KUMAR P B. Dynamics of domain growth in self-assembled fluid vesicles [J]. Phys. Rev. Lett., 2004, 93: 198105-198108.
    [26] GROOT R D, MADDEN T J, TILDESLEY D J. On the role of hydrodynamic interactions in block copolymer microphase separation [J]. J. Chem. Phys., 1999, 110: 9739-9749.
    [27] DE GENNES P G.软物质与硬科学[M],湖南教育出版社,2000年.
    [28]陆坤权,刘寄星,软物质物理学导论[M],北京:北京大学出版社,2004年.
    [29] DE GENNES P G. Soft Matter [J]. Rev. Mod. Phys., 1992, 64: 645-648.
    [30] DINSMORE D, WONG D T, NELSON P, YODH A G. Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature [J]. Phys. Rev. Lett., 1998, 80: 409-412.
    [30]马余强.软物质的自组装[J].物理学进展,2002,22 (1): 73-98.
    [31] BUCKNALL D G, ANDERSON H L. Polymers get organized [J]. Science, 2003, 302: 1904-1905.
    [32]江明,A.艾森伯格,刘国军,等.大分子自组装[M].北京:科学出版社,2006.
    [33] HAMLEY I W. The physics of block copolymers [M]. Oxford: Oxford University Press, 1999.
    [34] LEIBLER L. Theory of microphase separation in block copolymers [J]. Macromolecules, 1980, 13: 1602-1617.
    [35] LEE M, CHO B K, ZIN W C. Supramolecular structures from rod-coil block copolymers [J]. Chem. Rev., 2001, 101: 3869-3892.
    [36] THURN-ALBRECHT T, SCHOTTER J, K?STLE C A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates [J]. Science, 2000, 290: 2126-2129.
    [37] FREDRICKSON G H, HELFAND E. Fluctuation effects in the theory of microphase separation in block copolymers [J]. J. Chem. Phys., 1987, 87: 697-705.
    [38] HELFAND E. Theory of inhomogeneous polymers: Fundamentals of the gaussian random-walk model [J]. J. Chem. Phys., 1975, 62: 999-1005.
    [39] MATSEN M W, SCHICK M. Stable and unstable phases of a diblock copolymer melt [J]. Phys. Rev. Lett., 1994, 72: 2660-2663.
    [40] BATES F S, FREDRICKSON G H. Block copolymer thermodynamics: theory and experiment [J]. Annu. Rev. Phys. Chem., 1990, 41: 525-557.
    [41] SHILLCOCK J, LIPOWSKY R. The computational route from bilayer membranes to vesicle fusion [J]. J. Chem. Phys., 2006, 18: 1191-1219.
    [42] GAO L H, LIPOWSKY R, SHILLCOCK J. Tension-induced vesicle fusion: pathways and pore dynamics [J]. Soft Matter, 2008, 4: 1208-1214
    [43] GRAFMULLAR A, SHILLCOCK J, LIPOWSKY R. Pathway of Membrane Fusion with Two Tension-Dependent Energy Barries [J]. Phys. Rev. Lett, 2007, 98: 2181011-2181014
    [44] SAMMALKORPI M, KARTTUNEN M, HAATAJA M. Micelle fission thorough surface instability and formation of an interdigitating stalk [J]. 2008, 130: 17977-17980
    [45]韩志超.结构材料化学进展[M].北京:化学工业出版社,2005.
    [46] MOGI Y, NOMURA M, KOTSUJE H, et al. Superlattice Structures in Morphologies of the ABC Triblock Copolymers [J]. Macromolecules, 1994, 27: 6755-6760.
    [47] MASTSUSHITA Y, SUZUKI J, SEKI M. Surfaces of tricontinuous structure formed by an ABC triblock copolymer in bulk [J]. Physics B, 1998, 248: 238-242.
    [48] RIESS G. Micellization of block copolymers [J]. Prog. Polym. Sci., 2003, 28: 1107-1170.
    [49] KITA-TOKARCZYK K, GRUMELARD J, HAEFELE T, et al. Block copolymer vesicles– using concepts from polymer chemistry to mimic biomembranes [J]. Polymer, 2005, 46: 3540-3563.
    [50] JAIN S, BATES F S. On the origins of morphological complexity in block copolymer surfactants [J]. Science, 2003, 300: 460-464.
    [51] LI Z B, KESSELMAN E, TALMON Y, et al. Multicompartment micellesfrom ABC miktoarm stars in water [J]. Science, 2004, 306: 98-101.
    [52] DISCHER D E, EISENBERG A. Polymer vesicles [J]. Science, 2002, 297: 967-973.
    [53] YANG P, DENG T, ZHAO D, et al. Hierarchically ordered oxides [J]. Science, 1998, 282: 2244-2246.
    [54] CHENG Y J, GUTMANN J S. Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer [J]. J. Am. Chem. Soc., 2006, 128: 4658-4674.
    [55] JAIN S, BATES F S. Science [J], 2003, 300, 460.
    [56] SIMOES S, MOREIRA J N, FONSECA C, DUZGUNE N, LIMA M C P D. pH-responsive carriers for enhancing the cytoplasmic delivery of macromolecular drugs [J]. Adv Drug Deliver Rev, 2004, 56: 947-965.
    [57] YAMAMOTO S, MARUYAMA Y, HYODO S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules [J]. J Chem Phys, 2002, 116: 5842-5849.
    [58] HITZ T, LUISI P L. Liposome-assisted selective polycondensation ofα-amino acids and peptides [J]. J Pept Sci, 2000, 55: 381-390.
    [59] GILL I, BALLESTEROS A. Immunoglobulin-polydiacetylene Sol-Gel nanocomposites as solid-state chromatic biosensors [J]. Angew Chem Int Edit, 2003, 42: 3264-3267.
    [60] KNECHT V, MARRINK S-J. Molecular dynamics simulations of lipid vesicle fusion in atomic details [J]. Biophys. J., 2007, 92: 4254-4261.
    [61] NOGUCHI H, TAKASU M. Fusion pathways of vesicles: a Brownian dynamics simulation [J]. J. Chem. Phys., 2001, 115: 9547-9551.
    [62] MULLER M, KATSOV K, SCHICK M. A new mechanism of model membrane fusion determined from Monte Carlo simulation [J]. Biophys. J., 2003, 85: 1611-1623.
    [63] SEVINK G J A, ZVELINDOVSKY A V. Self-assembly of complex vesicles [J]. Macromolecules, 2005, 38: 7502-7513.
    [64] YAMAMOTO S, MARUYAMA Y, HYODO S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules [J] J.Chem. Phys., 2002, 116: 5842-5849.
    [65] WU S, GUO H X. Simulation Study of Protein-Mediated Vesicle Fusion [J] J. Phys. Chem. B, 2009, 113: 589-591.
    [66] LARADJI M, SUNIL KUMAR P B. Domain growth, budding, and fission in phase-separating self-assembled fluid membranes [J]. J. Chem. Phys. 2005, 123: 224902.
    [67] YANG K, MA Y Q. Computer Simulations of Vesicle fission induced by external amphipathic inclusions [J]. J. Phys. Chem. B, 2009, 113: 1048-1057.
    [68] HONG B, QIU F, ZHANG H, YANG Y L. Budding Dynamics of Individual Domains in Multicomponent Membranes Simulated by N-Varied Dissipative Particle Dynamics [J]. J. Phys. Chem. B, 2007, 111: 5837-5849.
    [69] GAO L, LIPOWSKY R, SHILLCOCK J C. Tension-induced vesicle fusion: Pathways and pore dynamics [J]. Soft Matter, 2008, 4: 1208-1214.
    [70] SHILLCOCK J C, LIPOWSKY R. The computational route from bilayer membranes to vesicles fusion [J]. J. Phys.: Condens. Matter, 2006, 18: S1191-S1219.
    [1] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19: 155-160.
    [2] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic simulations of hard-sphere suspensions under steady shear [J]. Europhys. Lett., 1993, 21: 363-368.
    [3] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30: 191-196.
    [4] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [5] DüNWEG B,PAUL W. Brownian dynamics simulations without gaussian random numbers [J]. Int. J. Mod. Phys. C, 1991, 2: 817-827.
    [6] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30: 191-196.
    [7] TUCKERMAN M E, MARTYNA G J. Understanding Modern Molecular Dynamics: Techniques and Applications [J]. J. Phys. Chem. B, 2000, 104: 159-178.
    [8] NOVIK K E, COVENEY P V. Finite-difference methods for simulation models incorporating nonconservative forces [J]. J. Chem. Phys., 1998, 109: 7667-7677.
    [9] PAGONABARRAGA I, HAGEN M H J, FRENKEL D. Self-consistent dissipative particle dynamics algorithm [J]. Europhys. Lett., 1998, 42: 377-382.
    [10] VATTULAINEN I, KARTTUNEN M, BESOLD G, et al. Integration schemes for dissipative particle dynamics simulations: from softly interacting systems towards hybrid models [J]. J. Chem. Phys., 2002, 116: 3976-3979.
    [11] NIKUNEN P, KARTTUNEN M, VATTULAINEN I. How would you integrate the equations of motion in dissipative particle dynamics simulations? [J]. Comp. Phys. Comm., 2003, 153: 407-423.
    [12] SHARDLOW T. Splitting for dissipative particle dynamics [J]. SIAM J. Sci. Comp., 2003, 24: 1267-1282.
    [13] TUCKERMAN M, BERNE B J, MARTYNA G J. Reversible multiple time scale molecular dynamics [J]. J. Chem. Phys., 1992, 97: 1990-2001.
    [14] STRANG G. On the construction and comparison of difference schemes [J]. SIAM. J. Number. Anal., 1968, 5: 506-517.
    [15] LOWE C P. An alternative approach to dissipative particle dynamics [J]. Europhys. Lett., 1999, 47: 145-151.
    [16] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. J. Chem. Phys., 1980, 72: 2384-2393.
    [17] SCHNEIDER T , STOLL E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions [J]. Phys. Rev. B, 1978, 17: 1302-1322.
    [18] RISKEN H. The fokker-planck equation [M]. Berlin: Springer-Verlag, 1984.
    [19] DüNWEG B. Langevin methods, In Dünweg B, Landau D P, Milchev A I, editors. Computer simulation of surfaces and interfaes [M]. Dordrecht: Kluwer, 2003.
    [20] GROOT R. D, RABONE K L. Mesocsopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophys. J., 2001, 81: 725-736.
    [21] RUBINSTEIN M., COLLBY, R H. Polymer Physics [M]. Oxford University Press, Oxford, 2003.
    [22]都志辉.高性能计算之并行编程技术——MPI并行程序设计[M], 2001年.
    [23] MPI Forum. MPI: A Message Passing Interface [J]. International Supercomputer Applications, 1994, 8(3/4): 165-414.
    [24] LAWSON C L, HANSON R J, KINCAID D R, KROGH F T. Basic linear Algebra Subprograms for Fortran Usage [J]. ACM Trans. Math. Softs, 1979,5: 308-323.
    [25]BREUER M, BERNSDORF J, ZEISER T, DURST F. Accuratecomputations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and Finite-volume [J]. Intl J. Heat Fluid Flo., 21: 186–196.
    [26]陈国良.并行计算[M].北京:高等教育出版社,1999.
    [27] JIANG C B, ZHANG Q H, AN X M. River flow simulations using parallel computing techniques [M]. XXIX IAHR Congress Proceeding, Theme D. 2001.
    [1] BUCKNALL D G., ANDERSON H L. Polymers Get Organized [J]. Science, 2003, 302: 1904-1905.
    [2] MATSEN M W, SCHICK M. Phys. Stable and unstable phases of a diblock copolymer melt [J]. Rev. Lett., 1994, 72: 2660-2663.
    [3] ANTONIETTI M, CONRAD J, THüNEMANN A. Polyelectrolyte-surfactant complexes: A new-type of solid mesomorphous material [J]. Macromolecules, 1994, 27: 6007~6011.
    [4] SHEIKO S S, GERLE M, FISCHER K, SCHMIDT M, M?LLER M. Wormlike polystyrene bushes in thin flims [J]. Langmuir, 1997, 13: 5368-5372.
    [5] HUH J, IKKALA O, BRINKE G TEN. Correlation hole effect in comblike copolymer systems obtained by hydrogen bonding between homopolymers and end-functionalized oligomers [J]. Macromolecules, 1997, 30: 1828-1835.
    [6] GERLE M, FISCHER K, ROOS S, et al. Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes As Revealed by GPC/MALLS, Light Scattering, and SFM [J]. Macromolecules, 1999, 32: 2629-2637.
    [7] RUOKOLAINEN J, TANNER J, IKKALA O, BRINKE G. TEN. Thomas E.L. Direct Imaging of Self-Organized Comb Copolymer-like Systems Obtained by Hydrogen Bonding: Poly(4-vinylpyridine)?4-Nonadecylphenol [J]. Macromolecules, 1998, 31: 3532-3536.
    [8] IKKALA O T, RUOKOLAINEN J, BRINKE G TEN, et al. MESOMORPHIC State of Poly(vinylpyridine)-Dodecylbenzenesulfonic Acid Complexes in Bulk and in Xylene Solution [J]. Macromolecules, 1995, 28: 7088-7094.
    [9] ZHANG H., RUCKENSTEIN E. One-Pot, Three-Step Synthesis of Amphiphilic Comblike Copolymers with Hydrophilic Backbone and Hydrophobic Side Chains [J]. Macromolecules, 2000, 33: 814-819.
    [10] HUANG J, LI Z Y, XU XW, REN Y, HUANG J L. Preparation of novel poly(ethyleneoxide-co-glycidol)-graft-poly(epsilon-caprolactone) copolymers and inclusion complexation of the grafted chains with alpha-cyclodextrin [J]. J PolymSci Part A: Polym Chem, 2006, 44: 3684-3691.
    [11] BORISOV O V, ZHULINA E B. Amphiphilic graft copolymer in a selective solvent: Intramolecular structures and conformational transitions [J]. Macromolecules 2005, 38: 2506-2514.
    [12] KRAMARENKO E YU, PEVNAYA O S, KHOKHLOV A R. Stoichiometric Polyelectrolyte Complexes as Comb Copolymers [J]. J. Chem. Phys, 2005, 122: 084902.
    [13] RUNGE M B, DUTTA S, BOWDEN N B. Synthesis of comb block copolymers by ROMP, ATRP, and POP and their assembly in the solid state [J]. Macromolecules, 2006, 39: 498-508.
    [14] FOSTER D P, JASNOW D, BALAZS A C. Macrophase and Microphase Separation in Random Comb Copolymers [J]. Macromolecules, 1995, 28: 3450-3462.
    [15] PATEL D M, FREDRICKSON G H. Quenched and annealed disorder in randomly grafted copolymer melts [J]. Phys Rev E, 2003, 68: 051802.
    [16] WANG R, JIANG Z, HU J. Order to disorder transition of comb copolymer Am+1Bm: a self-consistent field study [J]. Polymer, 2005, 46: 6201-6207.
    [17] HUANG C I, LIN Y C. Hierarchical structure-within-structure morphologies in A-block-(B-graft-C) molecules [J]. Macromol. Rapid Commun, 2007, 28: 1634-1639
    [18] SAARIAHO M, IKKALA O, BBRINKE G. TEN. Molecular bottle-brushes in thin fims: An off-lattice Monte-Carlo study [J]. Journal of Chemical Physics J Chem Phys, 1999, 110: 1180-1187.
    [19] STEPANYAN R, SUBBOTIN A, BRINKE G. TEN. Strongly adsorbed comb copolymers with rigid side chains [J]. Phys Rev. E, 2001, 63: 061805 (1-9).
    [20] POTEMKIN I I, KHOKHLOV A R, REINEKER P. Stiffness and conformations of molecular bottle-brushes strongly adsorbed on a flat surface [J]. Eur, Phys. J. E,2001, 4: 93-101.
    [21] KHALATUR P G, KHOKHLOV A R, PROKHOROVA S A, et al. Flat solid surface [J]. Eur. Phys. J. E. 2000,1 : 99-103
    [22] SHEIKO S S, PROKHOROVA S A, BEERS K L, et al. Single MolecularRod-Globule phase Transition for Molecules at a Flat Interface [J]. Macromolecules, 2001, 34 : 8354-8360
    [23] LARADJI M, SHI A C, NOOLANDI J, et al. Stability of Ordered phases in diblock copolymer Melts [J] Macromolecules, 1997, 30: 3242-3255.
    [24] Matsen M W. Cylinder?Gyroid Epitaxial transitions in complex polymeric liquids [J]. Phys. Rev. Lett. 1998, 80: 4470-4473.
    [25] QI S, WANG Z. G. Kinetics of phase transitions in weakly segregated block copolymers: Pseudostable and transient states [J]. Phys. Rev. E 1997, 55: 1682-1697.
    [26] GOVEAS J L, MILLER S T. Dynamics of the Lamellar?cylindrical transition in weakly segregated diblock copolymer Melts [J]. Macromolecules 1997, 30: 2605-2612.
    [27] FRIED H, BINDER K. The microphase separation transition in symmetric diblock copolymer melts: A Monte Carlo study [J]. J. Chem. Phys. 1991, 94:8349-8366.
    [28] LARSON R G. Simulation of Lamellar Phase Transitions in Block Copolymers [J]. Macromolecules 1994, 27: 4198-4202.
    [29] ALMDAL K, ROSEDALE J H, BATES F S, et al. Gaussian- to stretched-coil transition in block copolymer melts [J]. Phys. Rew. Lett. 1990, 65: 1112-1115.
    [30] GROOT R D, MADDEN T J, TILDESLEY D J. On the role of hydrodynamic interactions in block copolymer microphase separation [J]. J. Chem. Phys., 1999, 110: 9739-9749.
    [31] SCHULTZ A J, HALL C K, GENZER J. Computer Simulation of Copolymer Phase behavior [J]. J. Chem. Phys., 2002,117: 10329-10338.
    [32] GROOT R D, MADDEN T J. Dynamic simulation of diblock copolymer microphase separation [J]. J. Chem. Phys., 1998, 108: 8713-8724.
    [33] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [34] VATTULAINEN I, KARTTUNEN M, BESOLD G, et al. Integrationschemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models [J]. J. Chem. Phys. 2002, 116: 3967-3979.
    [35] SHARDOW T. Splitting for dissipative particle dynamics [J]. SIAM J. Sci. Comp., 2003, 24: 1267-1282.
    [36] LOWE C P. An alternative approach to dissipative particle dynamics [J]. Europhys. Lett., 1999, 47: 145-151.
    [37] BESOLD G, VATTULAINEN I, KARTTUNEN M, et al. Towards better integrators for dissipative particle dynamics simulations [J]. Phys. Rev. E, 2000, 62: R7611-R7614.
    [38] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19: 155-160.
    [39] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30: 191-196.
    [40]刘伟,钱虎军,吕中元等.剪切场作用下环形二嵌段共聚物微相形态变化的耗散粒子动力学研究[J] 2007, 28, 548-551.
    [41] QIAN H J, LU Z Y, CHEN L J, et al. Computer simulation of cyclic block copolymer microphase separation [J]. Macromolecules, 2005, 38: 1395-1401.
    [42] QIAN H J, CHEN L J, LU Z Y, et al. The influence of molecule flexibility and shape on the morphology of miktoarm block copolymers in two dimensions [J]. Europhys Lett, 2006, 74: 466-472.
    [1] RUOKOLAINEN J, BRINKE G. TEN, IKKALA O, et al. Mesomorphic Structures in Flexible Polymer?Surfactant Systems Due to Hydrogen Bonding: Poly(4-vinylpyridine)?Pentadecylphenol[J]. Macromolecules, 1996, 29:3409-3415.
    [2] RYU S W, HIRAO A, Anionic Synthesis of Well-Defined Poly(m-halomethylstyrene)s and Branched Polymers via Graft-onto Methodology [J]. Macromolecules, 2000, 33:4765-4771.
    [3] BEERS K L, GAYNOR S G, MATYGASZEWSKI K, et al. Thesynthesis of densely grafted copolymers by atom transfer radical polymerization [J]. macromolecules, 1998, 31: 9413-9415.
    [4] NEUGEBAUER D, ZHANG Y, PAKULA T. Gradient graft copolymers derived from PEO-based macromonomers [J] J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 1347-1356.
    [5] FU G. D, KANG E T, NEOH K G., et al. Comb-Shaped Macromolecules of Rigid Fluorinated Polyimide with Polystyrene/Poly(pentafluorostyrene) Brushes Prepared from ATRP [J]. Macromolecules, 2005, 38: 7593-7600.
    [6] MUCHTAR Z, SCHAPPACHER M., DEFFIEUX A. Hyperbranched Nanomolecules: Regular Polystyrene Dendrigrafts [J]. Macromolecules, 2001, 34: 7595-7600.
    [7] PTITSYN O B. J. Chem. Phys. USSR. 1955, 29: 396.
    [8] KRON A K, PTITSYN O B. Vysokomolek. Soedin. 1963,5:397.
    [9] BERRY G C, OROFINO T A. Branched polymers III. Dimensions of chains with small excluded volume [J]. J. Chem. Phys., 1964, 40: 1614-1621.
    [10] TSVETKOV V H, HARDY D, SHTENNICOVA I N, et al. Conformational properties of macromolecules with side chains [J]. Vysokomolek. Soedin, 1969, 11: 349-358.
    [11] DECKER D. Etude en solution diluée de polymèresàstructure en peigne[J]. 1969, 125 : 136-160
    [12] CANDAU F,REMPP P. Eur. Polym. J, 1972, 8: 757-768.
    [13] SAKURAI M, YOSHIMOR A. Selective solvation caused by size effects[J]. Chem. Phys. Lett., 2003, 371: 23-28.
    [14] MAITI A, WESCOTT J, GOLDBECK-WOOD G. Mesoscale modelling: recent developments and applications to nanocomposites, drug delivery and precipitation membranes [J]. Int. J. Nanotech, 2005, 2: 198-214.
    [15] LU Z Y, HENTSCHKE R. Computer simulation study on the swelling of a model polymer network by a chainlike solvent [J]. Phys. Rev. E, 2002, 65:041807
    [16] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435
    [17] GROOT R D, MADDEN T J, TILDESLEY D J. On the role of hydrodynamic interactions in block copolymer microphase separation[J]. J. Chem. Phys., 1999, 110: 9739-9749
    [18] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19: 155-160
    [19] Qian H. J., Chen L. J., Lu Z .Y., et al. Surface diffusion dynamics of a single polymer chain in dilute solution [J]. Phys. Rev. Lett., 2007, 99: 068301
    [20] QIAN H J, LU Z Y, CHEN L J, et al, Computer simulation of cyclic block copolymer microphase separation [J]. Macromolecules, 2005, 38:1395-1401.
    [21] HE Y D, YOU L Y, WANG X L, LU Z Y, et al, The structure and dynamics of confined polymer chain in dilute solution [J]. Chem. J. Chi-nese Universities, 2009, 30: 191-195.
    [22] LIU H, XUE Y H, QIAN H J, LU Z Y, et al , A Practical Method to Avoid Bond Crossing in Two-dimensional Dissipative Particle Dynamics Simulations [J]. J. Chem. Phys., 2008, 129: 024902.
    [23] NIKUNEN P, VATTULAINEN I, KARTTUNEN M, Reptational dynamics in dissipative particle dynamics simulations of polymer melts [J]. Phys. Rev. E, 2007, 75: 036713.
    [24] JIANG W, WANG Y, LARADJI M. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics [J]. J. Chem. Phys., 2000, 126: 044901-(1-10).
    [1]马余强,软物质的自组织[J].物理学进展, 2002,第22卷, 73-98页.
    [2]ZHAO Y, LIU Y T, LU Z Y. The sensitive influence of the segment sequence and the molecular architecture on the morphology diversity of the multicompartment micelles: a dissipative particle dynamics simulation study [J]. Polymer, 2008, 49: 4899-4909.
    [3] XU J P, CHEN W D, JI J, et al. Novel Biomimetic Polymeric Micelles for Drug Delivery [J]. Chem. J. Chinese University, 2007, 28: 394-396.
    [4] LI Z, KESSELMAN E, TALMON Y, et al. Multicompartment micelles for ABC miktoarm stars in water [J]. Science, 2004, 306: 98-101.
    [5] ZHOU Z, LI Z, REN Y, et al. Micellar Shape Change and Internal Segregation Induced by Chemical Modification of Tryptych BlockCopolyer Surfactant [J]. J. Am. Chem. Soc., 2003, 125: 10182~10183.
    [6] KUBOWICZ S, BAUSSARD J.-F, LUTZ J.-F, et al. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium [J]. Angew. Chem. Int. Ed., 2005, 44: 5262~5265.
    [7] DISCHER D E, EISENBERG A. Polymer Vesicles [J]. Science, 2002, 297: 967-973.
    [8] ALLEN T M, CULLIS P R. Drug Delivery Systems: Entering the Mainstream [J]. Science, 2004, 303: 1818-1822.
    [9] HILLMYER M A. MATERIALS SCIENCE: Micelles Made to Order [J].Science 2007, 317: 604-605.
    [10] HAMLEY I W, CASTELLETTO V. Angew. Chem., Int. Ed., 2007, 46: 4442-4445.
    [11] MORISHIMA Y. Thermally Responsive Polymer Vesicles [J]. Angew. Chem., Int. Ed., 2007, 46: 1370-1372.
    [12] BLUMENTHAL R, CLAGUE M J, DURELL S R, EPAND R M. Membrane fusion [J]. Chem. Rev., 2003, 103: 53-69.
    [13] SAFRAN S A. Statistical thermodynamics of surfaces, interfaces and membranes; addison wesley: reading, PA, 1994.
    [14] CHERNOMORDIK L V, KOZLOV M M, MELIKYAN G B, et al.Biophys. Acta [J] 1985, 812: 643-655.
    [15] KNECHT V, MARRINK S-J. Molecular dynamics simulations of lipid vesicle fusion in atomic details [J]. Biophys. J., 2007, 92: 4254-4261.
    [16] NOGUCHI H, TAKASU M. Fusion pathways of vesicles: a Brownian dynamics simulation [J]. J. Chem. Phys., 2001, 115: 9547-9551.
    [17] MULLER M, KATSOV K, SCHICK M. A new mechanism of model membrane fusion determined from Monte Carlo simulation [J]. Biophys. J., 2003, 85: 1611-1623.
    [18] SEVINK G J A, ZVELINDOVSKY A V. Self-assembly of complex vesicles [J]. Macromolecules, 2005, 38: 7502-7513.
    [19] YAMAMOTO S, MARUYAMA Y, HYODO S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules [J] J. Chem. Phys., 2002, 116: 5842-5849.
    [20] WU S, GUO H X. Simulation Study of Protein-Mediated Vesicle Fusion [J] J. Phys. Chem. B, 2009, 113: 589-591.
    [21] LARADJI M, SUNIL KUMAR P B. Domain growth, budding, and fission in phase-separating self-assembled fluid membranes [J]. J. Chem. Phys. 2005, 123: 224902.
    [22] YANG K, MA Y Q. Computer Simulations of Vesicle fission induced by external amphipathic inclusions [J]. J. Phys. Chem. B, 2009, 113: 1048-1057.
    [23] HONG B, QIU F, ZHANG H, YANG Y L. Budding Dynamics of Individual Domains in Multicomponent Membranes Simulated by N-Varied Dissipative Particle Dynamics [J]. J. Phys. Chem. B, 2007, 111: 5837-5849.
    [24] GAO L, LIPOWSKY R, SHILLCOCK J C. Tension-induced vesicle fusion: Pathways and pore dynamics [J]. Soft Matter, 2008, 4: 1208-1214.
    [25] SHILLCOCK J C, LIPOWSKY R. The computational route from bilayer membranes to vesicles fusion [J]. J. Phys.: Condens. Matter, 2006, 18: S1191-S1219.
    [26] SHILLCOCK J C, LIPOWSKY R. Tension-induced fusion of bilayer membranes and vesicles [J]. Nat. Mater. 2005, 4: 225-228.
    [27] QI H, ZHONG C. Cooperative aggregation of amphiphilic comblikecopolymer/linear homopolymer blends in selective solvents: a density functional theory study [J]. J. Phys. Chem. B, 2008, 112: 10841-10847.
    [28] POTEMKIN, I. I. Elasticity-Driven Spontaneous Curvature of a 2D Comb-Like Polymer with Repulsive Interactions in the Side Chains Eur. Phys. J. E 2003, 12: 207-210.
    [29] POTEMKIN, I. I.; POPOV K. I. Effect of grafting density of the side chains on spontaneous curvature and persistence length of two-dimensional comblike macromolecules, J. Chem. Phys., 2008, 129(12): 124901.
    [30] SHILCOCK J C; LIPOWSKY R. J. Chem. Phys., 2002, 117: 5048-5061.
    [31] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [32] ORTIZ V, NIELSEN S O, DISCHER D E, KLEIN M L, LIPOWSKY R, SHILCOCK J C. Dissipative Particle Dynamics simulations of polymersomes[J]. J. Phys. Chem. B 2005, 109: 17708-17714.
    [33] MALININ V S, LENTZ B R. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses[J]. Biophys. J., 2004, 86: 2951-2964.
    [34] SMEIJERS A F, MARKVOORT A J, PIETERSE K, HILBER P A J. A detailed look at vesicle fusion [J]. J. Phys. Chem. B, 2006, 110: 13212-13219.
    [35] MARRINK S J, MARK A E. The mechanism of vesicle fusion as revealed by molecular dynamics simulations[J]. J. Am. Chem. Soc., 2003, 125: 11144-11145.
    [36]STEVENTS M J, HOH J H, WOOLF T B. Insights into the molecular mechanism of membrane fusion from simulation: evidence for the associated of splayed tails [J] Phys. Rev., Lett. 2003, 91: 188102.
    [37] Allen M P. Configurational Temperature in membrane simulations using dissipative particle dynamics [J]. J. Phys. Chem. B, 2006, 110: 3823-3830.
    [38] ZIPFEL J, LINDNER P, TSIANOU M, et al. Shear-Induced Formation of Multilamellar Vesicles (“Onions”) in Block Copolymers [J]. Langmuir, 1999, 15: 2599-2602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700