动力吸振器控制算法研究及在舰船设备减振中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动控制一直是工程界和学术界努力解决的重要问题,它涉及的领域包括舰船结构及其机电设备隔振抗冲,土木结构防风减震,汽车悬架减振,等等。其中,现代军事工业的飞速进步使得舰船柴油机等动力设备向着高功率高转速的趋势发展,这意味着船体结构和设备振动问题将进一步突出,而与此同时,对舰船隐身性能,抗冲性能以及舰载灵敏设备的保护要求都更加苛刻。动力吸振器(Dynamic Vibration Absorber, i.e. DVA)是解决这一矛盾的有效手段。本论文基于船用设备振动控制这一工程背景,对动力吸振器的被动控制和主动控制都做了深入的分析研究,对减振与隔振中的动力吸振器最优设计给出了重要结论,论文还运用实验手段研究了虚拟吸振器算法的有效性,主要研究内容和成果总结如下:
     一、将舰船设备简化为单自由度系统,运用Lyapunov方程以及矩阵Kronecker积求解了与设备附连吸振器的最优设计。其具体方法是利用Lyapunov方程将二次型积分目标函数转化为初始状态向量的矩阵二次型,然后针对初速度或初位移条件将矩阵二次型变为多项式,最后采用Kronecker积以及列展开将多项式的系数转化为吸振器调谐频率比以及阻尼比的表达式,并令多项式取极小值,即可得到最优参数。在忽略被控结构阻尼的情况下,得到了封闭解析解;如果考虑阻尼,给出了以被控结构粘性阻尼比幂级数表达的二阶摄动解。与以往研究最大的不同是,在本文给出的最优设计中包含初速度比或初位移比变量,因此,采用不同的初速度比和初位移比可以得到各种条件下的最优设计——特殊条件下,给定初速度比为0或1可求解外力激励或基础加速度激励下的经典最优。本研究还比较了二阶摄动解与梯度寻优得到的数值最优解之间的差别,证明二阶摄动解具有较高的稳定性。H2
     二、在我国的某型舰艇上已经将多重调谐质量阻尼器应用于柴油机减振,本文提出运用微积分手段分析多重调谐质量阻尼器(MTMD)在TMD个数趋于无穷多条件下的性能指标和迭代寻优。以往的研究针对包含TMD个数较多的MTMD,只能通过大量数值现象来猜测其最终趋势,迭代效率低下。本研究将单个TMD视为并联的小单元,每个小单元都对被控结构产生作用力,并具有独立的传递函数,因此在TMD趋于无穷多时,每个小TMD单元相当于一个微元,将所有的微元作用积分即可得到无穷多TMD的传递函数,基于该传递函数可求出基础加速度激励或外力激励下无穷MTMD的极限性能,而且数值仿真还证明,无穷MTMD迭代效率高,它的最优设计可直接代替包含20个以上的TMD组成的MTMD设计。
     三、双层隔振技术在当前舰船设备隔振中有广泛应用,但它引入了二次谐振峰,这对于中频段的隔振极为不利,本文为了解决这一问题,提出了中间小质量隔振技术——其本质就是将多重调谐质量阻尼器的吸振思想扩展到隔振设计,并利用无穷维动力系统近似有限维系统的方法分析它的最优设计。在中间小质量无穷多的前提下,中间系统的传递特性可利用积分方法得到,而这也正是有限个中间小质量在个数较多时的近似。然后,基于给定的静变形上限求解简单双层隔振,多个小中间质量隔振以及无穷多小中间质量隔振的最优刚度比以及初始频率比,最后利用高频段的传递特性确定中间小质量分布的频带宽度。虽然采用多个小中间质量隔振会抬高传递率曲线的高频段,但如果容许高频段有稍许的上移,则多个小中间质量隔振可以消除简单双层隔振的二次谐振峰。最优设计为中间质量系统的质量比以及高频段容许上移量的解析表达式。
     四、当前舰船设备的振动控制,主动吸振器技术应用十分有限,本文针对两种具有较强抗干扰能力的主动控制技术,即滑模控制和鲁棒控制,从理论上进行了一些探索。首先,纠正了以往研究对于主动吸振器滑模控制中作动力出现直流分量的错误解释,并定量的给出了出现直流分量的判定标准。次之,给出了主动吸振器鲁棒控制权函数的选择技巧。这些对于主动吸振器在舰船振动控制领域的应用都具有一定价值。
     五、采用实验手段研究了虚拟吸振器算法的控制性能。结果表明,虚拟吸振器算法可以有效地抑制结构振动,它的重要优点在于对结构摄动具有相当高的稳定性,而且信号处理和反馈不需要全局处理,十分有利于大型结构的分散控制。
     面对舰船结构控制领域不断出现的新问题,以及当前控制理论各个方面的突破,主动或被动吸振器的振动控制也是一个不断进步的领域,所以本文也对主被动吸振器研究未来的发展做了若干展望。
Vibration control is all along an important issue addressed by engineers and scholars, which covers vibration isolation and shock resistance of marine electromechanical equipments, the wind and earthquake protection of civil structures, vibration cancellation of automobile suspensions, etc. The advancement of modern military industry leads marine diesel engines to develop towards high power and high rotating velocity, which may cause more severe undesirable vibration of ship skull and equipments. Dynamic Vibration Absorber (DVA) can work as an effective strategy, which is discussed thoroughly in current study. Based on vibration control of marine equipments, some conclusions about passive and active DVA’s optimum designs in vibration suppression or isolation are drawn; moreover, the Virtual DVA control law is demonstrated experimentally. The main content and novel results are listed as following:
     1. The marine equipment is simplified as a SDOF mass block, and then the optimum designs of DVA attached to the SDOF primary mass are derived by the Lyapunov Equation and Matrix Kronecker Product. Firstly, using Lyapunov Equation the objective function is transformed from integration quadric form to matrix quadric one, secondly the matrix quadric form are expanded as polynomial expression under initial velocity or displacement, finally the polynomial coefficient are expressed with the Frequency Tuning Ratio and Damping Ratio using Kronecker Product. Minimizing the objective function, the optimum Frequency Tuning Ratio and Damping Ratio can be obtained. If the damping of primary structure is ignored, the closed-form analytical solution can be given. If the damping is taken into consideration, the 2-order perturbation solutions, expressed as the power series about the damping ratio, can be acquired. These optimum designs are composed of initial velocity or displacement ratio; hence various initial states can produce corresponding optimum designs, which differentiate them from previous studies. Especially, given the initial velocity ratio 0 or 1, these analytical solutions can produce the classical optimum designs under external force or base acceleration excitation. The comparison between the 2-order perturbation solutions and numerical optimum solutions by gradient search are demonstrated too, which prove that the 2-order perturbation solutions are stable enough.
     2. The Multiple Tuned Mass Dampers (MTMD) have been already applied for vibration cancellation of marine diesel engines, and consequently the calculus tools are proposed for performance index and iteration search of MTMD composed of infinitely multiple TMDs. In the previous study, the performance of MTMD made up of many TMDs can only be conjectured based on lots of data observation, at the same time, the iteration search is time-consuming. In current study, every single TMD, i.e. a small feedback component with independent Transform Function (TF), receives the displacement signal of the primary mass and exerts the control force on the primary mass, so the small TMD element can be regarded as an infinitesimal when the total number of TMD approaches infinity. Integrating all infinitesimal TMD elements, the TF of Infinitely Multiple Tuned Mass Damper (IMTMD) can be acquired, with the help of which the best and critical performance can be obtained. Moreover, the IMTMD method has excellent efficiency of iteration and it can give correct optimum parameters numerically for MTMD composed of more than 20 TMDs.
     3. The Two-Stage Vibration Isolation (TSVI) is widely used for vibration isolation of marine equipments, however, it’s well known that TSVI causes a steep resonant peak (i.e. the second resonant peak) in the middle frequency band, and hence the Multiple Small Middle Mass Vibration Isolation (MSMMVI), i.e. the MTMD introduced into vibration isolation, is proposed to address this issue in the present study. An infinite-dimension dynamic system is adopted to approximate a finite-dimension one, i.e. MSMMVI. When the number of small middle mass approaches infinity, the TF of MSMMVI can be obtained by integration, and then based on constrained static deflection of gravity, the optimum stiffness ratio and starting frequency ratio is derived for the single Two-Stage Vibration Isolation (TSVI), MSMMVI and Infinite Multiple Small Middle Mass Vibration Isolation (IMSMMVI), finally the performance in high frequency band is analyzed, by which the optimum frequency distribution bandwidth is acquired. Although introducing decentralized small middle masses blocks causes a little shift-up of Transform Ratio (TR) curve in high frequency band, the MSMMVI can flatten the second resonant peak of TSVI. Moreover, the TR curve can be improved obviously at the cost of an almost ignorable shift-up.
     4. It seems that the active DVA technique is rarely used for vibration suppression of marine equipments in current ship engineering, hence two active control algorithms, i.e. the Sliding Mode Control and Robust control, which both have excellent disturbance or error resistant ability, are selected for being discussed theoretically in the present study. The direct-current component of active control force in Sliding Mode Control (SMC) is explained, at the same time, some mistakes in the previous study are clarified. Finally a sufficient and necessary standard is given to avoid the direct-current component. For the Robust Control, some skills are given about weight function selection, which is of great value for industry application.
     5. The performance of Virtual DVA algorithm is studied experimentally, which is proved to be effective in vibration suppression. The algorithm is stable even if modeling error for the controlled system exists, more importantly, it can receive the local signal and feedback the control force to the local part, which is especially suitable for the Decentralized Control (DC) of the massive or complex structure.
     Confronted with various new issues appearing in ship industry field and development in modern control theory, research concerning the vibration control of marine equipments and Active/Passive DVA are advancing, as a result, some important problem, which may have great influence on the future of DVA, are listed.
引文
[1]金咸定,成学明,(1997),“舰船的艉部振动与动力吸振器减振”,上海交通大学学报,31(2):38-40
    [2]Yao, James T. P., (1972), “Concept of Structural Control”, ASCE Journal of the Structural Division, 98(7):1567-1574
    [3]Alvis S. R., (2001), “An Experimental and Analytical Investigation of FloorVibrations” ,M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
    [4]JingNing Wu,(2000), “Seismic Performance, Design and Placement of Multiple Tuned Mass Dampers In Building Applications”, Ph. D Thesis, University of Missouri-Rolla, United States.
    [5]Clarence W., de Silva, (2000), “Vibration: Fundamentals and Practice”, Boca Raton: CRC Press LLC,
    [6]Housner G.W., Bergman L.A., Caughey T.K., etc, (1997), “Structural Control: Past, Present, and Future”, ASCE Journal of Engineering Mechanics, 123(9): 897-971
    [7]Akira Nishitani1, Yutaka Inoue, (2001), “Overview of the Application of Active-Semiactive Control to Building Structures in Japan”, Earthquake Engineering & Structural Dynamics, 30(11):1565-1574
    [8]魏燕定,赖小波,陈定中,沈国强,(2006),“两级振动隔振系统参数优化设计”,浙江大学学报(工学版),40(5):893-896
    [9]杜奎, 伍先俊, 程广利, 朱石坚,(2005),“浮筏隔振系统隔振器最佳布置方案研究”,海军工程大学学报,17(2):92-94
    [10]孙玉国,霍睿,高洪芬,宋孔杰,(1999),“柔性板基础隔振系统功率流传递特性”, 山东工业大学学报,29(2):101-106
    [11]吴广明,沈荣瀛,李俊,华宏星,(2005),“多层隔振系统的动力学模型”,振动与冲击,24(2):16-20
    [12]吴广明,(2004),“舰船复杂隔振系统建模及其功率流研究”,上海交通大学博士学位论文
    [13]Chen X., Qi H., Zhang Y., Wu C, (2001), “Optimal Design of a Two-Stage Mounting Isolation System by the Maximum Entropy Approach”, Journal of Sound and Vibration, 243(4):591-599
    [14]V. A. Bapat, P. Prabhu, (1980), “Optimum Design of a Lanchester Damper for a Viscously Damped Single Degree of Freedom System Subjected to Inertial Excitation”, Journal of Sound and Vibration, 73(l):113-124
    [15]张阿舟,姚起杭,(1989),“振动控制工程”,航空工业出版社
    [16]章艺,(2005),“冲液柱壳结构的主动约束层阻尼振动控制研究”,上海交通大学博士学位论文
    [17]Pennestrì E., (1998), “An Application of Chebyshev's Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber”, Journal of Sound and Vibration, 217(4):757-765
    [18]Tambe U. V., Chandrasekharappa G., Srirangarajan H. R., (1988), “Voigt DynamicVibration Absorber”, Journal of Sound and Vibration, 124(2):381-384
    [19]Asami T., Nishihara O., Baz, A.M., (2002), “Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(2):284-295
    [20]Asami T., Nishihara O., (2003), “Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)”, Journal of Vibration and Acoustics, Transactions of the ASME, 125(3):398-405
    [21]Nishihara O., Asami T., (2002), “Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors)”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(4):576-582
    [22]Asami T., Nishihara O., (2002), “H2 Optimization of the Three-Element Type Dynamic Vibration Absorbers”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(4):583-592
    [23]Lee C.-L., Chen Y.-T., Chung L.-L., Wang Y.-P., (2006), “Optimal Design Theories and Applications of Tuned Mass Dampers”, Engineering Structures, 28(1):43-53
    [24]Fujino Yozo, Abe Masato, (1993), “Design Formulas for Tuned Mass Dampers Based on a Perturbation Technique”, Earthquake Engineering & Structural Dynamics, 22(10):833-854
    [25]Liu K., Liu J., (2005), “The Damped Dynamic Vibration Absorbers: Revisited and New Result”, Journal of Sound and Vibration, 284(3-5):1181-1189
    [26]Xu K., Igusa T., (1992), “Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies”, Earthquake Engineering & Structural Dynamics 21(12):1059-1070
    [27]Jangid R.S., Datta T.K., (1997), “Performance of Multiple Tuned Mass Dampers for Torsionally Coupled System”, Earthquake Engineering & Structural Dynamics, 26(3):307-317
    [28]Abe M., and Fujino Y., (1994), “Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas”, Earthquake Engineering & Structure Dynamics, 23(8):813-835
    [29]Genda Chen, Jingning Wu, (2001), “Optimal Placement of Multiple Tune Mass Dampers for Seismic Structures”, Journal of Structural Engineering, 127(9):1054-1062
    [30]Kareem A., Kline S., (1995), “Performance of Multiple Mass Dampers under Random Loading”, Journal of Structural Engineering, 121(2):348–361
    [31]Lei Zuo, Samir A. Nayfeh, (2005), “Optimization of the Individual Stiffness and Damping Parameters in Multiple-Tuned-Mass-Damper Systems”, Journal of Vibration and Acoustics, 127(1):77-83
    [32]Li C., (2002), “Optimum Multiple Tuned-Mass-Dampers for Structures Under the Ground Acceleration Based on DDMF and ADMF”, Earthquake Engineering & Structural Dynamics, 31(4):897-919
    [33]Li C., Qu W., (2006), “Optimum Properties of Multiple Tuned Mass Dampers for Reduction of Translational and Torsional Response of Structures Subject to Ground Acceleration”, Engineering Structures, 28(4):472-494
    [34]Jaewook Park, Dorothy Reed, (2001), “Analysis of Uniformly and Linearly Distributed Mass Dampers under Harmonic and Earthquake Excitation”, Engineering Structures, 23(7):802-814
    [35]Yamaguchi, H., and Harnpornchai, N., (1993), “Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations”, Earthquake Engineering & Structural Dynamics, 22(1):51-62
    [36]杜冬,(2004),“结构新型调谐质量阻尼器控制的优化和鲁棒性研究”,上海交通大学硕士学位论文
    [37]李春祥,韩兵康,杜冬,(2005),“结构双重调谐质量阻尼器(DTMD)控制策略研究”,土木工程学报,38(5):1-8
    [38]李春祥,韩兵康,杜冬,(2004),“结构双层多重调谐质量阻尼器(DMTMD)控制策略的鲁棒性评价”,地震工程与工程振动,24(5):97-104
    [39]李春祥,杜冬,(2004),“结构双层多重调谐质量阻尼器(DMTMD)控制策略的鲁棒性评价”,地震工程与工程振动,24(4):122-126
    [40]Isao Nishimura, Toshikazu Yamada, Mitsuo Sakamoto, Takuji Kobori, (1998), “Control Performance of Active-Passive Composite Tuned Mass Damper”, Smart Materials and Structures, 7(5):637-653
    [41]C. M. Wang, N. Yan, T. Balendra, (1999), “Control on Dynamic Structural Response Using Active-Passive-Composite-Tuned Mass Dampers”, Journal of Vibration and Control, 5(3):475-489
    [42]Li Chunxiang, (2003), “Multiple Active-Passive Tuned Mass Dampers for Structures Under the Ground Acceleration”, Earthquake Engineering & Structural Dynamics, 32(6):949-964
    [43]Pinkaew T., Fujino Y., (2001), “Effectiveness of Semi-Active Tuned Mass Dampers Under Harmonic Excitation”, Engineering Structures, 23(7):850-856
    [44]U. Aldemir, M. Bakioglu, S. S. Akhiev, (2001), “Optimal Control of Linear Buildings under Seismic Excitations”, Earthquake Engineering & Structural Dynamics, 30(6):835-851
    [45]U. Aldemir, (2003), “Optimal Control of Structures with Semiactive-Tuned MassDampers”, Journal of Sound and Vibration, 266(4):847-874
    [46]Adhikari Rajesh, Yamaguchi Hiroki, (1997), “Sliding Mode Control of Building with ATMD”, Earthquake Engineering & Structural Dynamics, 26(4):409-422
    [47]Nurkan Yagiz, (2001), “Sliding Mode Control of a Multi-Degree-of-Freedom Structural System with Active Tuned Mass Damper”, Turkish Journal of Engineering and Environmental Sciences, 25(6):651-657
    [48]Setarec M., (2001), “Application of Semi-Active Tuned Mass Dampers to Base-Excited Systems”, Earthquake Engineering & Structural Dynamics 30(3):461-462
    [49]R. P. Ma, A. Sinha, (1996), “A Neural Network Based Active Vibration Absorber with State Feedback Control”, Journal of Sound and Vibration”, 190(1):121-128
    [50]Khaldoon A. Bani-Hani, (2007), “Vibration Control of Wind-Induced Response of Tall Buildings with an Active Tuned Mass Damper Using Neural Networks”, Structural Control and Health Monitoring, 14(1):83-108
    [51]Jecong-Hoi Koo, Mehdi Ahmadian, Mohammad Elahinia, (2005), “Semi-Active Controller Dynamics in a Magneto-Rheological Tuned Vibration Absorber”, Smart Structures and Materials 2005: Damping and Isolation, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005)
    [52]Lei Zuo, Samir A. Nayfeh, (2004), “Minimax Optimization of Multi-Degree-of-Freedom Tuned Mass Dampers”, Journal of Sound and Vibration, 272(3-5), 893-908
    [53]Verdirame, J. M., Nayfeh S. A., Zuo, L., (2002), “Design of Multi-Degree-of-Freedom Tuned-Mass Dampers”, Proceedings of SPIE-The International Society for Optical Engineering, V4697:98-108
    [54]Seon J. Jang, Yong J. Choi, (2007), “Geometrical Design Method of Multi-Degree-of- Freedom Dynamic Vibration Absorbers”, Journal of Sound and Vibration, 303(1-2):343-356
    [55]Yu Hongbiao, Wang K.W., (2006)“Piezoelectric Networks for Vibration Suppression of Mistuned Bladed Disks”, ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Nov 5-10 2006, Chicago, IL, United States
    [56]Alkhatib Rabih, Golnaraghi M.F., (2003), “Active Structural Vibration Control: A Review”, Shock and Vibration Digest, 35(5):367-383
    [57]Benassi L., Elliott S.J., (2004), “Active Vibration Isolation Using an Inertial Actuator with Local Displacement Feedback Control”, Journal of Sound and Vibration, 278(4-5):705-724
    [58]杨铁军,陈玉强,黄金娥,刘志刚,(2001),“柴油机双层隔振系统耦合振动主动控制仿真研究”,船舶工程,(3):24-27
    [59]刘志刚,孙承顺, 杨铁军; 黄金娥,(2000),“人工神经网络在柴油机振动有源控制中的研究”,船舶工程,(2):33-36
    [60]Niu Junchuan, Song Kongjie, Lim C.W., (2005), “On Active Vibration Isolation of Floating Raft System”, Journal of Sound and Vibration, 285(1-2):391-406
    [61]Jenkins M.D., Nelson P.A., Pinnington R.J., Elliott, S.J., (1993),“Active isolation of periodic machinery vibrations”, Journal of Sound and Vibration, 166(1):117-140
    [62]Daley, Steve, Hatonen, J., Owens D.H., (2006), “Active Vibration Isolation in a "Smart Spring" Mount Using a Repetitive Control Approach”, Control Engineering Practice, 14(9):991-997
    [63]张春良,陈子辰,梅德庆,(2003),“双层主动隔振系统的动力学研究”,中国机械工程,14(14):1232-1235
    [64]翟东武,朱晞,(2000),“基于神经网络的结构振动响应预测控制”,清华大学学报(自然科学版),40(S1):61-65
    [65]江建,邹银生,(1999),“建筑结构非线性地震反应的最优采样预测控制”,昆明:第八届全国结构工程学术会议论文集
    [66]Guclu Rahmi, (2006), “Sliding Mode and PID Control of a Structural System Against Earthquake”, Mathematical and Computer Modelling, 44(1-2):210-217
    [67]Taghirad H.D., Esmailzadeh E., (1998), “Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension”, Journal of Vibration and Control, 4(5):603-618
    [68]Cevat G?k?ek, Pierre T. Kabamba, Semyon M. Meerkov, (2001), “An LQR/LQG Theory for Systems with Saturating Actuators”, IEEE Transactions on Automatic Control, 46(10):1529-1541
    [69]Mahdi Jalili-Kharaajoo, Yashar Nikouseresht, Amin Mohebbi. Behzad Moshiri, Alireza Esna Ashari, (2003), “Application of Linear Quadratic Regulator (LQR) in Displacement Control of an Active Mass Damper”, IEEE Conference on Control Applications-Proceedings, 1:754-759
    [70]C. W. Lim, T. Y. Chung, S. J. Moon, (2003), “Adaptive Bang-Bang Control for the Vibration Control of Structures under Earthquakes”, Earthquake Engineering & Structural Dynamics, 32(13):1977-1994
    [71]Collins R., Basu B., Broderick B., (2006), “Control Strategy Using Bang-Bang and MiniMax Principle for FRF with ATMDs”, Engineering Structures, 28(3):349-356
    [72]Luo N., Rodellar J., De La Sen M., Vehi J. (2000), “Output Feedback Sliding Mode Control of Base Isolated Structures”, Journal of the Franklin Institute, 337(5):555-577
    [73]Sun Jian Colin, Wang Xiaochun George, Xi Fengfeng Jeff, (2000), “Sliding Mode Active Vibration Control of Circular Saws”, IEEE Conference on ControlApplications-Proceedings, 1:953-958
    [74]Sarbjeet S., Datta T. K., (2000), “Nonlinear Sliding Mode Control of Seismic Response of Building Frames”, Journal of Engineering Mechanics, 126(4):340-347
    [75]Kawabe Hisashi, Tsukiyama Naoki, Yoshida Kazunobu, (2006), “Active Vibration Damping Based on Neural Network Theory”, Materials Science and Engineering A, 442(1-2):547-550
    [76]Snyder Scott D., Tanaka Nobuo, (1995), “Active Control of Vibration Using a Neural Network”, IEEE Transactions on Neural Networks, 6(4):819-828
    [77]Li Yangmin, Liu Yugang, Liu Xiaoping , (2005), “Active Vibration Control of a Modular Robot Combining a Back-Propagation Neural Network With a Genetic Algorithm”, Journal of Vibration and Control, 11(1):3-17
    [78]Wenzhong Qu, Jincai Sun, Yang Qiu , (2004), “Active Control of Vibration Using a Fuzzy Control Method”, Journal of Sound and Vibration, 275(3-5):917-930
    [79]Battaini M., Casciati F., Faravelli L., (1998) , “Fuzzy Control of Structural Vibration. an Active Mass System Driven by a Fuzzy Controller”, Earthquake Engineering & Structural Dynamics, 27(11):1267-1276
    [80]胡如夫,李普,陈南,孙庆鸿,(2005),“基于H∞的振动系统多输入多输出鲁棒控制仿真”,东南大学学报(自然科学版),35(6):894-897
    [81]Kar I.N., Miyakura T., Seto K., (2000), “Bending and Torsional Vibration Control of a Flexible Plate Structure Using H∞-Based Robust Control Law”, IEEE Transactions on Control Systems Technology, 8(3):545-553
    [82]Young Peter M., Bienkiewicz Bogusz, (1998), “Robust Controller Design for the Active Mass Driver Benchmark Problem”, Earthquake Engineering & Structural Dynamics, 27(11):1149-1164
    [83]D. J. Leo, D. J. Inman, (1999), “A Quadratic Programming Approach to the Design of Active-Passive Vibration Isolation Systems”, Journal of Sound and Vibration, 220(5):807-825
    [84]Shang-Teh Wu, Ying-Jhe Shao, (2007), “Adaptive Vibration Control Using A Virtual- Vibration-Absorber Controller”, Journal of Sound and Vibration(in press), doi:10.1016/j.jsv.2007. 04.046
    [85]Shang-Teh Wu, Yea-Ying Chiu, Yuan-Chih Yeh, (2007), “Hybrid Vibration Absorber with Virtual Passive Devices”, Journal of Sound and Vibration 299(1-2):247-260
    [86]Wu S.-T., Chou B.-Y., (2006), “Speed Control of a 2-DOF Reciprocating Machine Using a Virtual-Vibration-Absorber Algorithm”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 48(4):674-680
    [87]Olgac N., Holm-Hansen B.T., (1994), “Novel Active Vibration Absorption Technique:Delayed Resonator”, Journal of Sound and Vibration, 176(1):93-104
    [88]Olgac Nejat, Holm-Hansen Brian, (1995), “Design Considerations for Delayed-Resonator Vibration Absorbers”, Journal of Engineering Mechanics, 121(1):80-89
    [89]Jalili N., Olgac N., (1999), “Multiple Delayed Resonator Vibration Absorbers for Multi-Degree-of- Freedom Mechanical Structures”, Journal of Sound and Vibration, 223(4):567-585
    [90]Hosek Martink, Olgac Nejat, Elmali Hakan, (1997), “Torsional Vibration Control of MDOF Systems Using the Centrifugal Delayed Resonator”, IEEE Conference on Control Applications- Proceedings:534-539
    [91]Filipovic Damir, (1999), “Vibration Suppression Using Bandpass Absorber”, Noise and Vibration Worldwide, 30(8):3-11
    [92]李玩幽,杨铁军,张洪田,刘志刚,(2000),“基于修改自适应算法(MLMS)的 主动吸振模拟试验研究”,船舶工程,(4):29-32
    [93]Filipovic D., Schroder D., (1998), “Bandpass Vibration Absorber”, Journal of Sound and Vibration, 214(3):553-566
    [94]Yu Du, Ricardo A. Burdissoa, Efstratios Nikolaidis, (2005),“Control of Internal Resonances in Vibration Isolators Using Passive and Hybrid Dynamic Vibration Absorbers”, Journal of Sound and Vibration 286 (2005)697-727
    [95]Tang J., Wang K.W., (2001), “Active-Passive Hybrid Piezoelectric Networks for Vibration Control: Comparisons and Improvement”, Smart Materials and Structures, 10(4):794-806
    [96]Tsai Meng-Shiun, Wang Kon-Well, (1997),“Some Insights on Active-Passive Hybrid Piezoelectric Networks for Structural Controls”, Proceedings of SPIE-The International Society for Optical Engineering, v3045:82-93
    [97]Kahn Steven P., Wang K.W., (1994), “Structural Vibration Control via Piezoelectric Materials with Active-Passive Hybrid Networks”, ASME, Design Engineering Division (Publication) DE, v75, Active Control of Vibration and Noise:187-194
    [98]杨润林,周锡元,闫维明,宋波,(2007),“结构半主动变刚度控制的研究”,建筑科学,23(3):10-14
    [99]杨润林,陈芳,宋波,闫维明,周锡元,(2007),“结构新型半主动连续变刚度控制的研究”,四川建筑科学研究,33(2):127-130
    [100]Nemir David C., Lin Yingjie, Osegueda Roberto A, (1994), “Semiactive Motion Control Using Variable Stiffness”, Journal of structural engineering, 120(4):1291-1306
    [101]Walsh P.L., Lamancusa J.S., (1992), “Variable Stiffness Vibration Absorber forMinimization of Transient Vibrations”, Journal of Sound and Vibration, 158(2):195-211
    [102]Liu Kefu, Liao Liang, Liu Jie, (2005), “Comparison of Two Auto-Tuning Methods for a Variable Stiffness Vibration Absorber”, Transactions of the Canadian Society for Mechanical Engineering, 29(1):81-96
    [103]Satish Nagarajaiah, Ertan Sonmez, (2007), “Structures with Semiactive Variable Stiffness Single/Multiple Tuned Mass Dampers”, Journal of Structural Engineering, 133(1):67-77
    [104]Varadarajan N., Nagarajaiah S., (2004), “Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform”, Journal of Engineering Mechanics, 130(4):451-458
    [105]Liu Yanqing, Matsuhisa Hiroshi, Utsuno Hideo, Park Jeong Gyu, (2005), “Vibration Isolation by a Variable Stiffness and Damping System”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 48(2):305-310
    [106]Ahmadian Mehdi, Song Xubin, Southward Steve C., (2004), “No-Jerk Skyhook Control Methods for Semiactive Suspensions”, Journal of Vibration and Acoustics, Transactions of the ASME, 126(4):580-584
    [107]Tseng H.E., Hedrick J.K., (1994), “Semi-Active Control Laws - Optmal and Sub-Optimal”, Vehicle System Dynamics, 23(7):545-569
    [108]何玉敖,何亚东,(2000),“基于Lyapunov稳定性原理和遗传算法的结构半主动控制”,土木工程学报,33(6):88-93
    [109]Renzi Emanuele, Serino Giorgio, (2004), “Testing and Modelling a Semi-Actively Controlled Steel Frame Structure Equipped with MR Dampers”, Structural Control and Health Monitoring, 11(3):189-221
    [110]Dyke, S.J., Spencer B.F., Sain M.K., Carlson J.D., (1996), “Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction”, Smart Materials and Structures, 5(50:565-575
    [111]Sun Tao, Huang Zhenyu, Chen, Dayue, (2005), “Signal Frequency-Based Semi-Active Fuzzy Control for Two-Stage Vibration Isolation System”, Journal of Sound and Vibration, 280(3-5):965-981
    [112]Tang J., Liu Y., Wang K.W., (2000), “Semiactive and Active-Passive Hybrid Structural Damping Treatments via Piezoelectric Materials”, Shock and Vibration Digest, 32(3):189-200
    [113]Williams K.A., Chiu G.T.-C., Bernhard R.J., (2005), “Dynamic Modelling of a Shape Memory Alloy Adaptive Tuned Vibration Absorber”, Journal of Sound and Vibration, 280(1-2):211-234
    [114]Wongprasert N., Symans M.D., (2005), “Experimental Evaluation of AdaptiveElastomeric Base-Isolated Structures Using Variable-Orifice Fluid Dampers”, Journal of Structural Engineering, 131(6):867-877
    [115]Anusonti-Inthra P., Gandhi F., Miller L., (2003), “Reduction of Helicopter Vibration Through Cyclic Control of Variable Orifice Dampers”, Aeronautical Journal, 107(1077):657-672
    [116]Hrovat Davorin, Barak Pinhas, Rabins Michael, (1983), “Semi-Active Versus Passive of Active Tuned Mass Dampers for Structural Control”, Journal of Engineering Mechanics, 109(3):691-705
    [117]Jalili Nader, Fallahi Behrooz, (2002), “Design and Dynamic Analysis of an Adjustable Inertia Absorber for Semiactive Structural Vibration Attenuation”, Journal of Engineering Mechanics, 128(12):1342-1348
    [118]徐建功,王肇民,何玉敖,(2003),“基于预测控制的结构振动半主动控制研究”,世界地震工程,19(2):126-131
    [119]Clemens Beijers, (2005), “A Modeling Approach to Hybrid Isolation of Tructure-Borne Sound”, PhD thesis, University of Twente, Enschede, The Netherlands
    [120]]严济宽,(1986),“机械振动隔离技术”,上海科学技术出版社
    [121]Den Hartog, J. P., (1956), “Mechanical Vibrations’, the 4th Edition, McGraw-Hill, NewYork
    [122]Jedol Dayou, Semyung Wang, (2004), “On the Existence of the Fixed Points in Global Vibration Control of a Continuous Structure Using Vibration Neutralizer”, the 11th International Congress on Sound and Vibration, 5-8 July, St. Petersburg, Russia, 3383-3390
    [123]Dayou Jedol, (2006), “Fixed-Points Theory for Global Vibration Control Using Vibration Neutralizer”, Journal of Sound and Vibration, 292(3-5):765-776
    [124]Asami T., Nishihara O., (1999), “Analytical and Experimental Evaluation of an Air Damped Dynamic Vibration Absorber: Design Optimizations of the Three-Element Type Model”, Journal of Vibration and Acoustics, Transactions of the ASME, 121(3):334-342
    [125]Schmitendorf W.E., (2000), “Designing Tuned Mass Dampers via Static Output Feedback: a Numerical Approach”, Earthquake Engineering & Structural Dynamics, 29(1):127-137
    [126]B. P. Wang, (1984), “Transient Response Optimization of Vibrating Structures by Liapunov’s Second Method”, Journal of Sound and Vibration, 96(4):505-512
    [127]李春祥,刘艳霞,王肇民,(2003),“质量阻尼器的发展”,力学进展,33(2):194-206
    [128]Dong Du, XiaoJun Gu, DeYing Chu, Hongxing Hua, (2007), “Performance and Parametric Study of Infinite-Multiple TMDs for Structures under Ground Acceleration by H∞ Opimization”, Journal of Sound and Vibration, 305(4-5):843-853
    [129]Masato Abe, (1996), “Semi-Active Tuned Mass Dampers for Seismic Protection of Civil Structures”, Earthquake Engineering & Structural Dynamics, 25(7):743-749
    [130]Koo J.-H., Ahmadian M., Setareh M., (2006), “Experimental Robustness Analysis of Magneto-Rheological Tuned Vibration Absorbers Subject to Mass Off-Tuning”, Journal of Vibration and Acoustics, Transactions of the ASME, 128(1):126-131
    [131]Setareh, M. (2001), “Use of Semi-Active Tuned Mass Dampers for Vibration Control of Force-Excited Structures”, Structural Engineering and Mechanics, 11(4):341-356
    [132]M. Abe, (1996), “Semi-Active Dynamic Vibration Absorbers for Controlling Transient Response”, Journal of Sound and Vibration, 198(5):547-569
    [133]Masato Abé, (1996), “Rule-Based Control Algorithm for Active Tuned Mass Dampers”, Journal of Engineering Mechanics, 122(8):705-713
    [134]任军,滕军,叶列平,(2003),“地王大厦风振 TMD 主被动切换混合控制研究”,地震工程与工程振动,23(6):187-193
    [135]刘保东,朱唏,(2002),“混合质量阻尼器(HMD)抗震控制研究”,中国安全科学学报,12(1):42-45
    [136]Fujita Takafumi, Matsumoto Kiyotaka, Kinoshita Masahiko, Takanashi Seiji, Miyano Hiroshi, (1993), “Response Control of Building by Hybrid Mass Damper with Convertible Active and Passive Modes”, Proceedings of SPIE-The International Society for Optical Engineering 2040:288-302
    [137]Fujita Takafumi, (1994), “Application of Hybrid Mass Damper with Convertible Active and Passive Modes Using Hydraulic Actuator to High-Rise Building”, Proceedings of the American Control Conference, 1:1067-1072
    [138]Abe N., (2001), “Switching Vibration Control for Active-Passive Composite Tuned Mass Damper”, Proceedings of the International Conference on Systems Science 3:243-250
    [139]Saito T., Shiba K., Tamura K., (2001) “Vibration Control Characteristics of a Hybrid Mass Damper System Installed in Tall Buildings”, Earthquake Engineering & Structural Dynamics, 30 (11):1677-1696
    [140]Ahlawat A.S., Ramaswamy A., (2002), “Multiobjective Optimal FLC Driven Hybrid Mass Damper System for Torsionally Coupled, Seismically Excited Structures”, Earthquake Engineering & Structural Dynamics, 31(12):2121-2139
    [141]Nagashima I., Maseki R., Asami Y., Hirai J., Abiru H., (2001), “Performance of Hybrid Mass Damper System Applied to a 36-Storey High-Rise Building”, Earthquake Engineering & Structural Dynamics, 30(11):1615-1637
    [142]Liu Baodong, Zhu Xi, (2004), “Seismic Control of Bridge Using Hybrid MassDamper”, Progress in Safety Science and Technology Volume 4: Proceedings of the 2004 International Symposium on Safety Science and Technology:443-446
    [143]L. Zuo, S. A. Nayfeh, (2002), “Design of Multi-Degree-Of-Freedom Tuned-Mass Dampers: a Minimax Approach”, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, V1, 2002:642-648
    [144]Oueini Shafic S., Chin Char-Ming, Nayfeh Ali H., (1999), “Dynamics of a Cubic Nonlinear Vibration Absorber”, Nonlinear Dynamics, 20(3):283-295
    [145]Rudinger F., (2007), “Tuned Mass Damper with Nonlinear Viscous Damping”, Journal of Sound and Vibration, 300(3-5):932-948
    [146]Shafic S. Oueini, Ali H. Nayfeh, Jon R. Pratt, (1998), “A Nonlinear Vibration Absorber for Flexible Structures”, Nonlinear Dynamics, 15(3):259-282
    [147]Mikhlin Yuri V., Reshetnikova S.N., (2005), “Dynamical Interaction of an Elastic System and Essentially Nonlinear Absorber”, Journal of Sound and Vibration, 283(1-2):91-120
    [148]Pai P. Frank, Schulz Mark J., (2000), “A Refined Nonlinear Vibration Absorber”, International Journal of Mechanical Sciences, 42(3):537-560
    [149]Poovarodom Nakhorn, Kanchanosot Sopak, Warnitchai Pennung, (2003), “Application of Non-Linear Multiple Tuned Mass Dampers to Suppress Man-Induced Vibrations of a Pedestrian Bridge”, Earthquake Engineering & Structural Dynamics, 32(7):1117-1131
    [150]Hoang Nam, Warnitchai Pennung, (2005), “Design of Multiple Tuned Mass Dampers by Using a Numerical Optimizer”, Earthquake Engineering & Structural Dynamics, 34(2):125-144
    [151]Li Chunxiang, Liu Yanxia, (2003), “Optimum Multiple Tuned Mass Dampers for Structures Under the Ground Acceleration Based on the Uniform Distribution Of System Parameters”, Earthquake Engineering & Structural Dynamics, 32(5):671-690
    [152]Joshi A. S., Jangid R.S., (1997), “Optimum Parameters of Multiple Tuned Mass Dampers for Base-Excited Damped Systems”, Journal of Sound and Vibration, 202(5):657-667
    [153]Maidanik G., (2001), “Induced Damping by a Nearly Continuous Distribution of Nearly Undamped Oscillators: Linear Analysis”, Journal of Sound and Vibration, 240(4):717-731
    [154]Nagem R. J., Veljkovic I., Sandri G., (1997),“Vibration Damping by a Continuous Distribution of Undamped Oscillators”, Journal of Sound and Vibration, 207(3):429-434
    [155]A. Carcaterra and A. Akay, (2004), “Transient Energy Exchange Between a Primary Structure and a Set of Oscillators: Return Time and Apparent Damping”, Journal of theAcoustical Society of America, 115(2):683-696
    [156]I. Murat Koc, Antonio Carcaterra, Zhaoshun Xu, Adnan Akay, (2005), “Energy Sinks: Vibration Absorption by an Optimal Set of Undamped Oscillators”, Journal of the Acoustical Society of America, 118(5):3031-3042
    [157]Adnan Akay, Zhaoshun Xu, (2005), “Experiments on Vibration Absorption Using Energy Sinks”, Journal of the Acoustical Society of America, 118(5):3043-3049
    [158]Jingning Wu, Genda Chen, (2000), “Optimization of Multiple Tuned Mass Dampers for Seismic Response Reduction”, Proceedings of the American Control Conference, 1:519-523
    [159]Singh Mahendra P., Singh Sarbjeet, Moreschi Luis M., (2002), “Tuned Mass Dampers for Response Control of Torsional Buildings”, Earthquake Engineering & Structural Dynamics, 31(4):749-769
    [160]Li Chunxiang, Qu Weilian, (2004), “Evaluation of Elastically Linked Dashpot Based Active Multiple Tuned Mass Dampers for Structures Under Ground Acceleration”, Engineering Structures, 26(14):2149-2160
    [161]Li Chunxiang, Liu Yanxia, Wang Zhaomin, (2003), “Active Multiple Tuned Mass Dampers: a New Control Strategy”, Journal of Structural Engineering, 129(7):972-977
    [162]Li Chunxiang, Liu Yanxia, (2002), “Active Multiple Tuned Mass Dampers for Structures Under The Ground Acceleration”, Earthquake Engineering & Structural Dynamics, 31(5):1041- 1052
    [163]Abdel-Rohman Mohamed, John Mariam Joseph, (2006), “Control of Wind-Induced Nonlinear Oscillations in Suspension Bridges Using Multiple Semi-Active Tuned Mass Dampers”, Journal of Vibration and Control, 12(9):1011-1046
    [164]Zhuang Wei, Leming Sarah, Kuehn Jeff, Zeng Huan, Stalford Harold, (2000), “Semi-Active Tuned Mass Damper Design for Balcony Vibration Control”, Proceedings of the American Control Conference 5:3560-3564
    [165]徐建功,王肇民,何玉敖,(2003),“基于预测控制的结构振动半主动控制研究”,世界地震工程,19(2):126-131
    [166]Koo J.-H., Ahmadian M., Setareh M., Murray T.M., (2004), “In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers”, Journal of Vibration and Control, 10(2):163- 174
    [167]Koo Jeong-Hoi, Ahmadian Mehdi, Setareh Mehdi, Murray Thomas M., (2002), “A Robust Semi-Active Tuned Vibration Absorber for Reducing Vibrations in Force-Excited Structures”, American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v115, Proceedings of the ASME Design Engineering Division-2002:303-309
    [168]Yang Runlin, Zhou Xiyuan, Liu Xihui, (2002), “Seismic Structural Control Using Semi- Active Tuned Mass Dampers”, Earthquake Engineering & Engineering Vibration, 1(1):111-118
    [169]Buhr C.A., Franchek M.A., Bernhard R.J., (1998), “Noncollocated Adaptive-Passive Vibration Control Using Self-Tuning Vibration Absorbers”, Proceeding of American Control Conference, Philadelphia, Pennsylvania, Page(s): 3460-3464 vol.6, doi: 10.1109/ACC.1998. 703240
    [170]顾仲权,马扣根,陈卫东,(1997),《振动主动控制》,国防工业出版社
    [171]N. Tanaka, Y. Kikushima, (1992), “Impact Vibration Control Using a Semi-Active Damper”, Journal of Sound and Vibration, 158(2):277-292
    [172]Ricciardelli F., Occhiuzzi A., Clemente P., (2000), “Semi-Active Tuned Mass Damper Control Strategy for Wind-Excited Structures”, Journal of Wind Engineering and Industrial Aerodynamics, 88(1):57-74
    [173]Chang James C.H., Soong Tsu T., (1980), “Structural Control Using Active Tuned Mass Dampers”, ASCE Journal of the Engineering Mechanics Division, 106(6):1091-1098
    [174]Rasouli S.K., Yahyai M., (2002), “Control of Response of Structures With and Active Tuned Mass Dampers”, Structural Design of Tall Buildings, 11(1):1-14
    [175]Nerves A.C., Krishnan R., (1995), “Active Control Strategies for Tall Civil Structures”, IECON Proceedings (Industrial Electronics Conference), 2:962-967
    [176]Cao T.V., Chen L., He F., Sammut K., (2000), “Active Vibration Absorber Design via Sliding Mode Control”, Proceedings of the American Control Conference, 3:1637-1638
    [177]高为炳,(1990),《变结构控制理论基础》,中国科学技术出版社
    [178]Yang J.N., Wu J.C., Agrawal A.K., Hsu S.Y., (1997), “Sliding Mode Control with Compensator for Wind and Seismic Response Control”, Earthquake Engineering & Structural Dynamics, 26(11):1137-1156
    [179]Ma R.P., Sinha A., (1996), “A Neural Network Based Active Vibration Absorber with State Feedback Control”, Journal of Sound and Vibration, 190(1):121-128
    [180]Yang S.M., Chen C.J., Huang W.L., (2006), “Structural Vibration Suppression by a Neural-Network Controller with a Mass-Damper Actuator”, Journal of Vibration and Control, 12(5):495-508
    [181]Schiffmann Wolfram H., Geffers Willi H., (1993), “Adaptive Control of Dynamic Systems by Back Propagation Networks”, Neural Networks, 6(4):517-524
    [182]Marra Michael A., Walcott Bruce L., Rouch Keith E., Tewani Sanjiv G., (1995), “H∞ Vibration Control for Machining Using Active Dynamic Absorber Technology”, Proceedings of the American Control Conference, 1:739-743
    [183]Rijanto E., Okamoto M., Kuang Wu, Tagawa Y., (2000), “Floor VibrationAttenuation Device Using Robust H∞ Controller” International Workshop on Advanced Motion Control, AMC, 363-366
    [184]Huang Shiuh-Jer, Lian Ruey-Jing, (1996), “Active Vibration Control of a Dynamic Absorber Using Fuzzy Algorithms”, Mechatronics, 6(3):317-336
    [185]Battaini M., Casciati F., Faravelli L., (1997), “Implementing a Fuzzy Controller into an Active Mass Damper Device”, Proceedings of the American Control Conference, 2:888-892
    [186]Lin J., (2005), “A Vibration Absorber of Smart Structures Using Adaptive Networks in Hierarchical Fuzzy Control”, Journal of Sound and Vibration, 287(4-5):683-705
    [187]Lin J., (2004), “Design of a Hierarchical Fuzzy Vibration Absorber for a Continuum with a Moving Oscillator”, Proceedings of the IEEE International Conference on Control Applications, 1:189-194
    [188]Ahlawat A.S., Ramaswamy A., (2002), “Multi-Objective Optimal Design of FLC Driven Hybrid Mass Damper for Seismically Excited Structures”, Earthquake Engineering & Structural Dynamics, 31(7):1459-1479
    [189]Ahlawat A.S., Ramaswamy A., (2004), “Multiobjective Optimal Fuzzy Logic Control System for Response Control of Wind-Excited Tall Buildings”, Journal of Engineering Mechanics, 130(4):524-530
    [190]Spencer B.F. Jr., Dyke S.J., Deoskar H.S., (1998), “Benchmark Problems in Structural Control: Part I-Active Mass Driver System”, Earthquake Engineering & Structural Dynamics, 27(11):1127-1139
    [191]周建中,赵鸿铁,(2003),“半主动调谐减震体系模糊控制器的理论研究”,北京科技大学学报,25(4):304-307
    [192]Nejat Olgac, Chang Huang, (2000), “A New Method for Multiple Frequency Vibration Absorption”, Proceedings of the American Control Conference 3:2097-2101
    [193]Benjamin Vazquez-Gonzalez, Irma Siller-Alcala (2003), “Control Vibrations with a Pendular Absorber Using Predictive Algorithms”, Proceedings of the IASTED International Conference on Intelligent Systems and Control:389-393
    [194]Andrade R.A., Lopez-Almansa F., Rodellar J., (1995), “Influence of Time Delays in the Efficiency of Active Mass Dampers”, Smart Materials and Structures, 4(1): A1-A8
    [195]李宏男,金峤,(2003),“遗传 BP 神经网络主动 AMD 对偏心结构的减震控制”,地震工程与工程振动,23(2):134-142
    [196]孙振玉,刘季,(1999), “结构振动的无能源主动控制”,地震工程与工程振动,19(3):102-105
    [197]Aida Tadayoshi, Toda Susumu, Ogawa Norio, Imada Yasuo, (1992), “VibrationControl of Beams by Beam-Type Dynamic Vibration Absorbers”, Journal of Engineering Mechanics, 118(2):248-258
    [198]Dianlong Yu, Yaozong Liu, Honggang Zhao, Gang Wang, Jing Qiu, (2006), “Flexural Vibration Band Gaps in Euler-Bernoulli Beams with Locally Resonant Structures with Two Degrees of Freedom”, Physical Review B 73, 064301 (2006)
    [199]Keizi Kawaxoe, Iwao Kono, Tadayoshi Aida, Toshihiko Aso, Kazushi Ebisuda, (1998), “Beam-Type Dynamic Vibration Absorber Comprised of Free-Free Beam”, Journal of Engineering Mechanics, April 1998
    [200]Jordanov I. N., Cheshankov B. I., (1988), “Optimal Design of Linear and Non-Linear Dynamic Vibration Absorbers”, Journal of Sound and Vibration, 123(1):157-170
    [201]Hunt J. B., Nissen J. C., (1982), “Broadband Dynamic Vibration Absorber”, J of Sound and Vibration, 83(4):573-578
    [202]Nissen J.-C., Popp K., Schmalhorst B., (1985) “Optimization of a Non-Linear Dynamic Vibration Absorber”, Journal of Sound and Vibration, 99( l):149-154
    [203]李俊,金咸定,(2001),“动力吸振器的宽带数值优化设计”,振动与冲击,20(2):16-18
    [204]Rice H. J., McCraith J. R., (1987), “Practical Non-Linear Vibration Absorber Design”, Journal of Sound and Vibration, 116(3):545-559
    [205]H. J. Rice, J. R. Mccraith, (1986), “On Practical Implementations of the Non-Linear Vibration Absorber”, Journal of Sound and Vibration 110(1):161-163
    [206]D. Pun, Y. B. Liu, (2000), “On the Design of the Piecewise Linear Vibration Absorber”, Nonlinear Dynamics, 22(4):393-413
    [207]Poovarodom Nakhorn, Kanchanosot Sopak, Warnitchai Pennung, (2003), “Application of Non-Linear Multiple Tuned Mass Dampers to Suppress Man-Induced Vibrations of a Pedestrian Bridge”, Earthquake Engineering & Structural Dynamics, 32(7):1117-1131
    [208]S. J. Zhu, Y. F. Zheng, Y. M. Fu, (2004), “Analysis of Non-Linear Dynamics of a Two-Degree-Of-Freedom Vibration System with Non-Linear Damping and Non-Linear Spring”, Journal of Sound and Vibration, 271(1-2):15-24
    [209]Shigeru Aoki, Takeshi Watanabe, (2006), “An Investigation of an Impact Vibration Absorber With Hysteresis Damping”, Journal of Pressure Vessel Technology, 128(4):508-515
    [210]Steven W. Shaw, Christophe Pierre, (2006), “The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures”, Journal of Computational and Nonlinear Dynamics, 1(1):13-24
    [211]C. K. Sung, W. S. Yu, (1992), “Dynamics of a Harmonically Excited Impact Damper:Bifurcations and Chaotic Motion”, Journal of Sound and Vibration, 158(2):317-329
    [212]Bonsel J.H., Fey R.H.B., Nijmeijer H., (2004), “Application of a Dynamic Vibration Absorber to a Piecewise Linear Beam System”, Nonlinear Dynamics, 37(3):227-243
    [213]Chen Lei, He Fangpo, Sammut Karl, Cao Tan, (2002), “Nonlinear active vibration absorber design for flexible structures”, IEEE Conference on Control Applications-Proceedings, 1:321-326
    [214]A. Vyas, A. K. Bajaj, (2001), “Dynamics of Autoparametric Vibration Absorbers Using Multiple PendulumS”, Journal of Sound and Vibration, 246(1):115-135
    [215]Natsiavas S., (1992), “Steady State Oscillations and Stability of Non-Linear Dynamic Vibration Absorbers”, Journal of Sound and Vibration, 156(2):227-245
    [216]应艳杰,方敏,陈无畏,(2005),“基于微分几何的非线性汽车悬架主动控制”,合肥工业大学学报(自然科学版),28(3):225-228
    [217]Lewis A.D., (2007), “Is It Worth Learning Differential Geometric Methods for Modeling and Control of Mechanical Systems?”, Robotica, 25(6):765-777
    [218]Shanmugavel M., Tsourdos A., White B. A., Zbikowski R., (2007), “Differential Geometric Path Planning of Multiple UAVs”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 129(5):620-632
    [219]Maisser P., (1997), “Differential-Geometric Methods in Multibody Dynamics”, Nonlinear Analysis, Theory, Methods and Applications, 30(8):5127-5133
    [1]Pennestrì E., (1998), “An Application of Chebyshev's Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber”, Journal of Sound and Vibration, 217(4,5):757-765
    [2]Asami T., Nishihara O., Baz A. M., (2002), “Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(2):284-295
    [3]Asami T., Nishihara O., (2003), “Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers(Application to Different Transfer Functions and Damping Systems)”, Journal of Vibration and Acoustics, Transactions of the ASME, 125(3):398-405
    [4]Nishihara O., Asami T., (2002), “Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors)”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(4):576-582
    [5]Lee C.-L., Chen Y.-T., Chung L.-L., Wang Y.-P., (2006), “Optimal Design Theories and Applications of Tuned Mass Dampers”, Engineering Structures, 28(1):43-53.
    [6]Fujino Yozo, Abe Masato, (1993), “Design Formulas for Tuned Mass Dampers Based on a Perturbation Technique”, Earthquake Engineering & Structural Dynamics, 22(10):833-854
    [7]Liu K., Liu J., (2005), “The Damped Dynamic Vibration Absorbers: Revisited and New Result”, Journal of Sound and Vibration, 284(3-5):1181-1189
    [8]Asami T., Nishihara O., (2002), “H2 Optimization of the Three-Element Type Dynamic Vibration Absorbers”, Journal of Vibration and Acoustics, Transactions of the ASME, 124(4):583-592
    [9]B. P. Wang, (1984), “Transient Response Optimization of Vibrating Structures byLyapunov’s Second Method”, Journal of Sound and Vibration, 96(4):505-512
    [10]Robert T. Bupp, Dennis S. Bernstein, (1997), “Resetting Virtual Absorbers for Vibration Control”, Proceedings of the American Control Conference, 5:2647-2651
    [1]K. Iwanami and K. Seto, (1984), “Optimum Design of Dual Tuned Mass Dampers with Their Efficiency”, in Proc. JSME(C), 50(449):44-52(in Japanese) .
    [2]K. Xu and T. Igusa, (1992), “Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies”, Earthquake Engineering & Structural Dynamics, 21(12):1059-1070.
    [3]H. Yamaguchi and N. Harnpornchai, (1993), “Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations”, Earthquake Engineering & Structural Dynamics, 22(1):51-62
    [4]M. Abe and Y. Fujino, (1994), “Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas”, Earthquake Engineering & Structural Dynamics, 23(8):813-835.
    [5]R. S. Jangid, (1995), “Dynamic Characteristics of Structures with Multiple Tuned Mass Dampers”, Structural Engineering and Mechanics, 3(5):497-509
    [6]R. S. Jangid, (1999), “Optimum Multiple Tuned Mass Dampers for Base-Excited Undamped System”, Earthquake Engineering & Structural Dynamics, 28(8):1041-1049.
    [7]Joshi A. S., Jangid R.S., (1997), “Optimum Parameters of Multiple Tuned Mass Dampers for Base-Excited Damped Systems”, Journal of Sound and Vibration, 202(5):657-667
    [8]Bakre S. V., Jangid R. S., (2004), “Optimum Multiple Tuned Mass Dampers for Base-Excited Damped Main System”, International Journal of Structural Stability and Dynamics, 4(4):527-542
    [9]C. Li, (2000), “Performance of Multiple Tuned Mass Dampers for Attenuating Undesirable Oscillations of Structures under the Ground Acceleration”, Earthquake Engineering & Structural Dynamics, 29(9):1405-1421.
    [10]C. Li, (2002), “Optimum Multiple Tuned Mass Dampers For Structures under the Ground Acceleration Based on DDMF and ADMF”, Earthquake Engineering & Structural Dynamics, 31(4):897-919.
    [11]C. Li, Y. Liu, (2003), “Optimum Multiple Tuned Mass Dampers for Structures under the Ground Acceleration Based on the Uniform Distribution of System Parameters”, Earthquake Engineering & Structural Dynamics, 32(5):671-690
    [12]Zuo L., Nayfeh S. A., (2005), “Optimization of the Individual Stiffness and DampingParameters in Multiple-Tuned-Mass-Damper Systems”, Journal of Vibration and Acoustics, Transactions of the ASME, 127(1):77-83
    [13]Koc ?I.M., Carcaterra A., Xu Z., Akay A., (2005), “Energy Sinks: Vibration Absorption by an Optimal Set of Undamped Oscillators”, Journal of the Acoustical Society of America, 118(5):3031-3042
    [14]Asami T., Nishihara O., Baz A.M., (2002), “Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems,” Journal of Vibration and Acoustics, Transactions of the ASME, 124 (2):284-295
    [15]Kareem A., Kline S., (1995), “Performance of Multiple Mass Dampers under Random Loading”, Journal of Structural Engineering-ASCE, 121(2):348-361
    [1]吴广明,(2004),“舰船复杂隔振系统建模及其功率流研究”,上海交通大学博士学位论文
    [2]E. E. Ungar, C. W. Dietrich, (1966), “High-Frequency Vibration Isolation”, Journal of Sound and Vibration, 4(2):224-241
    [3]X. Chen, H. Qi, Y. Zhang, (2001), “Optimal Design of a Two-Stage Mounting Isolation System by the Maximum Entropy Approach”, Journal of Sound and Vibration, 243(4):591-599
    [4]Yu Wang, Hua HongXing, Shen Rongying, (2000), “Design Optimization of a Special Mount- ing System-Floating Raft for Ship Power Equipment Vibration Isolation”, American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, v68:233-239
    [5]Sun Tao, Huang Zhenyu, Chen Dayue, (2005), “Signal Frequency-Based Semi-Active Fuzzy Control for Two-Stage Vibration Isolation System”, Journal of Sound and Vibration, 280(3-5):965-981
    [6]Giaime J., Saha P., Shoemaker D., Sievers L., (1996), “A Passive Vibration Isolation Stack for LIGO: Design, Modeling, and Testing”, Review of Scientific Instruments 67 (1):208-214
    [7]A. F. Vakakis, (1985), “Dynamic Analysis of an Unidirectional Periodic Isolator, Consisting of Identical Masses and Intermediate Distributed Resilient Blocks”, Journal of Sound and Vibration, 103(l):25-33
    [8]A. Carcaterra and A. Akay, (2004), “Transient Energy Exchange Between a Primary Structure and a Set of Oscillators: Return Time and Apparent Damping”, Journal of the Acoustical Society of America, 115(2):683-696
    [9]Dong Du, XiaoJun Gu, DeYing Chu, Hongxing Hua, (2007), “Performance and Parametric Study of Infinite-Multiple TMDs for Structures under Ground Acceleration by H∞ Opimization”, Journal of Sound and Vibration, 305(4-5):843-853
    [1]Chang James C.H., Soong Tsu T., (1980), “Structural Control Using Active Tuned Mass Dampers”, ASCE Journal of the Engineering Mechanics Division, 106(6):1091-1098
    [2]Adhikari Rajesh, Yamaguchi Hiroki, (1997), “Sliding Mode Control of Building with ATMD”, Earthquake Engineering & Structural Dynamics, 26(4):409-422
    [3]高为炳,(1990),《变结构控制理论基础》,中国科学技术出版社
    [4]Yang J. N., Wu J.C., Agrawal A. K., Hsu S. Y., (1997), “Sliding mode control with compensator for wind and seismic response control”, Earthquake Engineering & Structural Dynamics, 26(11):1137-1156
    [5]Young Peter M., Bienkiewicz Bogusz, (1998), “Robust Controller Design for the Active Mass Driver Benchmark Problem”, Earthquake Engineering & Structural Dynamics, 27(11):1149-1164
    [6]梅生伟,申铁龙,刘康志,(2003),“现代鲁棒控制理论及应用”,清华大学出版社
    [7]贾英民,(2007),“鲁棒H∞ 控制”,科学出版社
    [8]吴旭东,解学书,(1997),“H∞ 鲁棒控制中的加权阵选择”,清华大学学报(自然科学版),37(1):27-30
    [9]Beaven R. W., Wright M. T., Seaward D. R., (1996), “Weighting Function Selection in the H∞ Design Process”, Control Engineering Practice, 4(5):625-633
    [1]Nagarajaiah Satish, Varadarajan Nadathur, (2005), “Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD”, Engineering Structures, 27(3):431-441
    [2]郑福明,杜冬,(2007),“滞回阻尼吸振器和粘滞阻尼吸振器的吸振性能比较”,噪声与振动控制,10(5):34-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700