新疆和田河流域灌(草)丛沙堆发育机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌(草)丛沙堆是干旱半干旱地区沙漠、半湿润沙地和沙质海岸带常见的风积生物地貌类型。灌(草)丛沙堆的研究在风沙地貌学、土地荒漠化监测与评价、区域环境演变等方面具有重要意义。
     本文以新疆和田河流域典型的灌(草)丛沙堆为研究对象,以风沙地貌学、风沙物理学、植物地理学、植物生态学和沉积学等学科理论为指导,在沙漠腹地的和田河两岸、和田绿洲与沙漠的过渡带,实测了223个柽柳沙堆、120个芦苇沙堆和123个骆驼刺沙堆的形态参数,在各类沙堆表层共采集了约500个沉积物样品,在洛浦县和墨玉县绿洲边缘实地进行了典型沙堆顶部的风速剖面和风沙流观测,进行了以旨在阐明沙堆发育动力机制的风洞模拟实验和反映沙堆物质机械组成的粒度分析实验。经过综合分析,本文主要结论如下:
     和田河流域的沙堆类型主要有柽柳沙堆、芦苇沙堆和骆驼刺沙堆,其中柽柳沙堆主要分布在泛滥平原、淤积平坦地、干湖沼平原、河流两岸、高位河漫滩、两岸阶地、典型盐土地段、两岸广大流沙区的丘间洼地和绿洲边缘;芦苇沙堆分布在和田河阶地和积水洼地周缘、绿洲边缘、淤积洼地和洪泛平原上;骆驼刺沙堆分布在河流沿岸沙地、洪积冲积平原土壤水分相对较充足且适度盐化的地块、人为干扰较为频繁的地区以及绿洲边缘。
     和田河流域沙堆形态主要以迎风坡和背风坡的坡度和长度差异较小、空间几何形态近似半椭球体为主,系区域低风能环境、较弱输沙势作用结果。其中,增长阶段的柽柳沙堆主要呈现近似圆锥形态,成熟稳定阶段近似半球形;芦苇沙堆整体形态则呈现迎风坡短而陡、背风坡长而缓的近似半椭球体;骆驼刺沙堆的整体形态呈现迎风坡长而缓、背风坡短而陡的近似半椭球体。各类沙堆的长轴和短轴在增长发育阶段中是协同增长的,沙堆水平尺度与高度表现出显著的相关性。
     灌(草)丛引发的近地面流场结构变化,干扰了风沙流的运行,在灌(草)丛后涡流区使风沙流由不饱和状态转变为过饱和状态,再加上灌(草)丛本身对风沙流的阻截,促使风沙流中的部风固体碎屑物质在灌(草)丛中和灌(草)丛后发生沉降堆积,灌(草)丛的存在对于维持灌(草)丛沙堆的形态和促进灌(草)丛沙堆的增长具有重要作用。
     灌(草)丛周围土壤的蚀积特征表现为:在灌(草)丛的迎风侧根部为明显的风蚀区,灌(草)丛背风侧弱涡流发生部位表现为积沙区,灌(草)丛背风侧气流恢复区和灌(草)丛两侧气流加速区则表现为风蚀区,积沙区即为灌(草)丛沙堆的增长发育区。
     不同形态沙堆顶部植物改变流场结构的力学作用原理基本相同,都是通过增加沙堆表面的粗糙度,对气流阻滞消能,令气流减速进而改变各个高度气流速度和涡流影响强度范围,导致风沙流结构特征相应变化。灌(草)丛沙堆丘顶植被引发的流场结构变化,促使粉尘沉降堆积、沙堆增长发育。
     柽柳、芦苇、骆驼刺三种典型灌(草)丛沙堆表面沉积物均为粉砂质砂,沙堆表层沉积物的粒径分布范围依次为0.399~1002.374μm、25.178~282.507μm和0.447~2000μm。沙堆的不同地貌部位沉积物的各粒级、平均粒径、分选系数呈现出有规律的变化,系风沙流、沙堆形态、灌(草)丛和沉积物综合作用的结果。
     区域沙源和风力的共同影响下,随着柽柳灌丛的生长、繁荣和衰败,和田河流域柽柳沙堆的发育经历增长、稳定和衰退三个阶段,增长阶段以柽柳垂向生长、风沙迅速加积的圆锥形沙堆为主要特征,稳定阶段以柽柳植物动力作用强劲的半球形沙堆为代表,衰退阶段以柽柳枯萎、沙堆迎风侧开始出现弧形沙丘或背风侧发育风影沙丘为标志,丘顶发育风蚀凹坑则表明柽柳沙堆已经发展到风蚀残留阶段。
     和田河流域灌(草)丛沙堆发育的区域模式主要表现为两种类型:即沙漠腹地河流两岸因河道自然摆动引发的灌(草)丛沙堆演化模式;绿洲-荒漠过渡带人类活动影响下的下的灌(草)丛沙堆演化模式。
Nabkha is a common kind of biological wind deposition geomorphy in arid and semi-humid desert, and sandy coast. It has important significance in the aeolian geomorphology, monitoring and evaluating land desertification and regional environmental evolution so on.
    In this paper, the typical nabkha is the research object in the basin of Hetian River in Xinjiang. Two banks of Hetian River in Taklimakan Desert hinterland and the transition zone of the oasis and the desert have been investigated, according to Aeolian geomorphology, Aeolian physics, Phytogeography, Phytoecology, Sedimentation and other discipline theory. Shape data of 223 Tamarix nabkha, 120 Phragmite nabkha and 123 Alaghi nabkha have been measured, and about 500 sedimentary samples have been collected from the surface of three kinds of nabkhas, and the wind speed section and wind-sand flow at the top of the typical nabkha have been observed at the boundary zone of oasis in Luopu and Moyu county. Furthermore, In order to clarify the dynamic mechanism of nabkha growth and reflect nabkha's material composition, the wind-tunnel imitative experiment and the grain size analysis have been done. Through comprehensive analysis, the main conclusions can be summarized as follows:
    In the basin of Hetian River, Tamarix, Phragmite and Alaghi nabkhas are main types. Tamarix nabkhas mainly distribute in flood plain, silty flat, dry lake and marshes plains, river's banks, terraces, typical saline soil areas, interdunes low ground in moving dunes and oasis edge. Phragmite nabkhas lie in Hetian River's terraces, oasis edge, silted land and flood plains. Alaghi nabkhas scatter in the sandy land along river's bank, the land in the flood and alluvial plain which have relatively adequate moisture and moderate salinity, the region which is interfered frequently and oasis edge.
    The region is lower wind energy environment, and capability of transported sands is weaker, and it results that the space geometry shape of nabkhas are approximate semi-ellipsoid which have few difference in slope-length and slope-gradient of between upward and leeward sides in the basin of Hetian River. At the growth stage, Tamarix nabkha mainly appears approximately conical, and at the mature and stable stage, they are approximate hemispherical. While the whole shape of Phragmite nabkha is approximate semi-ellipsoid which have shorter and steeper upward slope
    and longer and lower gradient leeward slope. The shape of Alaghi nabkha presents approximate semi-ellipsoid which have longer and lower gradient upward slope and shorter and steeper leeward slope. At the growth stage, the long axis and short axis of all kinds of nabkhas are in synergic growth. The horizontal scale and height of nabkha show significant correlation.
    The shrub induces the change of the flow pattern structure on the ground, and interferes with wind-sand flow so that the wind-sand flow converts into over-saturation from not-saturation status in the vortex area behind shrub. In addition, shrub blocks the wind-sand flow so that partly solid fragment material to accumulate in and behind the shrub. So the shrub plays an important role in maintaining the shape and promoting the growth of nabkha.
    The character of soil erosion and accumulation around shrub shows that the obvious wind erosion area distributes at the upward side of the root, and that area of sand accumulated is in the weak vortex region at the leeward side of the shrub, and that the wind erosion area lies in the air flow recovery area at the leeward side of shrub and the air flow accelerated area at the both sides. The growth area of nabkha is the area of sand accumulation.
    Plants at the top of different shape nabkhas all enhance the rugosity of nabkhas, retard airflow to get over nabkhas, reduce energy, eliminate common wind-erosion areas by strong wind at the top of nabkhas, and reinforce influence range of vortex at leeward side of nabkhas. These result in the change of the structural character of wind-sand flow. Plant plays a very important role in changing airflow pattern structure, promoting the dusty and sand to accumulate, and nabkhas to grow up.
    Sediments on Tamarix, Phragmite and Alaghi nabkhas are silty sand. Grain size distribution scopes of sediments on Tamarix , Phragmite and Alaghi nabkhas are respectively from 0.399μm to 1002.374μm , from 25.178μm to 282.507μm, and and from 0.447μm to 2000μm. The combined action of wind-sand flow, nabkha shape, shrub and sediments results that grade, average grain size and sorting of sediments change regularily on different part of nabkhas.
    The sand source and wind power of region and shrub affect development of nabkha. Tamarix nabkha also experiences the same stage when Tamarix shrub grows, stablizes and declines. Tamarix shrub's disturbance to wind-sand flow and the shape of nabkha's dynamic equilibrium are all different in every stage. In the Tamarix nabkha's growth stage, the Tamarix displays moderate horizontal growth, and sand
    and dust are rapidly deposited to form conical nabkha. In the stabilization stage, Tamarix nabkha's shape appears semispherical and is intensely effected by Tamarix shrub's dynamical action. In the declination stage, Tamarix shrub is withered, and the arc dune starts to appear at upwind side, or the shadow dune arises at leeward side.
    There are two types of modes of nabkha growth in the basin of Hetian River.One is induced by river migration on banks of Hetian River in Taklimakan Desert hinterland, the other is caused activity of people in the transition zone between the oasis and the desert.
引文
1. Anderson R. S..Simulation of eolian saltation, Science. 1988, (241): 820-823.
    
    2. Anna Tengberg. Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina Faso. Journal of Arid Environments. 1995, (30): 265-282.
    
    3. Arens S.M.. Patterns of sand transport on vegetated foredunes, Geomorphology, 1996, (17) :339-350.
    
    4. Ash J. E. and Wasson, R. H.. Vegetation and sand mobility in the Australian desert dunefield, Zeitschrift fur Geomorphologie Supplementband, 1983,( 45): 7-25.
    
    5. Ballantyne C. K. and Whittington G. Niveo-aeolian sand deposits on An Teallach, Wester Ross, Scotland, Philosophical Transactions of the Royal Society of Edinburgh: Earth Sciences, 1987, (78) :51-63.
    
    6. Bagnold R A.The Physics of Blown Sand and Desert Dunes.London: Methuen . 1941.25-28;38-41.
    
    7. Bahre C. J. & Shelton M. L.. Historic vegetation change, mesquite increases and climate in southeastern Arizona. Journal of Biogeography, 1993, (20): 489-504.
    
    8. Barbey C, Carbonnel J. P.. Géodynamique exteme-Le ravinement dunaire en mlieu sahélien. Observation lors de pluies récentes dans la région de Nouakchott (auntanie). Academic des Sciences aris, Comptes Rendus, 1972, D 274: 2933-2935.
    
    9. Batanouny K. H. and Batanouny M. H.. Formation of phytogenic hillocks. I. Plants forming . phytogenic hillocks. Acta Botanica Academiae Sci. Hungaricae, 1968, (14): 243-252.
    
    10. Batanouny K. H.. Plants in the deserts of the Middle East. Springer-Verlag, Berlin. 2001.
    
    11. Bendali F., Floret C, Le Floc'h E. and Pontainer R.. The dynamics of vegetation and sand mobility in arid regions of Tunisia. Journal of Arid Environment, 1990, (18): 21-32.
    
    12. Berkey C. P., Morris F. K.. Geology of Mongolia. NewYork: The American Museum of Natural History, 1927, 33-69.
    
    13. Bocharov A. P.. A description of devices used in the study of wind erosion of soil. New Delhi: Oxbnian Press, Pvt, Ltd, 1984,1-65.
    
    14. Bochet E., Poesen J. and Rubio J. L.. Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes. Earth Surface Processes and Landforms, 2000,( 25): 847-867.
    
    15. Bristow C.S., N. Lancaster. Movement of a small slipfaceless dome dune in the Namib Sand Sea, Namibia, Geomorphology. 2004 ,(59): 189-196.
    
    16. Bullard J.E..A note on the use of the 'fryberger method' for evaluating potential sand transport by wind. Journal of Sedimentary Research, 1997, (67): 499-501.
    
    17. Carter R.W.G., Wilson, P.. The geomorphological, ecological and pedological development of coastal foredunes at Magilligan Point, Northern Ireland. In: Nordstrom, K.F., Psuty, N.P., Carter R.W.G. (Eds.), Coastal Dunes: Form and Process. Wiley, London, 1990, 129-157.
    
    18. Capot-Rey R.. Sur une forme d' erosion éolienne dans le Sahara francais. Tidjschrift Konligke Nederland Aardnjsk Genootschap, 1957, (74): 242-247.
    
    19. Chepil W. S.. Dynamics of wind erosion:I Nature of movement of soil by wind. Soil Science, 1945, (60): 305-320.
    
    20. Cooke R.U., Warren A., Goudie A.S.. Desert Geomorphology. UCL Press, London, 1993, 526.
    21. Cooper W.S.. Coastal Sand Dunes of Oregon and Washington.Geological Society of America -Memoir, 1958,(72): 169.
    
    22. Coque R..La Tunisie Pré-Saharienne. Etude Géomorphologique. Colin, Paris, 1962,476.
    
    23. Danin A.. Plants of Desert Dunes. New York, Spring-Verlag Berlin Heidelberg, 1996,177.
    
    24. Danin A.. Plant species diversity and plant succession in a sandy area in the Northern Negev. Flora, 1978, (167): 409-422.
    
    25. Danin A., E. Ganor. Trapping of airborne dust by Eig's meadowgrass (Poa eigii) in the Judean Desert, Israel, Journal of Arid Environments, 1997, (35): 77-86.
    
    26. De Soyza A.G, Whitford W.G.,et al.. Early warning indicators of desertification: examples from the Chihuahuan Desert. Journal of Arid Environments, 1998, (39): 101-112.
    
    27. Dougill A. J. & Thomas A. D.. Nebkha dunes in the Molopo Basin, South Africa and Botswana: formation controls and their validity as indicators of soil degradation. Journal of Arid Environments, 2002, (50): 413-428.
    
    28. Edwin D. Mckee. Sediment structure in dunes of the Namib Desert, south west Africa. Geological Society of America Special Paper, 1982, 188,48-49.
    
    29. Edwin D. McKee Editor. A study of global sand seas, Washington U. S. Government Printing Office, 1979.
    
    30. Frank A. J. G Kocurek. Airflow up the stoss slope of sand dunes:limitations of the current understanding, Geomorphology, 1996, (17): 47-54.
    
    31. F. de Castro. Computer simulation of dynamics of a dune system.Ecological modeling, 1995, (78): 205-217.
    
    32. Free E. E.. The movement of soil material by the wind. Pye K., Tsoar H. Aeolian sand and sand dunes. London: Unw in Hyman, 1990,45-78.
    
    33. Fryberger S. G. Dune formand wind regime. US Geological Survey Professional Paper, 1979, (1052): 137-169.
    
    34. Fryrear D. W., Saleh A., Bilbro J. D., etal.. Field tested wind erosion model. Buerkert B, Allision B E, von Oppen M. Proceeding of International Symposium Wind Erosion in West Africa:The problem and its Control.Germany: Margraft Verlag, Weikersheim, 1994, 343-355.
    
    35. Folk R.L.,Ward W.C.. Brazos river bar:astudyinthe significance of grain size parammeters, Sediment Petrol, 1957, (27): 3-26.
    
    36. Greeley R., Iversen J. D.. Wind as a Geological Process. Cambrodge: Cambrodge University Press, 1985.
    
    37. Glennie K. W.. Desert Sedimentary Environments. Amsterdam: Elsevier, 1970.
    
    38. Gregory J. M., Borrelli J., Fedler C. B.. TEAM: Texas erosion analysis model. Proceeding of 1998 Wind Erosion Con-ference. Texas:Texas Tech University, Lubbock, 1998, 88-103.
    
    39. Gibbens R. P.,Thomble J. N., Hennessey J.T. and Cardenas M.. Soil movement in mesquite dunelands and former grasslands of southern New Mexico from 1933 to 1980. Journal of Range Management, 1983, (36): 145-148.
    
    40. Gile L.H.. Holocene soils and soil-geomorphic relations in an arid region of southern New Mexico. Quaternary Research, 1975,( 5): 321-360.
    
    41. Grover H. D. & Musick H.B.. Shrubland encroachment in southern New Mexico.U.S.A.: an analysis of desertification processes in the American Southwest. Climatic Change, 1990 (17): 305-330.
    
    42. Hack J.T.,The dunes of westen Navajo county. Geogra-Physical Review, 1941,( 31 ):240-362.
    43. Hagen L. J. A wind erosion prediction system to meet the users need. Journal of Soil and Water Conservation, 1991,46, (2): 107-111.
    
    44. Hans J. Herrmann.. Evolution and shapes of dunes, C. R. Physique.2002 , (3): 197-206.
    
    45. Haim Tsoar, Dan G Blumberg, Yoav Stolen Elongation and migration of sand dunes, Geomorphology, 2004, (57): 293-302.
    
    46. Hedin S.A.. Central Asia and Tibet:towards the holy city of Lassa (two volumes).Cook, Warren, Goudie. Desert Geomorphlogy. London:UCLPress, 1993,53-89.
    
    47. Hesp, P.. Morphodynamics of incipient foredunes in New South Wales, Australia. In: Brookfield, M.E. and Ahlbrandt T.S., Aeolian Sediments and Processes, Elsevier, Amsterdam, 1983, 325-342.
    
    48. Hesp, P.. A review of biological and geomorphological processes involved in the initiation and development of incipient foredunes. In: Gimingham,C.H.,Ritchie,W. et al. Coastal Sand Dunes. Edinburgh, 1989, 181-201.
    
    49. Hesp P.A..The formation of shadow dunes. Journal of Sedimentary Petrology, 1981, (51) : 101-112.
    
    50. Hesp P.A.,Illenberger W., Rust I.,McLachlan A.and Hyde R.. Some aspects of transgressive dunefields and transverse ridge geomorphology and dynamics, south coast, South Africa. Zeitschrif fir Geomotpholgie, Supplementb and, 1988, (73):111-123.
    
    51. Hesp P.A., Hyde R.,Hesp V.and Zhengyu Q.. Longitudinal dunes can move sideway, Earth Surface Processes and Landforms, 1989,( 14): 447-451.
    
    52. Hesp P.. Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology, 2002, (48): 245-268.
    
    53. Hesp P., McLachlan. A.. Morphology, dynamics, ecology and fauna of Arctothecapopulifolia and Gazania rigens nabkha dunes, Journal of Arid Environments, 2000, (44): 155-172.
    
    54. Joanna E. Bullard, David J. Nash. Valley-marginal sand dunes in the south-west Kalahari:their nature, classification and possible origins,Journal of Arid Environments, 2000 (45): 369-383.
    
    55. Jason R. Janke. An analysis of the current stability of the Dune Field at Great Sand Dunes National Monument using temporal TM imagery (1984-1998),Remote Sensing of Environment. 2002, (83): 488-497.
    
    56. Kar A. C, Felix, S. N. Rajaguru,A. K. Singhvi. Late Holocene growth and mobility of a transverse dune in the Thar Desert. Journal of Arid Environments, 1998, (38): 175-185.
    
    57. Khalaf F. I., Misak R., Al-Dousari, A.. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia. Journal of Arid Environments, 1995, (29): 267-292.
    
    58. Killian Ch.,Un cas très particulier d'humification au desert due à I'activité des micro-organismes dans le sol de nebka Rev. Can. Biol. 1945, (4): 3-36.
    
    59. Koster E. A., Ilona I. Y., Castel Ron L Nap. Genesis and sedimentary structures of the late Holocene aeolian drift sands in northwest Europe. In: Pye K.. The dynamic sand environmental context of aeolian sedimentary systems. Geological Society Special Publication. 1993, (72): 247-267.
    
    60. Kuzucuoglu R. C, Parish, M. Karabiyikoglu. The dune systems of the Konya Plain Turkey : their relation to environmental changes in Central Anatolia during the Late Pleistocene and Holocene, Geomorphology. 1998, (23): 257-271.
    61. Laity J. E.. Landforms of Aeolian erosion. In: Geomorphology of desert Environments (Abrahams, A. D. etc. eds). Chapman & Hall, London. 1994, 506-535.
    62. Lancaster N.. Wind and sand movement in the Namibsand sea. Earth Surface Processes and Landforms, 1985, (10): 607-619.
    63. Lancaster N., Helm P.. A test of a climatic index of dune mobility using measurement from the southwestern United States. Earth Surface Processes and Landforms, 2000, (25): 69-82.
    64. Lancaster N.. Development of linear dunes in the southwestern Kalahari, southern Africa. Journal of Arid Environments, 1988, (4): 233-244.
    65. Lancaster N.. On desert sand seas. Episodes, 1988, (11): 12-17.
    66. Langford R. P.. Nabkha (coppice dune) fields of south-central New Mexico, U.S.A. Joumal of Arid Environments, 2000, (46): 25-41.
    67. Livingstone I., Warren A.. Aeolian Geomorphology: an Introduction. London: Addison Wesley Longrnan Limited, 1996, 22-23.
    68. Livingstone I.. Grain-size variation on a 'complex' linear dune in the Namib Desert. In: Frostick L.E. & Reid I. (Eds), Desert Sediments: Ancient and Modern. Geological Society Special Publication No. 35, 1987, 281-292.
    69. Livingstone I. & Warren A.. Aeolian Geomorphology: an Introduction, Harlow: Longman, 1996, 116-119.
    70. Livingstone I. and Warren A.. Aeolian Geomorphology.Addison Wesley Longman Limited, England, 1996, 211.
    71. Mabbutt J. A.. Desert Landforms. Cambridge: MITPress, 1977.
    72. Magdy I. El-Banal, Ivan Nijs & Fred Kockelbergh. Microenvironmental and vegetational heterogeneity induced by phytogenic nebkhas in an add coastal ecosystem. Plant and Soil, 2002, 247: 283-293.
    73. McKenna Neuman C., Lancaster N., Nickling W. G.. The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune. SilverPeak, NV, USA, Sedimentology, 2000, (47): 211-226.
    74. Melton F. A.. A tentative classification of sand dunes and its application to dune history in the southern High Plains. Journal of Geology, 1940, (48): 113-173.
    75. Michael A. Mares. Encyclopedia of deserts. University of Oklahoma Press: Norman. 1999.
    76. Muhtar Qong, Hiroki Takamura, Mijit Hudaberdi. Formation and internal structure of Tamarix cones in the Taklimakan Desert. Journal of Arid Environments, 2002, (50): 81-97.
    77. Niekling W.G. & Wolfe S.A.. The morphology and origin of Nabkhas, region of Mopti, Mali, West Africa. Journal of Arid Environments, 1994, (28): 13-30.
    78. O. Dauchot et al. "Barchan" dunes in the lab. C. R. Mecanique. 2002, (330): 185-191.
    79. Patrick Hesp. Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology. 2002, (48): 245-268.
    80. Patrick A. Hesp, Kathleen Hastings. Width, height and slope relationships and aerodynamic maintenance ofbarchans, Geomorphology, 1998, (22):193-204.
    81. Peter W. O'Connor, David S. G. Thomas. The timing and environmental significance of late quaternary linear dune development in western Zambia, Quaternary Research, 1999, (52): 44-55.
    82. Petrov M. P.. Types de déserts de l'Asie eentrale. Annales de Géographie, 1962, (71): 131-155.
    83. Pye K. & Tsoar H.. Aeolian Sand and Sand Dunes. Unwin, Hyman, London, 1990, 396.
    84. Queiroz J., Southard A. R. and Woolridge G. L.. Characteristics of soils in a stone-free surficial deposit in central Utah, Journal of the Soil Science Society of Amerrica, 1982, (46): 777-781.
    85. Sherman D J. An equilibrium relationship for shear velocity and apparent roughness length in aeolian saltation. Geomorphology, 1992, (5): 419-431.
    86. Skidmore E. L.. Wind erosion climate erosivity. ClimateChange, 1986, 9(1-2): 195-208.
    87. Stare J. M. T.. On the modeling of two-dimensional Aeolian dunes. Sedimentology, 1997, (44): 127-141.
    88. Stephen Stokes, David S. G. Thomas, et al.. New chronological evidence for the nature and timing of linear dune development in the southwest Kalahari Desert. Geomorphology, 1997 (20): 81-93.
    89. Suslov S. P.. Physical Geography of Asiatic Russia(translated by N. D. Gershesky), Freeman, London. 1961.
    90. Tengberg A.. Nebkhas - their spatial distribution, morphometry, composition and age-in the Sidi Bouzid area, central Tunisia. Zeitschrif fir Geomotpholgie, 1994, (38): 311-325.
    91. Tengberg A. & Chen D.. A comparative analysis of nebkhas in central Tunisia and northern Burkina Faso. In: Hesp, P. A. (Ed.), Aeolian Environments, 1998, (22): 181-192.
    92. Thomas D. S. G.. Sand seas and aeolian bedforms. In: Thomas, D. S. G. (Ed.), Arid Zone Georaorphology: Process, Form and Change in Drylands, 1997, 373-412.
    93. Thomas D. S. G. & Tsoar H.. The geomorphologieal role of vegetation in desert dune systems. In: Thomes, J. B. (Ed.), Vegetation and Erosion, 1990), 471-489.
    94. Thomas D. S. G., P. W. O'Conno, et al.. Dune activity as a record of late Quaternary aridity in the Northern Kalahari: new evidence from northern Namibia interpreted in the context of regional arid and humid ehronologies,Palaeogeography, Palaeoclimatology, Palaeoecology. 2000, (156): 243-259.
    95. Thorne C. E. and Darmody R. G.. Contemporary eolian sediments in the alpin zone, Colorado Front Range. Physical Geography, 1980, (1): 162-171.
    96. Tseo G.. Two types of longitudinal dunefields and possible mechanisms for their development. Earth Surface Processes and Landforms, 1993, (18): 627-643.
    97. Van Dijk P. M., Arens S. M., van Boxel J. H.. Aeolian processes across transverse dunes Ⅱ: Modelling the sediment transport and profile development. Earth Surface Processes and Landforms, 1999, (24):, 319-333.
    98. Walid Saqqa, Mohammad Atallah. Characterization of the aeolian terrain facies in Wadi Araba Desert, southwestern Jordan. Geomorphology, 2004, (62): 63-87.
    99. Walker I. J.. Secondary air flow and sediment transport in the lee of a reversing dune. Earth Surface Processes and Landforms, 1999, (24): 437-448.
    100. Wang X., Wang T., Dong Z., Liu X., Qian G.. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. Journal of Arid Environments, 2006, (65): 129-141.
    101. Warren A.. A note on vegetation and sand movement in the Wahiba Sands, in Dutton, 1988, 251-255.
    102. Wasson R. J., Hyde R.. Factors determining desert dune type. Nature, 1983, 304(28): 337-339.
    103. Wasson R J, Nanninge P. M.. Estimating wind transport of on vegetated surfaces. Earth Surface and Landforms, 1986, 11(5): 505-514.
    104. Waters M. R.. Late Holocene lacustrine chronology and archaeology of ancient Lake Cahuilla, California. Quaternary Research, 1983, (19): 373-387.
    105. Wiggs G. F. S., Livingstone, I., Warren A.. The role of streamline curvature in sand dune dynamics: evidence form field and wind tunnel measurements. Geomorphology, 1996, (17): 29-46.
    106. Wilson, P.. Recent sand shadow development on Muckish Mountain, County Donegal, Irish Naturalists' Journal, 1988, 22, 529-531.
    107. Wilson P.. Nature, origin and age of Holocene aeolian sand Muckish Mountain, Co. Donegal, Ireland, Boreas, 1989, (18): 159-168.
    108. Wright R. A.. Aspect of desertification in prosopsis dunelands of southern New Mexico, U. S. A. Journal of Range Management, 1982, (5): 277-284.
    109. Wolfe S. A.. Impact of increased aridity on sand dune activity in the Canadian Prairies. Journal of Arid Environments, 1997 (36): 421-432.
    110. Wolf S. A. and Niekling W. G.. The protective role of sparse vegetation in wind erosion, Progress in Physical Geography, 1993, (17): 50-68.
    111. Woodruff N. P., Siddoway F. H.. A wind erosion equation.Soil Sci Soc Amer Pine, 1965, (29): 602-608.
    112. Xunming Wang, Zhibao Dong, et al.. Groin size characteristics of dune sands in the central Taldimakan Sand Sea. Sedimentary Geology, 2003, (161): 1-14.
    113. York J. C. & Dick-Peddie W. A.. Vegetation changes in southern New Mexico during the past hundred years. In: Ginnies W. G. & Goldman, B. J. (Eds), Arid Lands in Perspective, 1969, 156-157.
    114.兹那门斯基(陈治平等译).论新月形沙垅的形成机制.沙漠地貌的起源及其研究方法.北京:科学出版社,1962.98-133.
    115.奥布鲁切夫B A.,乐铸,刘东升译.中亚细亚的风化和吹扬作用.北京:科学出版社,1958.1-36.
    116.Bagnold R.A.风沙与荒漠沙丘物理学.钱宁等译.北京:科学出版社,1959.
    117.曹琼英,夏训诚.新疆克里雅河下游地貌与第四纪地质的初步研究.地理科学,1992,12(1):34-44.
    118.陈东,曹文洪,等.风沙运动规律的初步研究,泥沙研究.1999,(6):83-89.
    119.成都地质学院陕北队.沉积岩(物)粒度分析及其应用.北京:地质出版社,1978,44-54.
    120.陈广庭著.沙害防治技术.北京:化学工业出版社,2004,163-174.
    121.陈渭南.塔克拉玛千沙漠84°E沿线沙物质的拉度特征,地理学报,1993,48,(1):33-46.
    122.丁国栋主编.沙漠学概论.北京:中国林业出版社,2002.
    123.董光荣,申建友,金炯,等.试论全球变化与沙漠化的关系.第四纪研究,1990,(1):91-98.
    124.董光荣,李森,李保生,等.中国沙漠形成演化的初步研究。中国沙漠,1991,11(4):23-32.
    125.董光荣,王贵勇,金炯,等.要重视全球变化对我国北方沙区可能影响的研究.地球科学进展,1992,7(5):31-34.
    126.董光荣,高尚玉,金炯,等.青海共和盆地土地沙漠化与防治途径.北京:科学出版社,1993.
    127.董光荣,陈惠忠,王贵勇,等.150ka以来中国北方沙漠、沙地演化和气候变化.中国科学(B),1995,25(12):1303-1312.
    128.董光荣.塔克拉玛干沙漠第四纪地质研究的新进展.中国沙漠,1997,17(1):77-80.
    129.董光荣,吴波,慈龙骏等.我国荒漠化现状、成因与防治对策.中国沙漠,1999,19(4):318-332.
    130.董治宝.拜格诺的风沙物理学研究思想,中国沙漠.2002,22(2):101-106.
    131.董治宝,王涛,屈建军.风沙物理学学科建设的若干问题,中国沙漠.2002,22(3):205-210.
    132.董治宝.风沙物理学研究进展与展望,大自然探索.1995,14(53):30-39.
    133.董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响.土壤侵蚀与水土保持学报,1998,4(4):1-12.
    134.董治宝,陈渭南,李振山,杨佐涛.植被对土壤风蚀影响作用的实验研究.土壤侵蚀与水土保持学报,1996,2(2):1-8.
    135.董治宝.建立小流域风蚀量统计模型初探.水土保持通报,1998,18(5):55-62.
    136.董治宝,Donald W.Fryrear,高尚玉.直立植物防沙措施粗糙特征的模拟实验,中国沙漠.2000,20(3):260-264.
    137.费道罗维奇B A.等著.陈治平等译.沙漠地貌的起源及其研究方法(译文集).北京:科学出版社,1962.
    138.封建民,王涛.呼伦贝尔草原沙漠化现状及历史演变研究.干早区地理,2004,27(3):356-360.
    139.高永,邱国玉,丁国栋,等.沙柳沙障的防风固沙效益研究,中国沙漠.2004,24(3):365-371.
    140.郝青振,邹学勇,等.室内沙风洞空洞条件下流场规律,中国沙漠.1998,18(4):334-340.
    141.哈斯.坝上高原土壤不可蚀性颗粒与耕作方式对风蚀的影响.中国沙漠,1994,14(4):92-97.
    142.哈斯,陈渭南.耕作方式对土壤风蚀的影响.土壤侵蚀与水土保持学报,1996,2(1):10-16.
    143.哈斯,王贵勇,董光荣.腾格里沙漠东南缘格状沙丘表面气流及其地貌学意义.中国沙漠,2000,20(1):30-34.
    144.哈斯,董光荣,王贵勇.腾格里沙漠东南缘格状沙丘的形态动力学研究.中国科学(D辑),1999,29(5):466-471.
    145.哈斯.腾格里沙漠东南缘格状沙丘粒度特征与成因探讨.地理研究,1998,17(2):178-185.
    146.哈斯,王贵勇.沙坡头地区新月形沙丘粒度特征.中国沙漠,2001,21(3):271-276.
    147.韩致文,董治宝,王涛,等.塔克拉玛干沙漠风沙运动若干特征观测研究.中国科学(D辑),2003,33(3):255-264.
    148.韩致文,刘贤万,姚正义,等.复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验,中国沙漠.2000,20(1):39-44.
    149.贺大良,高有广.沙粒跃移运动的高速摄影研究.中国沙漠.1988,8:18-29.
    150.何兴东,高玉宝,任安芝.风沙干扰在濒危植物柽柳群落形成演变过程中的作用.植物学报,2003,45(11):1285-1290.
    151.胡孟春,赵爱国,李农.沙坡头铁路防护体系阻沙效益风洞实验研究.中国沙漠,2002,22(6):598-602.
    152.贾宝全,慈龙骏,等.绿洲-荒漠交错带环境特征初步研究,应用生态学报,2002,13(9):1104-1108.
    153.贾宝全,慈龙骏,高志海,等.绿洲荒漠化及其评价指标体系的初步探讨.干旱区研究,2001,18(2):19-24.
    154.吉启慧.粒度分析在塔克拉玛干沙漠研究中的应用.中国沙漠,1996,16(2):173-180.
    155.金文,王元,张玮.防护林搭配灌草条件下的PIV实验研究,中国沙漠.2003,23(5):600-603.
    156.李保生,董光荣,祝一志,等.末次冰期以来塔里木盆地沙漠、黄土沉积环境与演化.中国科学(B辑),1993,23(6):644-651.
    157.李保生,董光荣,邵亚军,申建友,高尚玉,丁同虎.新疆普鲁以南昆仑山北坡黄土的初步观察与研究.地质论评,1989,35(5)):423-429.
    158.李保生,董光荣,张甲中,等.塔克拉玛干沙漠及其以南风成相带划分和认识.地质学报,1995,69(1):78-87.
    159.李保生,董光荣,丁同虎,等.塔克拉玛干沙漠东部风砂地貌中的几个问题.科学通报,1990,35(24):1815-1818.
    160.李恒鹏、陈广庭,等.新月形沙丘迎风坡气流加速模拟.中国沙漠.2001,21(1):24-28.
    161.李虎,高俊峰,王晓峰,吴焱.新疆艾比湖湿地土地荒漠化动态监测研究.湖泊科学,2005,17(2):127-132.
    162.李慧卿.荒漠化研究动态,世界林业研究.2004,17(1):11-15.
    163.凌裕泉,屈建军,等.稀疏天然植被对输沙量的影响.中国沙漠,2003,23(1):12-18.
    164.凌裕泉、吴绍中、吴正,等.金字塔沙丘形成的动力条件分析.中国沙漠,1997,17(2):112-118.
    165.凌裕泉,吴正,刘绍中,等.新月形沙丘形态的模拟实验研究.地理科学,1998,18(1):88-93.
    166.凌裕泉,刘绍中.风成沙纹形成的风洞模拟研究,地理学报.1998,53(6):520-528.
    167.凌裕泉,屈建军,李长治.应用近景摄影法研究沙纹的移动,中国沙漠.2003,23(2):118-121.
    168.李秋艳,何志斌.不同生境条件下泡泡刺(Nitraria sphaerocarpa)种群的空间格局及动态分析,中国沙漠,2004,24(4):484-489.
    169.李仲光.略论18—20世纪塔克拉玛干沙漠考察活动.干旱区地理,1994,17(4):73-81.
    170.李振山,倪晋仁.风沙流研究的历史、现状及其趋势,干旱区资源与环境.1998,12(3):89-98.
    171.李振山.塔克拉玛干沙漠沙丘研究.中国科学院兰州沙漠研究所博士研究生学位论文,1997,1-20.
    172.李振山、倪晋仁.国外沙丘研究综述.泥沙研究,2000,(5):73-81.
    173.李振山,陈广庭.塔克拉玛干沙漠起沙风况.中国沙漠,1999,19(1):43-46.
    174.李振山,陈广庭,冯起,董治宝.塔克拉玛干沙漠腹地纵向沙垅表面沙物质粒度特征.干旱区资源与环境,1998,12(1):21-29.
    175.李志忠、周勇等.风沙地貌研究的若干新进展,干早区研究.1999,16(2):61-67.
    176.李志忠,关有志.纵向沙丘和横向沙丘模拟流场的实验研究.中国沙漠,1996,16(4):360-363.
    177.李志忠,陈广庭.金字塔沙丘风洞流场结构的实验研究—兼论金字塔沙丘的发育模式.中国沙漠,1995,15(3):227-233.
    178.李志忠,刘自强,等.新疆和田-阿拉尔公路风沙危害及综合防治的初步研究,地貌·环境·发展(2004丹霞山会议文集).北京:中国环境科学出版社,2005,207-212.
    179.李志忠.塔里木石油公路沿线风成沙特征及其区域分异.新疆师范大学学报(自然科学版),1996,15(4):51-62.
    180.吕萍,董治宝.戈壁风蚀面与植被覆盖面地表性质粗糙度长度的确定,中国沙漠. 2004,24(3):279-284.
    181.刘小平,董治宝.砾石床面的空气动力学粗糙度.中国沙漠,2003,23(1):38-46.
    182.刘小平,董治宝.直立植被粗糙度和阻力分解的风洞实验研究.中国沙漠,2002,22(1):82-88.
    183.刘文军,李虎,赵前程.基于“3S”技术的艾比湖地区荒漠化现状分析.石河子大学报,2006,24(1):120-123.
    184.刘千枝.井电灌区植被类型对风沙流结构的影响,甘肃林业科技,1997,(3):13-18.
    185.刘贤万著.实验风沙物理与风沙工程学,北京:科学出版社,1995,1-24.
    186.马世威.风沙流结构的研究.中国沙漠,1988,8(2):8-22.
    187.穆桂金.塔克拉玛干沙漠灌草丘的发育特征及环境意义,干旱区研究.1994,11(1):34-40.
    188.穆桂金.塔克拉玛干沙漠灌草丘类型、成因及演变规律.干旱区研究,1995,增刊:31-37.
    189.穆桂金.塔克拉玛干沙漠的形成时代及发展过程.干旱区地理,1994,17(3):1-9.
    190.钱亦兵,吴兆宁等.塔克拉玛干沙漠沙物质成分研究.干早区研究,1994,11(4):46-53.
    191.钱亦兵,赵元杰.塔克拉玛干沙漠麻札塔格山地区石英砂颗粒表面结构特征分析.干旱区地理,1990,13(4):91-93.
    192.钱亦兵、张希明,等.塔克拉玛干沙漠南缘绿洲沙物质粒度特征.中国沙漠,1995,15(2):131-136.
    193.钱亦兵,吴兆宁等.塔克拉玛干沙漠沙物质成分特征及其来源.中国沙漠,1993,13(4):32-39.
    194.钱亦兵,吴兆宁,等.托木尔峰南麓碎屑物的演化特征.干旱区地理,1994,17(4):30-37.
    195.钱亦兵,石井武政,等.西昆仑山晚新生代沉积的粒度和δ~(18)0含量特征研究.干旱区地理,1999,22(2):50-55.
    196.屈建军,凌裕泉.金字塔沙丘形成机制的初步观测与研究.中国沙漠,1992,12(4):19-27.
    197.R.A.拜格诺(钱宁,林秉南译).风沙和荒漠沙丘物理学.北京:科学出版社,1959,1-98.
    198.宋郁东、樊自立、雷志栋,等.中国塔里木河水资源与生态问题研究.乌鲁木齐:新疆人民出版社,2000.
    199.孙显科.风沙运动理论体系的创建与研究,中国沙漠.2004,24(2):129-136.
    200.谭见安.风沙地区大比例尺地貌调查和地貌图的编制及其意义.中国科学院治沙队编:治沙研究,第四号.北京:科学出版社,1962,62-75.
    201.T·φ·雅库波夫.土壤风蚀及其防治.北京:中国农业出版社,1955.15-26.
    202.王涛.我国沙漠化研究的若干问题—2.沙漠化的研究内容,中国沙漠.2003,23(5):477-483.
    203.王涛主编.中国沙漠与沙漠化.石家庄:河北科学技术出版社,2003.404-405.
    204.王洪涛,董治宝,等.关于风沙流中风速廓线的进一步实验研究,中国沙漠.2003,23(6):721-725.
    205.王玉朝,赵成义.绿洲—荒漠生态脆弱带的研究.干早区地理,2001,24,(2):182-189.
    206.吴继芳、王纪凯.新疆风成地貌及像片判读,新疆工学院学报.1995,16(1):75-78.
    207.吴正.评《实验风沙物理与风沙工程学》,地理学报.1997,52(5):479-480.
    208.吴正.风沙地貌学.北京:科学出版社,1987.
    209.吴正.塔克拉玛干沙漠成因的探讨.地理学报,1981,36(3):280-291.
    210.吴正等著.风沙地貌与治沙工程学.北京:科学出版社,,2003,163.
    211.吴兆宁,钱亦兵.和田河与克里雅河流域不同类型沙物质的地球化学探讨.干旱区地理,1992,15(4):71-78.
    212.王训明.若干典型沙丘形态动力学过程研究—以塔克拉玛干沙漠为例.中国科学院研究生院博士研究生学位论文,2001,1-67.
    213.王训明,董治宝,赵爱国.简单横向沙丘表面物质组成、气流分布及其在动力学过程中的意义.干旱区资源与环境,2004,18(4):29-34.
    214.王跃.风沙地貌学研究与展望,地球科学进展.1994,9(6):37-40.
    215.夏训诚.樊胜岳.中国沙漠科学研究进展,科学通报.2000,45(18):1908-1913.
    216.夏训诚,赵元杰,等.红柳沙包的层状特征及其可能的年代学意义.科学通报.2004,49(13):1137-1138.
    217.夏训诚,赵元杰,王富葆,曹琼英.罗布泊地区红柳沙包年层的环境意义探讨.科学通报,,2005,50(19):2176-2177.
    218.夏训诚,曹琼英,等.罗布泊地区红柳沙包年层的研究意义.干早区地理,2005,28(5):565-569.
    219.夏阳,张立运,等.疏叶骆驼刺的某些生态生物学特性.干早区地理,1995,12(4):53-61.
    220.许鹏.新疆草地资源及其利用.乌鲁木齐:新疆科技卫生出版社,1993.45-91.
    221.徐馨,何才华,沈志达,等.第四纪环境研究研究方法.贵州:贵州科技出版社,1992,73-105.
    222.姚正毅,陈广庭,张伟民.沙丘表面沙土密度分布特征及其成因.水文地质工程地质,2003,(3):15-19.
    223.杨保,邹学勇,董光荣.风沙流中颗粒跃移研究的某些进展与问题,中国沙漠.1999,19(2):173-179.
    224.杨秀春,严平,刘连友.土壤风蚀研究进展与评述,干旱地区农业研究,2003,21(4):147-154.
    225.杨发相,穆桂金,雷加强,等.新疆地貌及其过程对公路交通建设的影响.干旱区地理.2004,27(4):525-529.
    226.杨小平.克里雅河流域风成物质的粒度分析与讨论.第四纪研究,1999(4):373-380.
    227.伊万诺夫.沙地风蚀的物理原理,阿什哈巴德:埃雷姆出版社,1972.
    228.岳兴玲.内蒙古高原东南部灌丛沙堆的初步研究.北京师范大学自然地理学专业硕士学位论文,2005.
    229.赵成义,李国振.荒漠—绿洲边缘区研究.水土保持学报,15(3):93-98.
    230.赵家荣主编.芦苇与荻的栽培与利用.北京:金盾出版社,2002,20-30.
    231.赵兴梁译.《世界沙海的研究》,银川:宁夏人民出版社,1993.
    232.张春来,郝青振,邹学勇,等.新月形沙丘迎风坡形态及沉积物对表面气流的响应.中国沙漠,1999,19(4):359-363.
    233.张克存,屈建军,俎瑞平.不同下垫面对风沙流特性影响的风洞模拟研究,干旱区地理.2004,27(3):352-356.
    234.张家武,陈广庭,等.塔克拉玛干沙漠中部地区线形沙丘表面动力学过程.中国沙漠,1999,19(2):128-134.
    235.张伟民,李孝泽,屈建军,等.金字塔沙丘地表气流场及其动力学过程研究.中国沙漠,1998,18(3):215-220.
    236.郑晓静,周又和.风沙运动研究中的若干关键力学问题,力学与实践.2003,25(2):1-7.
    237.中国饲用植物志编委会.中国饲用植物志(第二卷).北京:农业出版社,1989.139-142.
    238.中国科学院新疆资源开发综合考察队.新疆第四纪地质与环境.北京:中国农业出版社,1994.
    239.周廷儒.南疆塔里木河中游的变迁问题.见中国科学院新疆综合考察队、苏联科学院地理研究所编:新疆维吾尔自治区的自然条件(论文集).北京:科学出版社,1959,60-74.
    240.周兴佳.塔里木河流域水系变迁与流域土地沙漠化的初步研究.见:西北干旱地区全新世环境变迁与人类文明兴衰(尹泽生等主编).北京:地质出版社,1995,158-178.
    241.周廷儒.新疆第四纪陆相沉积的主要类型及其和地貌气候发展的关系.地理学报,1963,29(2):109-129.
    242.周海燕,李新荣,等.极端条件下几种锦鸡儿属灌木的生理特性,中国沙漠,2005,25(2):182-191.
    243.周海燕,张景光,等.脆弱生态带典型区域几种锦鸡儿属优势灌木的光合特征,中国沙漠,2001,21(3):227-232.
    244.邹学勇,董光荣.风沙物理学的发展与展望,地球科学进展.1993,8(6):44-50.
    245.邹学勇,朱久江,董光,荣,等.风沙流结构中起跃沙粒重直初速度分布函数.科学通报,1992,(23):2175-2117.
    246.朱震达.沙漠地区与农业开垦有关的风沙地貌问题—以新疆塔里木河沿岸地区为例.中国地理学会1963年年会论文选集(地貌学).北京:科学出版社,1965.
    247.朱震达著.中国沙漠·沙漠化·荒漠化及其治理的对策.北京:中国环境科学出版社.,1999,51.
    248.朱震达,陈治平,吴正,等.塔克拉玛干沙漠风沙地貌研究.北京:科学出版社,1981.
    249.朱震达,陈广庭,等著.中国土地沙质荒漠化.北京:科学出版社,1994,24.
    250.朱震达.中国西北干旱及半干旱地区沙丘分类问题.中国科学院治沙队编:治沙研究,第四号.北京:科学出版社,1962,31-47.
    251.庄燕美,哈斯.沙丘风蚀坑的形态及动力过程的研究进展.干旱区地理.2005,28(5):632-638.
    252.兹纳门斯基著.杨郁华译,朱震达校.沙地风蚀过程的实验研究和沙堆防止问题.北京:科学出版社,1960.
    253.俎瑞平.塔克拉玛干沙漠近地表风场特征研究.中国科学院研究生院博士研究生学位论文,2003,1-60.
    254.俎瑞平,张克存,屈建军.塔克拉玛干沙漠风沙活动强度特征.地理研究,2005,24(5):699-708.
    255.俎瑞平,张克存,屈建军,等.塔克拉玛干沙漠地面风场特征及周边地区沙丘排列关系分析.应用气象学报,2005,16(4):468-476.
    256.俎瑞平,张克存,屈建军,等.塔克拉玛干沙漠风况特征研究.干旱区地理,2005.28(2):167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700