BRG1在DNA损伤修复中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染色质高度紧密的折叠阻止了转录因子和辅因子与DNA的结合,因而通过染色质重塑以解除这样的抑制环境,对于转录活动的正常进行是至关重要的。目前,染色质重塑至少是通过两种机制来完成的,一是通过依赖于ATP的染色质改构复合物,另一是通过组蛋白修饰酶复合物。前者的典型代表是SWI/SNF复合物,人类以BRG1或BRM作为其ATP酶催化亚基,BRG1在基因的转录调控、复制、重组等方面起着重要的作用,但该亚基在DNA损伤修复中所起的作用还不是很清楚。
     DNA分子是生命体的遗传物质基础,细胞内的DNA分子因物理、化学等多种因素的作用,有可能导致多种类型的损伤。当DNA受到紫外线照射时,主要产生环丁烷-嘧啶酮二聚体(CPD)和嘧啶6-4嘧啶酮光产物(6-4PP)。对于UV照射引起的DNA损伤主要是通过核酸切除修复途径进行修复的。
     本文主要讨论了在UV照射引起的DNA损伤条件下,BRG1与DNA损伤修复的关系。首先建立UV照射引起的DNA损伤模型,即通过不同剂量的UV照射,并采用流式细胞术对细胞凋亡程度进行检测,用以摸索适合的UV剂量从而建立该模型。在该模型的基础上,通过在SW13细胞中瞬时转染BRG1表达质粒及空载pBJ5质粒(对照组),经过30J/m2的UV照射后,分别以0h、6h、24h为修复时间进行细胞损伤后修复,最后对细胞早期凋亡程度进行检测。经过统计分析,结果表明,转染了BRG1表达质粒的细胞的早期凋亡程度明显较对照组的程度低,尤其是经过24h的修复后,说明BRG1的参与促进了DNA的损伤修复。这一结果为BRG1在DNA损伤修复中所起作用的研究奠定了一定的实验基础,也为今后深入探索BRG1在该领域中具体的作用机制提供了线索,更有助于了全面深入地理解改构复合物在细胞内扮演的各种重要角色。
The highly condensed chromatin prevents the binding of transcription factors and cofactors to DNA. Therefore, it’s crucial to relief the repressive environment for transcription through chromatin remodeling activities. Recently, chromatin remodeling is carried out by at least two mechanisms: ATP-dependent chromatin remodeling complexes and histone modification complexes. The representive of the former one is the SWI/SNF comlex, the ATPase subunit of which is BRG1 or BRM in human. BRG1 plays an important role in the regulation of gene transcription, replication, recombination and etal. However, it`s still unclear that the function BRG1 carries out in DNA damage and repair.
     DNA is the basis of genetic material, which may give rise to some kinds of damage in the existence of physical and chemical factors. CPD and 6-4PP are the main photoproducts after UV irradiation. For this kind of damage, nucleutide excision repair (NER) is the major repair pathway.
     In this article, we mainly discussed the relationship between the BRG1 and DNA damage and repair. Firstly, we set up a UV-induced DNA damage and repair model through distinct dose of UV irradiation and tests to the cellular apoptosis by flow cytometry in order to find suitable UV dose. On the basis of this model, BRG1 expression plasmid and vector plasmid pBJ5 were transfected separately into SW13, which would repair themselves during the distinct repair time of 0h, 6h and 24h after 30J/m2 UV irradiation, then tests were carried out to justify the content of primary cellular apoptosis. The results showed that the percentage of primary cellular apoptosis of SW13 with transfection of BRG1 expression plasmid was lower obviously than that with transfection of vector plasmid pBJ5, especially after the repair time of 24h. All of these above indicated that BRG1 took part in and promoted DNA damage and repair. The results made foundation for the research of the role of BRG1 on DNA damage and repair, also provided clues for further exploring the specific mechanism of BRG1 on this field, and help us to understand generally about varies important roles the chromatin-remodeling complexes play in cells.
引文
[1] Wolffe A P. Transcriptional regulation in the context of chromatin structure [J]. Essays Biochem, 2001, 37: 45–57.
    [2] Tremethick D J. Higher-order structures of chromatin: the elusive 30 nm fiber [J]. Cell, 2007, 128: 651–654.
    [3] Wolffe, AP. Chromatin structure and function [J]. Academic Press, 1998, 29: 447-450.
    [4] P B Becker, W Horz. ATP-dependent nucleosome remodeling [J]. Annu Rev Biochem, 2002, 71: 247–273.
    [5] B D Strahl, C D Allis. The language of covalent histone modifications [J]. Nature, 2000, 403: 41–45.
    [6] T Kouzarides.Chromatin modifications and their function [J]. Cell, 2007, 128: 693–705.
    [7] Wang, G G. Chromatin remodeling and cancer, part I: covalent histone modifications [J]. Trends Mol Med, 2007, 13(9): 363-372.
    [8] Strahl,B.D.et al. The language of covalent histone modifications [J]. Nature, 2000, 403: 41-45.
    [9] Vamsi K, Gangaraju, Blaine Bartholomew. Mechanisms of ATP dependent chromatin remodeling [J]. Mutation research, 2007, 618(1-2): 3-17.
    [10] C L Peterson, I Herskowitz. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription [J]. Cell, 1992, 68: 573–583.
    [11] P Sudarsanam, F Winston. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control [J]. Trends Genet, 2000, 16: 345–351.
    [12] J L Workman, R E Kingston. Alteration of nucleosome structure as a mechanism of transcriptional regulation [J]. Annu Rev Biochem, 1998, 67:545–579.
    [13] J Du, I Nasir, B K Benton, et al. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins [J]. Genetics, 1998, 150: 987–1005.
    [14] B R Cairns, A Schlichter, H Erdjument-Bromage, et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains [J]. Mol Cell, 1999, 4: 715–723.
    [15] L Mohrmann and C P Verrijzer. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes [J]. Biochim Biophys Acta, 2005, 1681:59–73.
    [16] Kevin W Trotter, Trevor K Archer. The BRG1 transcriptional coregulator [J]. Nucl Recept Signal, 2008, 6: e004.
    [17] Khavari P A, Peterson C L, Tamkun J W, et al. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription [J]. Nature, 1993, 366:170–174.
    [18] Phelan M L, Sif S, Narlikar G J, et al. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits [J]. Mol Cell, 1999, 3: 247–253.
    [19] Lemon B, Inouye C, King D S, et al. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription [J]. Nature, 2001, 414: 924–928.
    [20] Nie Z, Xue Y, Yang D, et al. A specificity and targeting subunit of a human SWI/SNFfamily-related chromatin-remodeling complex [J]. Mol Cell Biol, 2000, 20: 8879–8888.
    [21] Workman J L, Kingston R E. Alteration of nucleosome structure as a mechanism of transcriptional regulation [J]. Annu Rev Biochem, 1998, 67: 545–579.
    [22] Phelan M L, Sif S, Narlikar G J, et al. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits [J]. Mol Cell, 1999, 3: 247–253.
    [23] Workman J L, Kingston R E. Alteration of nucleosome structure as a mechanism of transcriptional re gulation [J]. Annu Rev Biochem, 1998, 67: 545–579.
    [24] Sif S, Saurin A J, Imbalzano A N, et al. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes [J]. Genes Dev, 2001, 15: 603–618.
    [25] Bochar D A, Wang L, Beniya H, et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer [J]. Cell, 2000, 102:257–265.
    [26] M F Decristofaro, B L Betz, C J Rorie, et al. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies [J]. Cell Physiol, 2001, 186: 136–145.
    [27] Belandia B, Parker M G. Nuclear receptors: a rendezvous for chromatin remodeling factors [J]. Cell, 2003, 114: 277–280.
    [28] N H Thoma, B K Czyzewski, A A Alexeev, et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54 [J]. Nat Struct Mol Biol, 2005,12: 350–356.
    [29] H Durr, C Korner, M Muller, et al. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA [J].Cell, 2005, 121: 363–373.
    [30] R H Jacobson, A G Ladurner, D S King a et al. Structure and function of a human TAFII250 double bromodomain module [J]. Science, 2000, 288: 1422–1425.
    [31] A H Hassan, P Prochasson, K E Neely, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes [J]. Cell, 2002, 111: 369–379.
    [32] X Mo, E Kowenz-Leutz, Y Laumonnier, et al.Histone H3 tail positioning and acetylation by the c-Myb but not the v-Myb DNA-binding SANT domain [J]. Genes Dev, 2005, 19: 2447–2457.
    [33] T Grüne, J Brzeski, A Eberharter, et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI [J]. Mol Cell, 2003, 12:. 449–460.
    [34] Fan H Y, Trotter K W, Archer T K, et al. Swapping function of two chromatin remodeling complexes [J]. Mol Cell, 2005, 17:805–815.
    [35] T Tsukiyama, C Wu. Purification and properties of an ATP-dependent nucleosome remodeling factor [J]. Cell , 1995, 83: 1011–1020.
    [36] P D Varga-Weisz, M Wilm, E Bonte, K. Dumas, M. Mann and P.B. Becker, et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II [J]. Nature, 1997, 388: 598–602.
    [37] T Grune, J Brzeski, A Eberharter, et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI [J]. Mol. Cell, 2003,12: 449–460.
    [38] G Mizuguchi, T Tsukiyama, J Wisniewski, et al. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin [J]. Mol. Cell, 1997, 1:141–150.
    [39] T Ito, M Bulger, M J Pazin, et al. ACF, an ISWI-containing and ATP-utilizing chromatinassembly and remodeling factor[J]. Cell,1997, 90: 145–155.
    [40] D V Fyodorov, J T Kadonaga. Dynamics of ATP-dependent chromatin assembly by ACF [J]. Nature, 2002, 418: 897–900.
    [41] T Tsukiyama, J Palmer, C C Landel, et al. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae [J]. Genes Dev, 1999, 13: 686–697.
    [42] M E Gelbart, T Rechsteiner, T J Richmond, et al. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates [J]. Mol Cell Biol, 2001, 21: 2098–2106.
    [43] V Delmas, D G Stokes, R P Perry. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain [J]. Proc Natl Acad Sci, 1993, 90: 2414–2418.
    [44] D G Stokes, R P Perry. DNA-binding and chromatin localization properties of CHD1 [J]. Mol Cell Biol, 1995, 15: 2745–2753.
    [45] H G Tran, D J Steger, V R Iyer, et al. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor [J]. EMBO, 2000, 19: 2323–2331.
    [46] X Shen, G Mizuguchi, A Hamiche, et al. A chromatin remodelling complex involved in transcription and DNA processing [J]. Nature, 2000, 406: 541–544.
    [47] A J Morrison, J Highland, N J Krogan, et al.INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair [J]. Cell, 2004, 119: 767–775.
    [48] H van Attikum, O Fritsch, B Hohn, et al. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair [J]. Cell, 2004, 119: 777–788.
    [49] Sudarsanam P, Winston F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet, 2000, 16(8): 345-351.
    [50] Lorch, Y et al. Histone octamer transfer by a chromatin-remodeling complex [J]. Cell, 1999, 96: 389–392.
    [51] Owen-Hughes, T et al. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex [J]. Science, 1996, 273: 513–516.
    [52] Gernot La¨ngst, Peter B Becker. Nucleosome remodeling: one mechanism, many phenomena [J]. Biochimica et Biophysica Acta, 2004, 1677: 58–63.
    [53] A, Sandaltzopoulos, R, Gdula, D.A, Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF [J]. Cell, 1999, 97: 833–842.
    [54] G, Bonte, E J , Corona, D F, Becker. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer [J]. Cell, 1999, 97: 843–852.
    [55] I, Flaus, A, Cairns, B R, White, et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex [J]. Nature, 1999, 400: 784–787.
    [56] M, Gavin, I M, Peterson, C L, Logie. SWI-SNF-mediated nucleosome remodeling: roleof histone octamer mobility in the persistence of the remodeled state [J]. Mol Cell Biol, 2000, 20: 3058–3068.
    [57] G R, Cheung, C L, Hafner, J H, Saurin, et al. Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tipsm[J]. Mol Cell Biol, 2001, 21: 8504–8511.
    [58] J R, Narlikar, G J, Sullivan, E K, Kingston, R E. Stability of a human SWI-SNF remodeled nucleosomal array [J]. Mol Cell Biol, 2001,21: 1132–1144.
    [59] H, Imbalzano, A N, Khavari, P A, Kingston, et al.Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex [J]. Nature, 1994, 370: 477–481.
    [60] N J Krogan, M C Keogh, N Datta, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1 [J]. Mol Cell, 2003, 12: 1565–1576.
    [61] M S Kobor, S Venkatasubrahmanyam, M D Meneghini et al.A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin [J]. PLoS Biol, 2004, 2: E131.
    [62] G Mizuguchi, X Shen, J Landry, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex [J]. Science, 2004,303: 343–348.
    [63] M D Meneghini, M Wu, H D Madhani. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin [J]. Cell, 2003, 112: 725–736.
    [64] Zhang H, Roberts D N, Cairns B R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss [J]. Cell, 2005, 123: 219–231.
    [65] Guillemette B, Bataille A R, Gevry N, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning [J]. PLoS Biol, 2005, 3: e384.
    [66] Steven Henikoff. Nucleosome destabilization in the epigenetic regulation of gene expression [J]. Nature reviews, 2008, 9:15-26.
    [67] Li B, Pattenden S G, Lee D, et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling [J]. Proc Natl Acad Sci, 2005, 102: 18385–18390.
    [68] H Y Fan, X He, R E Kingston, et al.Distinct strategies to make nucleosomal DNA accessible [J]. Mol Cell, 2003, 11: 1311–1322.
    [69] Fan HY, He X, Kingston RE, Narlikar GJ. Distinct strategies to make nucleosomal DNA accessible. Mol Cell, 2003, 11(5): 1311–1322.
    [70] Strohner R, Wachsmuth M, Dachauer K, et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol, 2005, 12(8): 683–690.
    [71] Geeta J Narlikar, Hua-Ying Fan, Robert E Kingston. Cooperation between Complexes t hat Regulate Chromatin Structure and Transcription[J] . Cell, 2002, 108: 475–487.
    [72] Jose′L Gutie′rrez , Mark Chandy, Michael J Carrozza, et al. Activation domains drive nucleosome eviction by SWI/SNF [J]. EMBO, 2007, 26: 730–740.
    [73] Peterson, C L, Workman, J L. Promoter targeting and chromatin remodeling by the SWI/SNF complex [J]. Curr Opin Genet Dev, 2000, 10: 187–192.
    [74] Sullivan, E K, Weirich, C S, Guyon, J R, et al.Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF [J]. Mol Cell Biol, 2001, 21:. 5826–5837.
    [75] Brown, C E, Howe, L, Sousa, K, et al. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit [J]. Science, 2001, 292: 2333–2337.
    [76] Goldmark, J P, Fazzio, T G, Estep, P W, et al. The Isw2 chromatin r emodeling complex represses early meiotic genes upon recruitment by Ume6p [J]. Cell, 2000, 103: 423–433.
    [77] Fazzio, G, Kooperberg, C, Goldmark, J P, et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression [J]. Mol Cell Biol, 2001, 21: 6450–6460.
    [78] Dimova, D, Nackerdien, Z, Furgeson, S, et al. A role for transcriptional repressors in targeting the yeast Swi/Snf complex [J]. Mol Cell, 1999, 4:75–83.
    [79] Zhang, H S, Dean, D C. Rb-mediated chromatin structure regulation and transcriptionalrepression [J]. Oncogene, 2001, 20: 3134–3138.
    [80] Pollard, K J, Peterson, C L. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression [J]. Mol Cell Biol, 1997, 17: 6212–6222.
    [81] Roberts, S M, Winston, F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes [J]. Genetics, 1997, 147: 451–465.
    [82] DiRenzo, J, Shang, Y, Phelan, M, et al.BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation [J]. Mol Cell Biol, 2000, 20: 7541–7549.
    [83] Shang, Y, Hu, X, DiRenzo, J, Lazar, M A, et al.Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription [J]. Cell, 2000, 103:843–852.
    [84] R H Jacobson, A G Ladurner, D S King, et al. Structure and function of a human TAFII250 double bromodomain module [J]. Science, 2000, 288: 1422–1425.
    [85] C Dhalluin, J E Carlson, L Zeng, et al.Structure and ligand of a histone acetyltransferase bromodomain [J]. Nature, 1999, 399: 491–496.
    [86] P Syntichaki, I Topalidou, G Thireos. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature, 2000, 404: 414–417.
    [87] P D Gregory, A Schmid, M Zavari, et al.Chromatin remodelling at the PHO8 promoter requires SWI–SNF and SAGA at a step subsequent to activator binding. EMBO, 1999, 18 :6407–6414.
    [88] T Agalioti, S Lomvardas, B Parekh, et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-βpromoter [J]. Cell, 2000, 103: 667–678.
    [89] J.E. Krebs, C.J. Fry, M.L. Samuels and C.L. Peterson , Global role for chromatin remodeling enzymes in mitotic gene expression [J]. Cell, 2000, 102: 587–598.
    [90] Workman, J L, Kingston, R E. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex [J]. Science, 1992, 258: 1780–1784.
    [91] Lee, M S, Garrard, W T. Transcription-induced nucleosome‘splitting': an underlying structure for DNase I sensitive chromatin [J]. EMBO, 1991, 10: 607–615.
    [92] Imbalzano, A N, Kwon, H, Green, M R, et al.Facilitated binding of TATA-binding protein to nucleosomal DNA [J]. Nature, 1994, 370: 481–485.
    [93] Kristen E Neely, Jerry L Workman. The complexity of chromatin remodeling and its links to cancer [J]. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2002, 1603(1 ): 19-29.
    [94] K Ae et al. Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells [J]. Oncogene, 2002, 21: 3112–3120.
    [95] Versteege et al. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle [J]. Oncogene, 2002, 21: 6403–6412.
    [96] R G Vries et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint [J]. Genes Dev, 2005,19: 665–670.
    [97] A Klochendler-Yeivin et al. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complexm[J]. Mol Cell Biol, 2006, 26: 2661–2674.
    [98] C W Roberts, S H Orkin. The SWI/SNF complex–chromatin and cancer [J]. Nat Rev Cancer,2004, 4:133–142.
    [99] D N Reisman et al. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis [J]. Cancer Res, 2003, 63: 560–566.
    [100] S Bultman et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J]. Mol Cell, 2000, 6: 1287–1295.
    [101] Narita, M et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence [J]. Cell, 2003, 113: 703–716.
    [102] Richard I Gregory, Ramin Shiekhattar. Chromatin modifiers and carcinogenesis [J]. TRENDS in Cell Biology, 2004, 14 (12): 695-702.
    [103] D Trouche, C Le Chalony, C Muchardt, et al. RB and hbrm cooperate to repress the activation functions of E2F1 [J]. Proc Natl Acad Sci, 1997, 94: 11268–11273.
    [104] J L Dunaief, B E Strober, S Guha, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest [J]. Cell, 1994, 79: 119–130.
    [105] M W Strobeck, K E Knudsen, A F Fribourg, et al.BRG-1 is required for RB-mediated cell cycle arrest [J]. Proc Natl Acad Sci, 2000, 97: 7748–7753.
    [106] H S Zhang, M Gavin, A Dahiya, et al.Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF [J]. Cell, 2000, 101: 79–89 .
    [107] F Shanahan, W Seghezzi, D Parry, et al. Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest [J]. Mol Cell Biol, 1999, 19: 1460–1469.
    [108] I L de la Serna, K A Carlson, A N Imbalzano. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation [J]. Nat Genet, 2001, 27: 187–190.
    [109] I L de La Serna, K Roy, K A Carlson, et al. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes [J]. Biol Chem, 2001, 24: 41486–41491.
    [110] D N Reisman et al. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis [J]. Cancer Res, 2003, 63: 560–566.
    [111] S Bultman et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J]. Mol Cell, 2000, 6: 1287–1295.
    [112] S W Cheng, K P Davies, E Yung, et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function [J]. Nat Genet, 1999, 22: 102–105.
    [113] Jeonghyeon Park, Marcelo A Wood, Michael D Cole. BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation [J]. MOLECULAR AND CELLULAR BIOLOGY, 2002, 22: 1307–1316.
    [114] R G Vries et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint [J]. Genes Dev, 2005, 19: 665–670.
    [115] M W Strobeck, M F DeCristofaro, F Banine, et al.The BRG-1 subunit of the SWI/SNF complex regulates CD44 expression [J]. J Biol Chem, 2001, 276: 9273–9278.
    [116] Ohkawa Y, Yoshimura S, Higashi C, et al.Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis [J]. J Biol Chem, 2007, 282: 6564–6570.
    [117] Ohkawa Y, Marfella C G, Imbalzano A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1 [J]. Embo J, 2006, 25: 490–501.
    [118] Kevin W Trotter, Trevor K Archer. Nuclear receptors and chromatin remodeling machinery[J]. Molecular and cellular endocrinology, 2007, 265-266: 162-167.
    [119] C Muchardt, M Yaniv. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor [J]. EMBO, 1993, 12: 4279–4290.
    [120] Y Xue, J C Canman, C S Lee, et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes [J]. Proc Natl Acad Sci, 2000, 97: 13015–13020.
    [121] C J Fryer, T K Archer. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex [J]. Nature, 1998, 393: 88–91.
    [122] Z Q Huang, J Li, L M Sachs, et al.A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription [J]. EMBO, 2003, 22: 2146–2155.
    [123] C Muchardt, M Yaniv. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor [J]. EMBO J, 1993, 12: 4279–4290.
    [124] B Belandia, R L Orford, H C Hurst, et al.Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes [J]. EMBO, 2002, 21: 4094–4103.
    [125] Garcia-Pedrero, J M, Kiskinis, E, Parker, M G, et al. The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells [J]. J Biol Chem, 2006, 281(32): 22656-22664.
    [126] Adrian Bird. DNA methylation patterns and epigenetic memory [J].Genes Dev, 2002, 16(1): 6-21.
    [127] Jeddeloh, J A, Stokes, T L, Richards, E J. Maintenance of genomic methylation requires a SW12/SNF2-like protein [J]. Nat Genet, 1999, 22: 94-97.
    [128] Gibbons, R J, McDowell, T L, Raman, S, et al.Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation [J]. Nat Genet, 2000, 24: 368-371.
    [129] Dennis, K, Fan, T, Geiman, T, et al.Lsh, a member of the SNF2 family, is required for genome-wide methylation [J]. Genes & Dev, 2001, 15: 2940-2944.
    [130] Fatima Banine, Christopher Bartlett, Ranjaka Gunawardena, et al. SWI/SNF Chromatin-Remodeling Factors Induce Changes in DNA Methylation to Promote Transcriptional Activation [J]. Cancer Res, 2005, 65 (9): 3542-3547.
    [131] Mary Ann Osley, Toyoko Tsukuda, Jac A Nikoloff. ATP-dependent chromatin remodeling factors and DNAdamage repair [J]. Mutation Research, 2007, 618: 65-80.
    [132] K Valerie, L F Povirk. Regulation and mechanisms of mammalian double-strand break repair [J]. Oncogene, 2003, 22: 5793-5812.
    [133] J A Nickoloff. Recombination mechanisms and roles in tumorigenesis. Encycopedia of Cancer [J]. 2002, 49-59.
    [134] R Dip, H Naegeli. More than just strand breaks:the recognition of structural DNAdiscontinuities by DNA-dependent protein kinase catalytic subunit [J]. FASEB J, 2005, 19: 704-715.
    [135] Nouspikel T. Nucleotide excision repair and neurological diseases [J]. DNA Repair, 2008, 7(7):1155-1167.
    [136] Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects [J]. Cell Res, 2008, 18(1): 73-84.
    [137] Sugasawa K. UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair (Amst), 2009, 8(8):969-972.
    [138] Wittschieben B, Iwai S, Wood RD. DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem, 2005, 280(48): 39982-39989.
    [139] Alekseev S, Luijsterburg MS, Pines A, et al. Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage. Mol Cell Biol, 2008, 28(24): 7402-7413.
    [140] Li J, Wang QE, Zhu Q, et al. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res, 2006, 66(17): 8590-8597.
    [141] Zhu Q, Wani G, Arab HH, et al.Chromatin restoration following nucleotide excision repair involves the incorporation of ubiquitinated H2A at damaged genomic sites. DNA Repair (Amst), 2009, 8(2): 262-273.
    [142] L S Symington. Role of RAD52 epistasis group genes in hologous recombination and double-strand break repair [J]. Microbiol Mol Biol Rev, 2002, 66: 630-670.
    [143] B Wolner, S van Komen, P Sung, et al.Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast [J]. Mol Cell, 2003, 12: 221-232.
    [144] O M Mazin. Human Rad4 protein stimulates DNA strand exchange activity of hRad51 protein in the presence of Ca2+ [J]. J Biol Chem, 2004, 279: 52042-52051.
    [145] Kevin W Trotter, Trevor K Archer. The BRG1 transciptional coregulator [J] .J Nucleal Receptor Signaling, 2008, 6: 1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700