纳/微米孔结构有机/无机杂化材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料由于其具有表面积较大、相对密度较低等特殊性质,近年来受到了越来越广泛的关注。一些多孔材料更是由于其特殊的孔结构、可控的孔径大小和孔径分布、良好的热和机械稳定性以及其它特殊的功能特性,使其在医药、化工、冶金、环境保护、建材、海水淡化等诸多领域都有着广泛的应用前景。
     本论文主要着重于有序多孔膜的制备,主要分为两个部分。其一:基于原位自组装方法,通过基体聚酰胺酸对非表面活性剂类模板DBTA的诱导,制备了有序介孔SiO2/聚酰亚胺杂化自支持膜,并对其形成机理和基本性质进行了研究。其二:制备了三维有序大孔填充的有机-无机杂化质子交换膜。通过对pH值大小、NaCl浓度等对SiO2 opal模板形成的影响研究,成功制备出微结构基本有序、面积较大较完整的SiO2 opal模板。通过SiO2 opal模板制备得到了三维大孔(3DOM) PI膜,并通过向3DOM结构的PI多孔膜内填充聚电解质制备了质子交换膜。这些新型纳/微米尺度有机-无机杂化材料在燃料电池、催化和低介电材料等方面具有潜在的应用价值。
Porous materials have attracted more attention because of its large BET surface area, low density and other special properties. Many kinds of porous materials have special structure, controllable distributed pore size, thermal and mechanical stability etc. These special properties make this kind of materials have more potential application in many fields, such as medical, chemical industry, metallurgy, environmental protection, building materials, sea water desalinization etc.
     In this thesis, we focused on the preparation of the ordered porous membranes which contained two parts. First, we fabricated the self-standing hybrid membranes with ordered mesoporous structure. The main chain of PAA may participate in the assembling aggregation of the non-surfactant templates DBTA, which may result in the formation of the ordered mesoporous structure in hybrid films. Second, we prepared the pore-filling organic-inorganic hybrid proton exchange membranes. We succeed in fabricating SiO2 opal template with large area and ordered structure by studying the influence of pH and NaCl on the formation of SiO2 opal templates. Three-dimensional ordered macroporous (3DOM) PI membranes obtained from the templates of SiO2 opal were filled with polyelectrolyte to fabricate the hybrid proton exchange membranes. These new nano/macro-porous hybrid materials have widely application in fuel cell, catalysis and low dielectric materials.
引文
[1]高海燕.Fe一AI金属间化合物多孔材料的研究: [博士学位论文] .湖南:中南大学粉末冶金国家重点实验室, 2009.
    [2] IUPAC: 1972. Manual of symbol sandler menology. Pure APPI. Chem. 31: 57.
    [3] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359: 710-712.
    [4] Cefe L. Materials aspects of photonic crystals. Adv Mater, 2003, 15: 1679-1704.
    [5] Ruhl T, Spahn P, Winkler H, et al. Large area monodomain order in colloidal crystals. Macromol. Chem Phys, 2004, 205: 1385–1393.
    [6]蒋勋.三维有序大孔材料的胶晶模板法制备及其表征: [硕士学位论文] .北京:国防科学技术大学研究生院, 2006.
    [7] Dhainaut J, Dacquin J P, Lee A F, et al. Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem, 2010, 12: 296–303.
    [8] Chen C H, Lin C H. A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing. Sensor Actuat. B-Chem, 2008, 135: 276–282.
    [9] Taketani Y, Nagaoka S, Kawakami H. Fabrication of three-dimensionally ordered microporous membrane by wet phase separation. J Appl Polym Sci, 2004, 92: 3016–3021.
    [10] Shibata H, Chiba Y, Kineri T, et al. The effect of heat treatment on the interplanar spacing of the mesostructure during the synthesis of mesoporous MCM-41 silica. Colloids Surf A, 2010, 358: 1–5.
    [11] Chen L, Zhang W H, Xu J, et al. Mesopore constrictions derived from the substitutionally co-packed SBA-15. Micropor Mesopor Mat, 2010,129: 179–188.
    [12]Yamada T, Zhou H S, Asai K, et al. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Mater Lett, 2002, 56: 93– 96.
    [13] Wei Y, Jin D L, Ding T Z, et al. A mon-surfactant templating route to mesoporous silica materials. Adv Mater, 1998, 3: 313-316.
    [14] Velev O D, Jede T A,Lobo R F, et al. Porous silica via colloidal crystallization. Nature, 1997, 389: 447-448.
    [15] Meseguer F, Blanco A, Mígue H, et al. Synthesis of inverse opals. Colloids Surf A, 2002, 202: 281–290.
    [16] Holland B T,Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281: 538-540.
    [17] Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science, 1998, 282: 897-901.
    [18] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405: 437-440.
    [19] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials, Curr Opin Colloid Interface Sci, 2000, 5: 56-63.
    [20] Widawski G, Rawiso M, Fran?ois B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994, 369: 387-389.
    [21] Wang L H, Tian Y, Ding H Y, et al. Formation of ordered macroporous films from fluorinated polyimide by water droplets templating. Eur Polym J, 2007, 43: 862–869.
    [22] Tian Y, Liu S, Ding H Y, et al. Formation of deformed honeycomb-patterned films from fluorinated polyimide. Polymer, 2007, 48: 2338–2344.
    [23] Su B, Lu X M, Lu Q H. A Facile Method to Prepare Macroscopically Oriented Mesostructured Silica Film: Controlling the Orientation of Mesochannels in Multilayer Films by Air Flow. J Am Chem Soc, 2008, 130: 14356–14357.
    [24] Wu M S, Wang M J, Jow J J. Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors. J Power Sources 2010, 195: 3950–3955.
    [25] Hamamoto Y, Harada S, Kobayashi S, et al. A novel method for removal of human immunodeficiency virus: Filtration with porous polymeric membranes. Vox Sanguinis,1989, 56: 230-236.
    [26] Fna X J, Urbain V, Qina Y. Ultrafiltration of activated sludge with ceramic membranes in a cross-flow membrane bioreaetor Proeess. Wat Sei Teeh, 2000, 41: 243-250.
    [27]张俊彦.多孔材料力学性能及破坏机理:[博士了学位论文].湖南:湘潭大学2003.
    [28] Sanchez C, Julián B, Belleville Philippe, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem, 2005, 15: 3559–3592.
    [29] Vos Dirk E De, Dams M, Sels B F, et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev, 2002, 102: 3615–3640.
    [30]刘鹏.超轻多孔材料及电子设备散热性能分析与设计:[硕士学位论文].大连:大连理工大学,2007.
    [31] Shimomura M. Preparation of ultrathin polymer films base on two-dimensional molecular ordering. Prog Polym Sci, 1993,18: 295-339.
    [32] Chen C H, L C H. A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing. Sens Actuators B, 2008,135: 276–282.
    [33]Schlossbauer A, Schaffert D, Kecht J, et al. Click chemistry for high-density biofunctionalization of mesoporous silica. J Am Chem Soc, 2008, 130: 12558–12559.
    [34]杨辉,卢文庆.应用电化学.北京:科学出版社, 2007, 119–125.
    [35] Hickner Michael A, Hossein Ghassemi, Kim Yu Seung, et al. Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev, 2004, 104: 4587-4612.
    [36]苑伟康.有机-无机杂化DMFC膜界面形态与阻醇特性研究:[博士学位论文].天津:天津大学化工学院,2007.
    [37] Yamaguchi T, Miyata F, Nakao shin-echi. Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell. Adv Mater, 2003, 15: 1198–1201.
    [38] Hollingera A S, Maloneyb R J, Jayashreeb R S, et al. Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells. J Power Sources, 2010,195: 3523–3528.
    [39] Yamaguchi T, Zhou H, Nakazawa S, et al. An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv Mater, 2007, 19: 592–596.
    [1] Wang X Li, Kang Z H, Wang E, et al. Preparation, electrochemical property and application in chemically bulk-modified electrode of a hybrid inorganic–organic silicomolybdate nanoparticles. Mater Lett, 2002, 56: 393–396.
    [2] Wang L, Qi T, Zhang Y. Novel organic–inorganic hybrid mesoporous materials for boron adsorption. Colloids Surf A, 2006, 275: 73–78.
    [3]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术,化学进展2004, 16 (1): 83-89.
    [4] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712.
    [5] Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter, J Am Chem Soc, 2002, 124: 9382-9383.
    [6] Yang S, Mirau P A, Pai C S, et al. Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers. Chem Mater, 2002, 14: 369-374.
    [7] Kim Y A, Choi J H, Scott J, et al. Preparation of high porous Pt–V2O5–WO3/TiO2/SiC filter for simultaneous removal of NO and particulates. Powder Technol, 2008, 180: 79–85.
    [8] Anglin Emily J, Cheng L Y, Freeman W R, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Delivery Rev, 2008, 60: 1266–1277.
    [9] Lin J J, Wang X D. Novel low-κpolyimide/mesoporous silica composite films: Preparation, microstructure, and properties. Polymer, 2007, 48: 318-329.
    [10] Lee T, Park S S, Jung Y,et al. Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly(amic acid) ammonium salt. Eur Polym J, 2009, 45: 19–29.
    [11] Wei Y, Jin D L, Ding T Z. Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers. Adv Mater, 1998, 3: 313-316.
    [12] Pang J B, Qiu K Y, Wei Y. Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol–gel process. J Non-Cryst Solids, 2001, 283:101-108.
    [13] Musto P, Ragostaa G, Scarinzia G, et al. Polyimide-silica nanocomposites: spectroscopic, morphological and mechanical investigations. Polymer, 2004, 45: 1697-1706.
    [14] Shang Z, LüC, Gao L. Preparation and properties of ternary polyimide/SiO2/polydiphenylsiloxane composite films. Polym Int, 2006, 55: 1277–1282.
    [15] Wei Y, Feng Q, Xu J,et al. Polymethacrylate-Silica hybrid nanoporous materials: a bridge between inorganic and polymeric molecular sieves. Adv Mater, 2000, 12:1448-1450.
    [16] Feng Q, Xu J, Dong H,et al. Synthesis of polystyrene–silica hybrid mesoporous materials via the nonsurfactant-templated sol–gel process. J Mater Chem, 2000, 10: 2490-2494.
    [17] Wei Y, Jin D, Ding T. A non-surfactant templating route to mesoporous silica materials. Adv Mater, 1998, 3: 313-316.
    [18] Xie K, Yu Y, Shi Y. Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohyd Polym, 2009, 78:799–805.
    [1]Arico A S, Creti P, Antonucci P L, et al. Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst–electrolyte interface. Electrochim Acta, 1998, 43: 3719-3729.
    [2] Ren X, Springer T E, Zawodzinski T A, et al. Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements. J Electrochem Soc, 2000, 147: 466-474.
    [3] Hickner M A, Ghassemi H, Kim Y S,et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chem Rev, 2004, 104: 4587-4612.
    [4] Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci, 2000, 25: 1463-1502.
    [5] Asensio J A, Borrós S, Gómez-Romero P Z. J Electrochem Soc, 2004, 151: A304-A310.
    [6] Chang J H, Park J H, Park G G, et al. Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources, 2003, 124: 18-25.
    [7] Li Q , He R , Jensen J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C. Chem Mater, 2003, 15: 4896-4915.
    [8] Yamaguchi T, Nakao S, Kimura S, Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules, 1991, 24: 5522-5527.
    [9] Kim J H, Ha S Y, Nam S Y, et al. Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol). J Membrane Sci, 2001, 186: 97-107.
    [10] Zhou J, Childs R F, Mika A M, Pore-filled nanofiltration membranes based on poly(2-acrylamido-2-methylpropanesulfonic acid) gels. J Membrane Sci, 2005, 254: 89-99.
    [11]韩坤.Ⅱ-Ⅵ族半导体材料-二氧化硅复合胶体微粒的研究和制备: [博士学位论文] .吉林:吉利大学, 2006.?
    [12] Piret F, Su B L. Effects of pH and ionic strength on the self-assembly of silica colloids to opaline photonic structures. Chem Phys Lett, 2008, 457: 376-380.
    [13] M?ller Karin, Koblerb Johannes, Bein Thomas. Colloidal suspensions of mercapto-functionalized nanosized mesoporous Silica. J Mater Chem, 2007, 17: 624–631.
    [14] Liu Jian, Yang Qihua, Kapoor Mahendra P, et al. Structural relation properties of hydrothermally stable functionalized mesoporous organosilicas and catalysis. J Phys Chem B, 2005, 109: 12250-12256.
    [15] Munakata H , Yamamoto D, Kanamura K. Three-dimensionally ordered macroporous polyimide composite membrane with controlled pore size for direct methanol fuel cells. Journal Power Sources, 2008, 178: 596–602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700