用户名: 密码: 验证码:
聚酰胺—胺—生物/纳米功能复合物的合成及其在分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新材料的研究与应用一直是分析化学,尤其是电化学生物传感器的一项重要研究课题。纳米粒子的应用,使传感技术得到飞速发展,不同特性的纳米粒子形成的复合纳米材料,不仅具备纳米粒子自身的特性,还因其协同效应产生新的性质。本研究工作致力于多功能纳米复合物的合成与应用的探索。应用独特性质的碳纳米管、聚酰胺-胺树枝形聚合物合成两元和多元新型PAMAM/MWNT-纳米/生物酶复合物,将制备的酶纳米复合材料修饰到电极表面所得生物传感器可在低电位下实现对过氧化氢和葡萄糖的灵敏检测,能用于生物传感界面的构建。制备的生物传感器具有较长的寿命、较高的灵敏度、较低的检测下限以及快的响应速度。具体内容如下:
     1合成了酶-PAMAM复合物和CdTe-PAMAM纳米复合物,并以酶的复合物构建生物传感器。
     5.0 G PAMAM表面带有64个亲水的氨基,内部呈空穴状,具有类似天然蛋白质结构,具有很好的生物兼容性,具备同时携带多种物质和负载量大的优点,非常适合制备多功能复合物和生物复合物。在第2章中优化了PAMAM的合成条件。在对回收液成分分析的基础上,成功实现了低代PAMAM回收液直接循环利用的实验室模拟绿色合成。合成了10种纯度和得率均在98%以上的PAMAM(0.5 G-5.0 G)产品,并应用红外与元素分析进行表征。
     在第3章中,以NaIO4氧化了的葡萄糖氧化酶和辣根过氧化物酶与PAMAM反应,制备了酶-PAMAM环状纳米复合物。该电极对H2O2具有很高的电流响应灵敏度,其灵敏度达360μA·L·mmol-1·cm-2,电极对H2O2的线性响应范围为3.1μM -2.0 mM,最低检测限达0.80μM。响应时间小于2 s。TEM成像显示酶-PAMAM可以通过自聚合形成环状纳米复合物。由于环状复合物中酶处于高度密集状态,固定量非常大,同时PAMAM的空穴结构,可使酶部分楔入其中,使其处于一种适宜的微环境中,能够较好地保持活性,在PAMAM复合物敏感膜中酶的活性比在一般敏感膜中酶的保持时间明显延长。电极对H2O2的电流响应很稳定,在3周时,其电流值为初始电流的91%,10周时,电流响应仍保持最初时的70 %左右。
     HRP/GOx-PAMAM复合物生物传感器在3.0×10-6~1.5×10-3 mol L-1葡萄糖的浓度范围,电极呈线性响应,对葡萄糖的响应电流为170 A·L·mmol-1·cm-2,响应时间约2s。
     在第4章中,合成了CdTe-PAMAM复合物,并应用TEM成像技术进行表征。PAMAM与量子点之间的能量转移特性,使得体系的荧光大大增强。由于量子点的表面在复合物中得到有效钝化与保护,其耐漂白性能得到显著增强。提出了结构有序CdTe-PAMAM复合物的可控合成方法。
     该复合物荧光探针对Hg2+离子具有高的选择性和灵敏度,优化了Hg2+分析条件。在0.0010mol L-1的硝酸介质中,量子点复合物浓度为1.5×10-4mol L-1时,Hg2+离子浓度在5×10-7~1.2×10-5 mol L-1范围内与体系的相对荧光强度呈良好的线性关系。检测下限为9×10-8 mol L-1。量子点复合物浓度为2.0×10-5mol L-1时,Hg2+离子在1.2×10-9~4.0×10-7 mol L-1体系的相对荧光强度呈良好的线性关系,检测下限为5×10-10 mol L-1,并初步应用于实际样品中微量汞的测定。
     2合成了PAMAM-MWNT,酶-PAMAM-MWNT复合物和CdTe-PAMAM-MWNT等新型纳米复合物,并应用酶复合物构建电化学生物传感器。
     碳纳米管具有非常好的电催化活性、化学稳定性、生物兼容性和优良的能量/电荷转移特性,但它最大的缺陷是几乎不溶于所有溶剂,尤其是水,极大地局限了这种性能优良的纳米材料的研究与应用。
     在第5章中,首先将碳纳米管在HNO3-H2SO4混酸中氧化,使碳纳米管壁以及末端生成羧基,将5.0 G PAMAM球型高分子聚合物接枝到碳纳米管上,合成了PAMAM-MWNT复合物,应用红外与荧光等对复合物进行表征。荧光研究发现复合物PAMAM-MWNT之间具有能量转移特性。由于PAMAM表面大量的氨基,PAMAM-MWNT表面带有大量的亲水基团,复合物在水与醇等有机溶剂中具有很好的分散性和稳定性,较好地解决了碳纳米管的溶解性(分散性)问题,扩展了它的应用范围。
     在第6章中,将葡萄糖氧化酶和辣根过氧化酶的羟基用NaIO4选择性地氧化成醛基,然后与PAMAM-MWNT结合制备了酶复合物并将其以溶胶-凝胶法修饰到玻碳电极上制成响应双氧水和葡萄糖的生物传感器。由于复合物中酶与MWNTs等的协同作用,电极具有高灵敏度和快速电流响应;GOx和HRP活性中心和GCE表面实现直接电子转移,电极响应不需要电子媒介。工作电位在-0.34 V时,传感器对葡萄糖呈现高选择性,抗坏血酸、尿酸和多巴胺等其他生物分子不产生干扰。电极对葡萄糖的线性响应范围为4.0μM~1.2 mM,检测限为2.5μM,响应时间约为1s。响应灵敏度为2 200 nA mM-1。在PAMAM-MWNT复合物中,由于PAMAM特殊的类似蛋白质结构特性,可为酶提供适宜的微环境,酶的活性保持时间显著延长。
     在第7章中,应用Te粉作为碲源,合成了巯基乙酸修饰的CdTe量子点。以巯基乙酸修饰的CdTe与PAMAM-MWNT共价结合,合成了密度可调控的三元复合物。应用TEM成像和红外、紫外可见光谱等表征了量子点复合物。确定了密度可调控的简单可行的合成路线。复合物中量子点的荧光发生强烈猝灭,表明CdTe-PAMAM-MWNT具有很好的能量转移/电荷转移特性,并发现PAMAM具有传递能量/电荷转移的功能。
     3在第8章中,应用溶胶-凝胶法将钴(II)卟啉(CoTPP)和四苯硼钾(TPB)修饰到玻碳电极上研制成功对多巴胺和尿酸具有良好的催化活性的电化学传感器,并辅以红外技术研究了多巴胺在电极上的电催化氧化反应机理。利用膜相中TPB负电排斥作用,有效地消除了AA的干扰。建立了一种同时快速、灵敏测定多巴胺和尿酸的新方法。在0.10 mM AA存在时,DA的线性范围在6.0×10-8~1.0×10-5 M,相关系数为99.86%,检测限达2.0×10-8 M;UA的线性范围为1.0×10-7~2.0×10-5 M,相关系数为99.82%,检测限为7.0×10-8 M。
It is very important to develop new materials suitable for chemical and biosensors in the filed of analytical chemistry. Biosensors have been developed rapidly with the use of nanomaterials. Due to the synergic effect of different nanoparticles (NPs), the composites consisted of multi-nanoparticles possess many new properties different from those of original ones. This research aims to develop a simple and effective strategy for synthesizing dualistic and ternary novel enzymes/nanoparticles modified with poly(amidoamine) (PAMAM)/PAMAM-multi-walled carbon nanotubes (MWNTs). Enzymes in PAMAM/PAMAM-MWNT composites hold a high and long-term activity. The biosensors using these composites can be used to determine hydrogen peroxide at low potential with high sensitivity. Glucose oxidase (GOx) can be immobilized on to form biosensors with long lifetime, high sensitivity, low detection limit and fast response. The results of investigation are summarized as follows:
     1 Enzymatic PAMAM and CdTe-PAMAM composites were synthesized for the construction of biosensors.
     PAMAM (5.0 G with 64 amino groups in one molecule) characterized by inner cavity and with a structure similar to natural protein possesses excellent water-soluble properties. Being biocompatible, it is a promising material for preparing multi-functional composites. In Chapter 2, optimum conditions of synthesizing PAMAM were studied. A new green synthesis of low generation PAMAM have been experimentized by recycling the recovered solution directly based on the analysis of the recovered solutions in laboratory. Ten kinds of PAMAM (0.5 to 5.0 G) with more than 98% of purity and the yield were synthesized and characterized by IR and elemental analysis.
     Horseradish peroxidase (HRP)-PAMAM and (GOx-HRP)-PAMAM were prepared and used for the construction of biosensors (Chapter 3). The nano-loop shape enzyme modified PAMAM were observed in TEM images. The research results demonstrated that the HRP-PAMAM composites could effectively immobilize HRP and retain the catalytic activities of enzyme to large extent. The enzyme biosensor retained 91% of its original activity after 3 weeks, and still held 70% of its original activity after 10 weeks. HRP-PAMAM modified electrode provided a linear response to H2O2 over a concentration range of 3.1×10-6 to 2.0×10-3 mol L-1 with a sensitivity of 360 μA·L·mmol-1·cm-2 with a detection limit of 8×10-7 mol L-1. The current response of the sensor is less than 2 s among the calibration range of H2O2.
     The (GOx-HRP)-PAMAM modified membrane showed a linear response to glucose over a concentration range of 3.0×10-6 to 1.5×10-3 mol L-1 with a sensitivity of 170μA·L·mmol-1·cm-2 and a response time about 2s.
     CdTe-PAMAM composite was prepared and characterized by TEM and UV-Vis spectra (Chapter 4). The simple controllable method for preparing the composite was proposed. Bleach-proof property of quantum dots (QDs) has been greatly improved because the surface of QDs was passivated and protected effectively in the composites. The fluorescence probe of CdTe-PAMAM showed high selectivity and sensitivity to mercuric ion. The relative fluorescence intensity decreased linearly with the mercury ions concentration in the range from 5×10-7 to 1.2×10-5 mol L-1 and the detection limit was 9×10-8 mol L-1 under the condition of using 1.5×10-4 mol L-1 composite. The relative fluorescence intensity decreased linearly with the mercury ions concentration in the range from 1.2×10-9 to 4.0×10-7 mol L-1 with the detection limit of 5×10-10 mol L-1 at 2.0×10-5 mol L-1of the composite. The method was applied to detect trace mercury in real samples with satisfactory results.
     2 A novel composite PAMAM-MWNT and ternary enzymatic composites modified with PAMAM-MWNT as well as CdTe quantum dots attached PAMAM- MWNT were synthesized for construction of biosensors.
     Carbon nanotubes possess many unique properties such as high electrocatalytic effect, fast electron transfer, chemical stability, excellent compatibility with biomaterals and energy/electron transfer capabilities. A major problem in using CNTs is their poor dispersability in all types of solvents, especially in water.
     MWNTs were first oxidized by refluxing in concentrated HNO3 and H2SO4 to produce carboxylated groups on the wall as well as the tips of the MWNTs. By grafting with PAMAM dendrimer, novel carbon nanotube nanocomposites have been successfully prepared and were characterized by infrared (IR) and fluorescence (FL) spectra (Chapter 5). The novel functionalized matrix with plenty amino groups circumvents the troublesome solubility problem of CNTs in solvents, especially in water, greatly expanding the scope of the application of carbon nanotubes. The composites are excellent dispersible and long-term stable in water and in ethanol. The fluorescence research showed the property of energy transfer between PAMAM and MWNTs in the composites.
     Carbohydrate groups on the peripheral surface of the GOx and the HRP molecules were oxidized with peridate to carboaldehydes. The GOx and HRP immobilized PAMAM-MWNT based on the functional WMNTs were synthesized (Chapter 6). The activity of enzymes can be retained well in the composites due to the favorable micro-environment of PAMAM. The bi-enzymatic PAMAM-MWNT nanocomposites are highly dispersible in water and show very promising applications in the fabrication of mediator-free bi-enzymatic biosensors for sensitive detection of H2O2 and glucose. The synergic effect of nanocomposite with CNT and high loading of GOx and HRP result in very high sensitivity to glucose with a current response of 2 200 nA mM-1 and fast response (~ 1s). The modified electrode exhibits a wide linear response range for glucose from 4.0μM to 1.2 mM, with a detection limit of 2.5μM. The negative electrode potential of -0.34 V is favorable for glucose detection in real samples without interference caused by other biomolecules.
     A novel ternary nanocomposite of CdTe-PAMAM-MWNT was synthesized by covalently linking CdTe QDs onto highly water-soluble MWNTs functionalized with dendritic PAMAM (Chapter 7). A facile method for controlling the density of QDs in the composite has been developed by simply changing the ratio of QDs/PAMAM- MWNT. The fluorescence intensity of the CdTe-PAMAM hybrid was substantially enhanced as compared to that of QDs, and the fluorescence was quenched greatly when QDs reacted with PAMAM-MWNT. The experimentally observed phenomena indicate that electron and energy transfer took place efficiently between QDs, PAMAM and MWNTs in the composite.
     3. In Chapter 8, we report the combination of the charge repelling property of tetraphenylborate (TPB) anion and the electro-oxidation catalytic effect of cobalt(II) tetrakis-phenylporphyrin (CoTPP) embedded in a sol gel ceramic film to develop a modified glassy carbon electrode (CoTPP-TPB-SGGCE) for the simultaneous determination of dopamine (DA) and uric acid (UA) determination. The optimized CoTPP-TPB-SGGCE shows excellent sensitivity and selectivity for the DA and UA analysis. As high as 2 000 fold acceptable tolerance of AA for the determination of trace DA and UA are reached. In the presence of 0.10 mM ascorbic acid (AA), the linear concentration range for DA is from 6.0×10-8 to 2.5×10-5 mol L-1 and the detection limit is 2.0×10-8 mol L-1. For UA, the linear concentration range is from 1.0×10-7 to 3.5×10-5 mol L-1 with the detection limit of 7.0×10-8 mol L-1. The results of experiment demonstrated that the novel CoTPP-TPB-SGGCE shows high stability and reliability. For 6.00μM DA and UA, a total of 12 measurements were taken in one week, and the relative standard deviation is 2.05% and 2.68% respectively. No obvious shift of peak current and peak potential is observed over a three-month lifetime test. The response of the sensor is very quick and response time is approximately 1 s.
引文
[1] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354: 56-58
    [2] Iijima S, Ichihashi T. Single-shell Carbon Nanotubes of 1 nm Diameter. Nature, 1993, 363: 603-605
    [3] Hrapovic S, Liu Y, Male K B, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Anal. Chem, 2004, 76 : 1083- 1088
    [4] Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes-the Route Toward Applications. Science, 2002, 297: 787-792
    [5] Dai H. Carbon Nanotubes: Synthesis, Properties and Applications, Acc. Chem. Res., 2002, 35: 1035-1044
    [6] Subashini D, Pandurangan A. Synthesis of Mesoporous Molecular Sieves as Catalytic Template for the Growth of Single Walled Carbon Nanotubes. Catal. Commun., 2007, 8: 1665-1670
    [7] Ajayan P M. Nanotubes from Carbon. Chem. Rev., 1999, 99: 1787-1800
    [8] Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of Carbon Nanotubes. Chem. Rev., 2006, 106: 1105-1136
    [9] Mauricio T. Science and Technology of the Twenty-first Century: Synthesis, Properties and Applications of Carbon Nanotubes. Annu Rev Mater Res., 2003, 330: 419-501
    [10] Aizawa M, Shaffer M S P. Silylation of Multi-Walled Carbon Nanotubes. Chem. Phys. Lett., 2003, 368: 121-124
    [11] Cho Y R, Lee J H, Song Y H, et al. Photolithography-based carbon nanotubes patterning for field emissiom displays. Mater. Sci. Eng. B, 2001, 79: 128-132
    [12] Kim P, Lieber C M. Nanotube nanotweezers. Science, 1999, 286: 2148-2150
    [13] Ausman K D, Piner R, Lourie O, et al. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of nanotubes. J. Phy. Chem. B, 2000, 104: 8911-8915
    [14] Sun Y, Wilson S R, Schuster D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc., 2001, 123: 5348-5349
    [15] 晋卫军, 孙旭峰, 王煜. 碳纳米管溶解性及其化学修饰.新型碳材料, 2004,19: 312-318
    [16] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implication for filling. Nature, 1993, 362: 522-525
    [17] Rinzler A G, Liu J, Dai H, et al. Large scale purification of single-wall carbon nanotubes: process product and characterization. Appl. Phys. A, 1998, 67: 29- 37
    [18] Tsang S C, Harris P J F, Green M L H, et al. Thinning and opening of carbon nanotubes by Oxidation using carbon dioxide. Nature, 1993, 362: 520-522
    [19] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159-162
    [20] Colomer J F, Piedigrosso P, Fonseca A, et al. Different purification method of carbon nanotubes produces by catalytic synthesis. Synthetic. Met., 1999, 103: 2482-2483
    [21] Sano M, Kamino A. Okamura J. Ring closure of carbon nanotubes. Science, 2001, 293: 1299-1301
    [22] Liu J, Rinzler A G, Dai H. Fullerene pipes. Science, 1998, 280: 1 253-1 255
    [23] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95-98
    [24] Chen Jian, Rao A M, Lyuksyutov S. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem., B, 2001, 105: 2525-2528
    [25] Riggs J E, Guo Zhixin, David L. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc., 2000, 122: 5879-5880
    [26] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes. Adv. Mater., 1999, 11: 834-840
    [27] Kahn M G C, Banerjee S, Wong S S. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett., 2002, 2: 1215-1218
    [28] Moghaddam M J, Taylor S, Gao M, et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett., 2004, 4: 89-93
    [29] Lin X Q, He J B, Zha Z G. Simultaneous determination of quercetin and rutin at a multi-wall carbon nanotube paste electrodes by reversing differential pulse voltammetry. Sensor. Actuat. B-Chem., 2006, 119: 608-614
    [30] Khabashesku V N, Billups W E, Margrave J L. Fluorination of Single-WallCarbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res., 2002, 35: 1087-1095
    [31] Michelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett., 1998, 296:188-194
    [32] Boul P J, Liu J, Mickelson E T. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310: 367-372
    [33] Georgakilas V, Kordatos K, Prato M. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 760-761
    [34] Wei C, Dai L, Roy A, et al. Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites. J. Am. Chem. Soc., 2006, 128 : 1412-1413
    [35] Sun Y P, Huang W, Lin Y, et al. Soluble Dendron-Functionalized Carbon Nanotubes: Preparation, Characterization, and Properties. Chem. Mater., 2001, 13: 2864-2869
    [36] Sun Y P, Zhou B, Henbest K, et al. Luminescence anisotropy of functionalized carbon nanotubes in solution. Chem. Phys. Lett., 2002, 351: 349-353
    [37] Lin Y, Taylor S, Sun Y P, et al. Characterization of Fractions from Repeated Functionalization Reactions of Carbon Nanotubes. J. Phys. Chem. B, 2003, 107: 914-919
    [38] Fu K, Li H, Zhou B, et al. Deuterium Attachment to Carbon Nanotubes in Deuterated Water. J. Am. Chem. Soc., 2004, 126: 4669-4675
    [39] Bianco A, Prato M. Can Carbon Nanotubes be Considered Useful Tools for Biological Applications? Adv. Mater., 2003, 15:1765-1768
    [40] Bianco A. Carbon Nanotubes for the Delivery of Therapeutic Molecules. Exp. Opin. Drug Deliv., 2004, 1: 57-65
    [41] Guenca AG, Jiang H, Hochwald S N, et al. Emerging implications of nanotech- nology on cancer diagnostics and therapeutics. Cancer, 2006, 107: 459-466
    [42] Kostarelos K, Lacerda L, Bianco A. Carbon nanotube-mediated delivery of peptides and genes to cells: translation nanobiotechnology to therapeutics. J. Drug Deliv. Sci. Technol., 2005, 15: 41-47
    [43] Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem., 2004, 14: 527-541
    [44] Kam N W S, Dai H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality. J. Am. Chem. Soc., 2005, 127: 6021- 6026
    [45] Huang W, Taylor S, Fu K. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett., 2002, 2: 311-314
    [46] Czerw R, Guo Z, Ajayan P M, et al. Organization of Polymers onto Carbon Nanotubes: A Route to Nanoscale Assembly. Nano Lett., 2001, 1: 423-427
    [47] Connell M J, Boul P, Ericson L M, et al. Reversible water- solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342: 265-271
    [48] Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Lett., 2002, 2: 25-28
    [49] Tsang S C, Guo Z, Chen Y K. Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angew. Chem. Int. Ed. Engl., 1997, 36: 2198-2200
    [50] Prakash R, Washburn S, Superfine R, et al. Visualization of individual carbon nanotubes with fluorescence microscopy using conventional fluorophores. Appl. Phys. Lett., 2003, 83: 1219-1221
    [51] 肖素芳, 王宗花, 罗国安. 碳纳米管的功能化研究进展. 分析化学, 2005, 33: 261-266
    [52] Star A, Stoddart J F, Steuerman D, et al. Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew. Chem., Int. Ed. 2001, 40: 1721-1725
    [53] Fournet P, Coleman J N, Lahr B, et al. Enhanced brightness in organic light- emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys., 2001, 90: 969-975
    [54] Chen R J, Zhang Y G, Wang D W. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123: 3838-3839
    [55] Vogtle F. Octopus Molecules. Angew. Chem. Int. Ed. Engl. 1974, 13: 814-816
    [56] Zeng F W, Zimmerman S C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Afssembly. Chem. Rev., 1997, 97: 1681-1712
    [57] Tomalia D A, Baker H, Dewald J, et al. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules, 1986, 19 : 2466-2468
    [58] Tomalia D A, Baker H, Dewald J R, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. (Tokyo) 1985, 17: 117-132
    [59] Peterson J, Ebber A, Allikmaa V, Lopp M. Synthesis and CZE analysis of PAMAM dentrimers with an ethylenediamine core. Proc. Estonian Acad. Sci.Chem., 2001, 50: 156-166
    [60] Tomalia D A, Naylor A M, Goddard W A, et al. Starburst Dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl., 1990, 29: 138-175
    [61] Cheng L, Cox J A. Preparation of multilayered nanocomposites of polyoxometalates and poly(amidoamine) dendrimers. Electrochem. Commun., 2001, 3: 285-289
    [62] Joon S C, Nam K, Park J Y, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J. Control. Release, 2004, 99: 445-456
    [63] Bharathi D, Hill R A, de Villiers M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. International. J. Pharmaceutics, 2004, 284: 133-140
    [64] Twyman L J, Beezer A E, Essfand R, et al. The synthesis of water soluble dendrimers and their application as possible drug delivery systems. Tetrhedron Lett., 1999, 40: 1743-1746
    [65] Bielinska A, Eichman J D, Lee I, et al. Imaging {Au0-PAMAM} Gold- dendrimer Nanocomposites in Cells. J. Nanoparticle Res., 2002, 4: 395-407
    [66] Esumi K, Isono R, et al. Reparation of PAMAM-and PPI-Metal (Silver, Platinum and Palladium) nanocomposites and their catalytic activities for reduction of 4-Nitrophenol. Langumir, 2004, 20: 237-243
    [67] Ottaviant M F. Internal structure of silver-poly(amidoamine) Dendrimers Complexes and nanocomposites. Macromolecules, 2002, 35: 5105-5115
    [68] Robert W, Scott J, Heechang Y, et al. Synthesis, Characterization, and stability of Dendrimer Encapsucated Palladium Nanoparticles. Chem. Mater., 2003, 15: 3873-3878
    [69] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular, Chemistry, Quantum-size-Related Properties, and Applications toward Biology, Catalysis and Nanotechnology. Chem. Rev., 2004, 104: 293-346
    [70] Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents. Nano Lett., 2001, 1: 18-21
    [71] Balogh L, Tomalia D A. Poly(Amidoamine) Dendrimer-Templated Nano- composites. 1. Synthesis of Zerovalent Copper Nanoclusters, J. Am. Chem. Soc., 1998, 120: 7355-7356
    [72] Liu Y, Bruening M L, Bergbreiter D E, et al. Multilayer Dendrimer-Poly- anhydride Composite Films on Glass, Silicon, and Gold Wafers. Angrew. Chem. Int. Ed. Engl., 1997, 36: 2114-2116
    [73] Liu Y, Zhao M, Bergbreiter D E, et al. pH-Switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites. J. Am. Chem. Soc., 1997, 119: 8720-8721
    [74] Li A, Yang F, Ma Y, et al. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens. Bioelectron., 2007, 22: 1716-1722
    [75] Rether A, Schuster M. Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM Polymer. React. Funct. Poly., 2003, 57:13-21
    [76] 周贵忠, 谭惠民, 罗运军. 一种新型稠油原油污水处理破乳剂的合成及性能研究. 工业用水与废水, 2004, 35: 79-81
    [77] Xu Y-H,Zhao D Y. Removal of Copper from Contaminated Soil by Use of Poly(amidoamine) Dendrimers. Environ. Sci. Technol., 2005,39: 2369-2375
    [78] Diallo M, Johnson J R, Tomalia D A, Poly(amidoamine) Dendrimers: A New Class of High Capacity Chelating Agents for Cu(II) Ions. Environ. Sci. Technol., 1999, 33: 820-824
    [79] Tomalia D A, Huang B, Swanson D R, et al. Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedron, 2003, 59: 3799-3813
    [80] Yonezawa T, Toshima N. J. Polymer and micelle-protected gold/platinum bimetallic systems. Preparation, application to catalysis for visible-light- induced hydrogen evolution, and analysis of formation process with optical methods. J. Mol. Catal., 1993, 83: 167-181
    [81] Zhou S, McIlwrath K, Jackson Greg, et al. Enhanced CO Tolerance for Hydrogen Activation in Au-Pt Dendritic Heteroaggregate Nanostructures. J. Am. Chem. Soc., 2006, 128: 1780-1781
    [82] Chen W, Joly Alan G, Malm Jan-Olle, et al. Full-Color Emission and Tem- perature Dependence of the Luminescence in Poly-P-phenylene ethynylene- ZnS/Mn2+ Composite Particles. J. Phys. Chem. B, 2003, 107: 6544- 6551
    [83] Gr?hn F, Kim G, Bauer B J, et al. Nanoparticle Formation within Dendrimer- ontaining Polymer Networks: Route to New Organic-Inorganic Hybrid Materials. Macromolecules, 2001, 34: 2179-2185
    [84] Qian L, Liu Y, Song Y.H, et al. Electrodeposition of Pt nanoclusters on the surface modified by monolayer poly(amidoamine) dendrimer film. Electrochem. Commun., 2005, 7: 1209–1212
    [85] Zhou Z W, Yu B, Zhou X X, et al. Scalable Fault-Tolerant Quantum Computation in Decoherence-Free Subspaces. Phys. Rev. Lett., 2004, 93: 010501-1 -010501-4
    [86] Peng X, Schlamp M C, Kadavanich A V, et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc., 1997, 119: 7019-7020
    [87] Mews A, Kadavanich A V, Banin V. et al. Structural and spectroscopic investi- gations of CdS/HgS/CdS quantum-dot quantum wells. Phys. Rev. B, 1996, 53: 13242-13245
    [88] Robel I, Subramanian V, Kuno M, et al. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO Films. 2J. Am. Chem. Soc., 2006, 128 : 2385-2393
    [89] Zucolotto V, Tumolo T, Perinotto A C, et al. Nanoscale manipulation of CdSe quantum dots in layer-by-layer films: influence of the host polyelectrolyte on the host polyelectrolyte on the luminescent properties. Appl. Surf. Sci., 2005, 246: 387-402
    [90] Azamian B R, Coleman K S, Dvis J J, et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun., 2002, 4: 366-367
    [91] EllisA V, Vijayamohanan K, Goswami R, et al. Hydrophobic Anchoring of Monolayer-Protected Gold Nanoclusters to Carbon Nanotubes. Nano Lett., 2003, 3: 279-282
    [92] Ou Y Y, Huang M H. High-Density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker. J. Phys. Chem. B, 2006, 110: 2031-2036
    [93] 殷好勇 , 徐铸德 , 郑遗凡等 . 巯基乙酸为稳定剂在 MWCNTs上原位生长CdSe量子. 物理化学学报, 2004, 20: 1308-1312
    [94] Fu K, Huang W, Lin Y, et al. Functionalization of Carbon Nanotubes with Bovine Serum Albumin in Homogeneous Aqueous Solution. J. Nanosci. Nanotechnol., 2002, 2: 457-461
    [95] Elkin T, Jiang X, Taylor S, et al. Immuno-Carbon Nanotubes and Recognition of Pathogens. Chem. Bio. Chem., 2005, 6: 640-643
    [96] Lin Y, Allard L F, Sun Y P. Protein-Affinity of Single-walled Carbon Nanotubes in Water. J. Phys. Chem. B, 2004, 108: 3760-3764
    [97] Besteman K, Lee J O, Wiertz F G M. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano Lett., 2003, 3 : 727-730
    [98] Shi Kam N W, Jessop T C, Wender P A, et al. Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc., 2004, 126: 6850-6851
    [99] Gooding J J, Wibowo R, Liu J Q, et al. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays. J. Am. Chem. Soc., 2003, 125: 9006-9007
    [100] Wang J, Liu G, Jan M R. Ultrasensitive Electrical Biosensing of Proteins and DNA: carbon-Nanotube Derived Amplification of the Recognition and Transduction Events. J. Am. Chem. Soc., 2004, 126: 3010-3011
    [101] Patolsky F, Weizmann Y, Willner I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chem. Int. Ed., 2004, 43: 2113- 2117
    [102] Lin Y, Lu F, Tu Y, et al. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Lett., 2004, 4: 191-195
    [103] Staii C, Johnson A T Jr, Chen M. DNA-Decorated Carbon Nanotubes for Chemical Sensing , Nano Lett., 2005, 5 :1774-1778
    [104] Dwyer C, Guthold M, Falvo M, et al. DNA-functionalized single-walled carbon nanotubes. Nanotechnology, 2002, 13: 601-604
    [105] Dwyer C, Johri V, Cheung M, et al. Design tools for a DNA-guided self-assembling carbon nanotube technology. Nanotechnology, 2004, 15: 1240-1245
    [106] Guo M, Chen J, Nie L, et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry, 2004, 62: 29-35
    [107] Nguyen C V, Delzeit L. Cassell A M, et al. Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays. Nano Lett., 2002, 2: 1079-1081 [108 Li J, Ng H T, Cassell A, et al. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection. Nano Lett., 2003, 3: 597-602
    [109] Li S, He P, Dong J, et al. DNA-Directed Self-Assembling of Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127: 14-15
    [110] Taft B J, Lazareck A D, Withey G D, et al. Site-Specific Assembly of DNA and Appended Cargo on Arrayed Carbon Nanotubes. J. Am. Chem. Soc., 2004,126: 12750-12751
    [111] Jung D H, Kim B H, Jung H T. Covalent Attachment and Hybridization of DNA Oligonucleotides on Patterned Single-Walled Carbon Nanotube Films. Langmuir, 2004, 20: 8886-8891
    [112] Hazani M, Naaman R, Kappes M M. Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes. Nano Lett., 2003, 3: 153-155
    [113] 马强, 周锋, 唐亚平等. 在碳纳米管上负载硫化镉的研究. 无机材料学报, 2004, 19: 985-990
    [114] Liu B, Lee J Y. Ordered Alignment of CdS Nanocrystals on MWCNTs without Surface Modification. J. Phys. Chem. B, 2005, 109 : 23783-23786
    [115] Guldi D M, Rahman G M A, Sgobba V, et al. CNT-CdTe Versatile Donor- Acceptor Nanohybrids. J. Am. Chem. Soc., 2006, 128: 2315-2323
    [116] Chaudhary S, Kim J H, Singh K V, et al. Fluorescence Microscopy Visualization of Single-Walled Carbon Nanotubes Using Semiconductor Nanocrystals. Nano Lett., 2004, 4: 2415-2419
    [117] Haremza J M, Hahn M A, Krauss T D. et al. Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes. Nano Lett., 2002, 2: 1253-1258
    [118] Pan B, Cui D, He R, et al. Covalent attachment of quantum dot on carbon nanotubes. Chem. Phys. Lett., 2005, 417: 420–425
    [119] Ravindran S, Chaudhary S, Colburn B, et al.Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications. Nano Lett., 2003, 3: 447-453
    [120] Banerjee S, Wong S S. Synthesis and Characterization of Carbon Nanotube- Nanocrystal Heterostructures, Nano Lett., 2002, 2: 195-200
    [121] Li J P, Peng T Z, Peng Y Q. A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified electrode. Electroanalysis, 2003, 15: 1031-1037
    [122] Nien P C, Tung T S, Ho K C. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis, 2006, 18: 1408-1415
    [123] Rubio-Retama J, López-Cabarcos E, López-Ruiz B. High stability ampero- metric biosensor based on enzyme entrapment in microgels. Talanta, 2005, 68: 99-107
    [124] Yang M H, Jiang J H, Yang Y H, et al. Carbon nanotube/cobalt hexacyano-ferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens. Bioelectron., 2006, 21: 1791-1797
    [125] Yang M H, Yang Y, Yang H F, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27: 246-255
    [126] Jena B K, Raj C R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem.Eur. J., 2006, 12: 2702-2708
    [127] Liu G D, Lin Y H, Ostatna V. Enzyme nanoparticles-based electronic biosensor. Chem. Commun., 2005: 3481-3483
    [128] Kim J, Grate J W. Single-Enzyme Nanoparticles Armored by a Nanometer- Scale Organic/Inorganic Network. Nano Lett., 2003, 3 : 1219-1222
    [129] Liu G D, Lin Y H. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem. Commun., 2006, 8: 251- 256
    [130] Xian Y Z, Hu Y, Liu F, et al. Glucose biosensor based on Au nanoparticles- conductive polyaniline nanocomposite. Biosens. Bioelectron., 2006, 21: 1996- 2000
    [131] Zhang S X, Yang W W, Niu Y M, et al. Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/ nanoparticles. Anal. Bioanal. Chem., 2006, 384: 736-741
    [132] Zhao W, Xu J. J, Shi C G, et al. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir, 2005, 21: 9630-9634
    [133] McMahon C P, Rocchitta G, Serra P A, et al. Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Anal. Chem., 2006, 78: 2352-2359
    [134] Uchiyama S, Tomita R, Sekioka N, et al. Application of polymaleimidostyrene as a convenient immobilization reagent of enzyme in biosensor. Bioelectro- chemistry, 2006, 68: 119-125
    [135] Yang X H, Xiang Q F, Wang K M, et al. Doped sol-gel method for immobilizing enzyme and its application in hypoxanthine biosensor based on liquid droplets. Chinese J. Anal. Chem., 2006, 34: 451-454
    [136] Zhang G M, Liu D S, Shuang S M, et al. A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform. Sens. Actuat. B-Chem., 2006, 114: 936-942
    [137] Zhang M, Mullens C, Gorski W. Amperometric glutamate biosensor based on chitosan enzyme film. Electrochim. Acta, 2005, 51: 4528-4532
    [138] Kotzian P, Brazdilova P, Rezkova S, et al. Amperometric glucose biosensor based on rhodium dioxide-modified carbon ink. Electroanalysis, 2006, 18: 1499-1504
    [139] Michel C, Ouerd A, Battaglia-Brunet F, et al. Cr(VI) quantification using an amperometric enzyme-based sensor: Interference and physical and chemical factors controlling the biosensor response in ground waters. Biosens. Bioelectron., 2006, 22: 285-290
    [140] Hervás Pérez J P, Sánchez-Paniagua López M, López-Cabarcos E, et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens. Bioelectron., 2006, 22: 429-439
    [141] Tatsumi H, Katano H, Ikeda T. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Anal. Biochem., 2006, 357: 257-261
    [142] Cui G, Kim S J, Choi S H, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. Anal. Chem., 2000, 72: 1925-1929
    [143] Zhang Z N, Liu H Y, Deng J Q. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Anal. Chem., 1996, 68: 1632-1638
    [144] Ricci F, Palleschi G, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron., 2005, 21: 389-407
    [145] Zhu L D, Zhai J L, Guo Y N, et al. Amperometric glucose biosensors based on integration of glucose oxidase onto Prussian blue/carbon nanotubes nanocomposite electrodes. Electroanalysis, 2006, 18: 1842-1846
    [146] Ganesan N, Gadre A P, Paranjape M, et al. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Anal. Biochem., 2005, 343: 188-191
    [147] Muguruma H, Kase Y, Uehara H. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: high-throughput fabrication of bioelectronic devices without ehemical modifications. Anal. Chem., 2005, 77: 6557-6562
    [148] Wang J, Park D S, Pamidi P V. Tailoring the macroporosity and performance ofsol-gel derived carbon composite glucose sensors. J. Electronanal. Chem., 1997, 434: 185-189
    [149] Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials, 2006, 27: 1167-1174
    [150] Yu X, Sotzing G A, Papadimitrakopoulos F, et al. Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers: enhanced catalytic response to hydrogen peroxide. Anal. Chem., 2003, 75: 4565-4571
    [151] Zhou H, Gan X, Wang J, et al. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal. Chem., 2005, 77: 6102-6104
    [152] Zhao S, Zhang K, Sun Y Y, et al. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 2006, 69: 10-15
    [153] Basso D, Greco E, Fogar P, et al. Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause? Clin. Chim. Acta, 2006, 372: 120-128
    [154] Marinari G M, Papadia F S, Briatore L, et al. Type-2 diabetes and weight loss following biliopancreatic diversion for obesity . Obes. Surg., 2006, 16: 1440- 1444
    [155] Larsson S C, Orsini N, Brismar K, et al. Diabetes mellitus and risk of bladder cancer: a meta-analysis . Diabetological, 49: 2819-2823
    [156] Brassard P, Ferland A, Bogaty P, et al. Influence of glycemic control on pulmonary function and heart rate in response to exercise in subjects with type 2 diabetes mellitus. Metabolism-Clin. Experiment., 2006, 55: 1532-1537
    [157] Tong P C V, Kong A P S, So W Y, et al. Hematocrit, independent of chronic kidney disease, predicts adverse cardiovascular outcomes in Chinese patients with type 2 diabetes . Diabetes Care, 2006, 29: 2439-2444
    [158] Andrade-Sierra J, Contreras A M, Monteon F J, et al. Risk factors and incidence of posttransplant diabetes mellitus in Mexican kidney recipients . Arc. Med. Res., 2006, 37: 961-966
    [159] Barone P W, Parker R S, Strano M. S. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages. Anal. Chem., 2005, 77: 7556-7562
    [160] Lyandres O, Shah N C, Yonzon C R, et al. Real-time glucose sensing bysurface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem., 2005, 77: 6134- 6139
    [161] Pereira C M, Oliveira J M, Silva R M, et al. Amperometric glucose biosensor based on assisted ion transfer through gel-supported microinterfaces. Anal. Chem., 2004, 76: 5547-5551
    [162] Stuart D A, Yuen J M, Lyandres N S O, et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem., 2006, 78: 7211-7215
    [163] Ban K, Ueki T, Tamada Y, et al. Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface. Anal. Chem., 2003, 75: 910- 917
    [164] Chen X H, Matsumoto N, Hu Y B, et al. Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Anal. Chem., 2002, 74: 368-372
    [165] Matsumoto N, Chen X H, Wilson G S. Fundamental studies of glucose oxidase deposition on a Pt electrode. Anal. Chem., 2002, 74: 362-367
    [166] Palmisano F, Zambonin P G, Centonze D, et al. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/ tetrathiafulvalene-tetracyanopuinodimethane composite. Anal. Chem., 2002, 74: 5913-5918
    [167] Zen J M, Kumar A S, Chung C R. A glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinder. Anal. Chem., 2003, 75: 2703-2709
    [168] Zhang M G, Smith A, Gordki W. Carbon nanotube-chitosan system for electro- chemical sensing based on dehydrogenase enzymes. Anal. Chem., 2004, 76: 5045-5050
    [169] Kong K P, Zhang M N, Yan Y M, et al. Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal. Chem., 2004, 76: 6500-6505
    [170] Yemini M, Reches M, Gazit E, et al. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal. Chem., 2005, 77: 5155-5159
    [171] Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal. Chem., 2003, 75: 2075-2079
    [172] Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified bysingle-walled carbon nanotubes. Anal. Chem., 2003, 75: 6341-6345
    [173] Azamian B R, Davis J. J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 12664-12665
    [174] Liu G D, Lin Y H. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organo- phosphate pesticides and nerve agents. Anal. Chem., 2006, 78: 835-843
    [175] Agui L, Manso J, Yanez-Sedeno P, et al. Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on nanocrystal gold- carbon paste electrodes. Sensor. Actuat. B-Chem., 2006, 113: 272-280
    [176] Wang H, Lei C X, Li J S, et al. A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosens. Bioelectron., 2004, 19: 701-709
    [177] Lei C X, Hu S Q, Gao N, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry, 2004, 65: 33-39
    [178] Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis, 2004, 16: 736-740
    [179] Lei C X, Yang Y, Wang H, et al. Amperometric immunosensor for probing complement III (C-3) based on immobilizing C-3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode. Anal. Chim. Acta, 2004, 513: 379-384
    [180] Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal. Chem., 2006, 78: 6332- 6339
    [181] Yoon H C, Kim H S. Multilayered Assembly of Dendrimers with Enzymes on Gold: Thickness-Controlled Biosensing Interface, Anal. Chem., 2000, 72, 922-926
    [182] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125: 2408-2409
    [183] Peterson J, Arkadi E, Lopp M, et al. Fragmentation of PAMAM Dendtimers in Methol. Proc. Estonian Acad. Sci. Chem., 2001, 50: 167-172
    [184] Lei C X, Hu Sh Q, Shen G L, et al. Immobilization of horsearadish peroxidaseto a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta, 2003, 59: 981-988
    [185] Wollenberger U, Bogdanovskayn V, Bobrin S, et al. Enzyme electrodes using bioe lectrocatalytic reduction of hydrogen peroxide. Anal. Lett., 1990, 23: 1795-1808
    [186] Deng Q, Dong S J. Mediatorless hydrogen peroxide electrode based on horseradish peroxidase entrapped in poly-(o-phenylenediamine). J. Electroanal. Chem., 1994, 337: 191-196
    [187] Castoldi A F, Barni S, Turin I, et al. Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to met hylmercury. J. Neurosci. Res., 2000, 59: 775-787
    [188] Miura K, Himeno S, Koide N, et al. Effect s of methylmercury and inorganic mercury on the growth of nerve fibers in cultured chick dorsal root ganglia. Tohoku J. Exp. Med., 2000, 192: 195-210
    [189] Vettori M V, Alinovi R, Belletti S, et al. Modelli in vitro per la valutazione della neurotossicita del metilmercurio. Stato attuale delle conoscenze [In vitro models for the evaluation of the neurotoxicity of met hylmercury. Current state of knowledge]. Med. Lav., 2003, 94: 183-191
    [190] Wilke R A, Kolbert C P, Rahimi R A, et al. Met hylmercury induces apoptosis in cultured rat dorsal root ganglion neurons. Neurotoxicology, 2003, 24: 369- 378
    [191] Rice D C. Identification of functional domains affected by developmental exposure to methylmercury: Faroe islands and related studies. Neurotoxicology, 2000, 21: 1039-1044
    [192] Trasande L, Landrigan P J, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developingbrain. Environ. Health. Perspect., 2005, 113: 590-596
    [193] Kakita A, Inenaga C, Sakamoto M, et al. Disruption of postnatal progenitor migration and consequent abnormal pattern of glial distribution in the cerebrum following administ ration of methylmercury. J. Neuropath. Exp. Neur., 2003, 62: 835-847
    [194] Fonfria E, Dare E, Benelli M, et al. Translocation of apoptosis inducing factor in cerebellar granule cells exposed to neurotoxic agent s inducing oxidative stress. Eur. J. Neurosci., 2002, 16:2013-2016
    [195] Geier D A, Geier M R. An assessment of t he impact of t himerosal onchildhood neurodevelopmental disorders. Pediatr. Rehabil, 2003, 6: 97-102
    [196] Guo X F, Qian X, Jia L H. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+ in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc., 2004, 126: 2272-2273
    [197] Yang Y K, Yook K J, Tae J S. Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media. J. Am. Chem. Soc., 2005, 127: 16760-16761
    [198] Nolan E M, Racine M E, Lippard S J. Selective Hg(II) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins. Inorg. Chem., (2007, inpress availible in web )
    [199] Koulouridakis P E, Kallithrakas-Kontos N G. Selective Mercury Deter- mination after Membrane Complexation and Total Reflection X-ray Fluorescence Analysis. Anal. Chem., 2004, 76: 4315-4319
    [200] Chen Y, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 2002, 74: 5132-5138
    [201] Gorelikov I, Kumacheva E. Electrodeposition of polymer-semiconductor nanocomposites films. Chem. Mater., 2004, 16: 4122-4127
    [202] Klimov V I. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semi- conductor Nanocrystals. J. Phys. Chem. B, 2000, 104: 6112-6123
    [203] Nirmal M, Brus L. Luminescence Photophysics in Semiconductor Nanocrystals. Acc. Chem. Res., 1999, 32: 407-414
    [204] Islam M A, Xia Y, Telesca D A, et al. Controlled Electrophoretic Deposition of Smooth and Robust Films of CdSe Nanocrystals. Chem. Mater., 2004, 16: 49-54
    [205] Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19: 631- 635
    [206] Bruchez M J, Moronne M, Alivisatos A P, et al. Semiconductor nanocrystals as flourescent biological labels. Science, 1998, 281: 2013-2016
    [207] Murray C B, Noms D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc., 1993, 115: 8706-8715
    [208] Hines M A, Philippe G S. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem., 1996, 100: 468- 471
    [209] Peng X G, Michael C S, Andreas V K, et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc., 1997, 119: 7019-7029
    [210] Dabbousi B O, Mattoussi H R, Bawendi M G, et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B, 1997, 101: 9463-9475
    [211] Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe and CdS Nano- crystals Using CdO as Precursor. J. Am. Chem. Soc., 2001, 123:183-184
    [212] Talapin D V, Rogach A L, Weller H, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctyl- phosphine Oxide Trioctylphospine Mixture. Nano Lett., 2001, 1: 207-211
    [213] Talapin D V, Rogach A L, Weller H, et al. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. J. Phys. Chem. B, 2001, 105: 2260-2263
    [214] Rogach A L, Kornowski A, Gao M, et al. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B, 1999, 103: 3065-3069
    [215] Eychmueller A. Structure and Photophysics of Semiconductor Nanocrystals, J. Phys. Chem. B, 2000, 104: 6514-6528
    [216] Klayman D L, Griffin T S. Reaction of selenium with sodium borohydride in protic solvents, A Facile Method for the introduction of selenium into organic molecules. J. Am. Chem. Soc., 1973, 95: 197-199
    [217] Li H, Zhang Y, Wang X, et al. Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater. Lett., 2007, 61: 1474-1477
    [218] Chen J L, Gao Y C, Xu Z B, et al. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta, 2006, 577: 77-84
    [219] Chen J L, Zhu C Q. Functionalized cadmium sulfide quantum dots as fluore- scence probe for silver ion determination. Anal. Chim. Acta, 2005, 546: 147- 153
    [220] 王柯敏, 王益林, 李朝辉等. CdTe 量子点荧光猝灭法测定铜离子的研究. 湖南大学学报 (自然科学版), 2005, 32: 1-5
    [221] Alex V I, John C. Optical and Photochemical Properties of Nonstoichio- metric Cadmium Sulfide Nanoparticles: Surface Modification with Copper Ions. Langmuir, 1997, 13: 3142-3149
    [222] Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta, 2005, 530: 185-189
    [223] Sotiropoulou S, Chaniotakis N A. Carbon nanotube array-based biosensor. Anal. Bioanal. Chem., 2003, 375: 103-105
    [224] Wohlstadter J N, Wilbur J L, Sigal G B, et al. Carbon nanotube-based biosensor. Adv. Mater., 2003, 15: 1184-1189
    [225] Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal. Chem., 2003, 75: 5413-5421
    [226] Yu R Q, Chen L W, Liu Q P, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater., 1998, 10: 718-722
    [227] Kim B, Sigmund W M. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites. Langmuir, 2004, 20: 8239-8242
    [228] Jiang K, Eitan A, Schadler L S, et al. Selective Attachment of Gold Nano- particles to Nitrogen-Doped Carbon Nanotubes, Nano Lett., 2003, 3: 275-277
    [229] Stewart H M, Yong J D. Solid phase peptide synthesis. 2dEd, pp. 20~33, Pierce Chemical Co., Rockford, Illinois, 1984
    [230] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc., 2005, 127: 2058-2059
    [231] Crooks R M, Zhao M, Sun L, et al. Dendrimer-Encapsulated Metal Nano- particles: Synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res., 2001, 34:181-190
    [232] del Mar Cordero-Rando M, Hidalgo-Hidalgo de Cisneros J L, Blanco E. The sonogel-carbon electrode as a sol-gel graphite-based electrode. Anal. Chem., 2002, 74: 2423-2427
    [233] Sampath S, Lev O. Inert metal-modified, composite ceramic-carbon, ampero- metric biosensors: renewable, controlled reactive layer. Anal Chem., 1996, 68: 2015-2021
    [234] Tsionsky M, Gun G, Glezer V, et al. Sol-Gel-Derived ceramic-carbon composite electrodes - Introduction and Scope of Applications. Anal. Chem., 1994, 66: 1747-1753
    [235] Yoon H C., Hong M Y, Kim H-S. Functionalization of a Poly(amidoamine) Dendrimer with Ferrocenyls and Its Application to the Construction of aReagentless Enzyme Electrode, Anal. Chem., 2000, 72, 4420-4427
    [236] Alivisatos A P. Semiconductor Clusters Nanocrystals and Quantum Dots. Science, 1996, 271: 933-937
    [237] Peng Z A, Peng X G. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes Nucleation and Growth. J. Am. Chem. Soc., 2002, 124: 3343-3353
    [238] Hwang S-H, Moorefield C N, Wang P, et al. Dendron-Tethered and Templated CdS Quantum Dots on Single-Walled Carbon Nanotubes. J. Am. Chem. Soc., 2006, 128: 7505-7509
    [239] Eswara Dutt V S E, Mottola H A. Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period. Anal. Chem., 1974, 46: 1777-1781
    [240] Zhao Y, Gao Y, Zhu Z, et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66: 51-57
    [241] Lin X Q, Gong J M. Electrocatalytical oxidation and selective detection of dopamine at 5,5-ditetradecyl-2-(2-trimethylammonioethyl)-1,3-dioxane bromide self-assembled bilayer membrane modified glassy carbon electrode. Anal. Chim. Acta, 2004, 507: 255-261
    [242] Zen J M, Hsu C T, Hsu Y L, et al. Voltammetric Peak Separation of Dopamine from Uric Acid in the Presence of Ascorbic Acid at Greater Than Ambient Solution Temperatures. Anal. Chem., 2004, 14: 4251-4255
    [243] Zhang X B, Guo C C, Jian L X, et al. Bismetalloporphyrin-based ISE sensitive to fluoroborate. Analyst, 2000, 125: 2285-2288
    [244] Selvaraju T, Ramaraj R. Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem. Commun., 2003, 5: 667-672
    [245] Zhou Q X, Miller L L, Valentine J R. Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methyl-pyrrole)/polyanion composite redox polymers. J. Electroanal. Chem., 1989, 261: 147-164
    [246] Domenech A, Garcia H, Domenech-Carbo M T, et al. 2,4,6-Triphenylpyrylium Ion Encapsulated into Zeolite Y as a Selective Electrode for the Electro- chemical Determination of Dopamine in the Presence of Ascorbic Acid. Anal. Chem., 2002, 74: 562-569
    [247] Zheng L Z, Wu S G, Lin X Q, et al. Selective determination of dopamine in the presence of ascorbic acid at an over-oxidized poly(N-acetylaniline) electrode. Analyst, 2001, 26: 736-738
    [248] Chen Sh M, Liu M I, Electrochemical self-assembly of nordihydroguaiaretic acid/Nafion modified electrodes and their electrocatalytic properties for catecholamines and ascorbic acid. J. Electroanal. Chem., 2005, 579: 153-162
    [249] Sotomayor M D P T, Tanaka A A, Kubota L T. Development of an amperometric sensor for phenol compounds using a Nafion membrane doped with copper dipyridyl complex as a biomimetic catalyst. J. Electroanal. Chem., 2002, 536: 71-81
    [250] Doung B, Arechabaleta R, Tao N J. In situ AFM/STM characterization of porphyrin electrode films for electrochemical detection of neurotransmitters. J. Electroanal. Chem., 1998, 447: 63-69
    [251] Jiang X, Lin X. Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid. Analyst, 2005, 130: 391-396
    [252] Chen Z, Hayashi K, Iwasaki Y, et al. On-line monolithic enzyme reactor fabrication by sol-gel process for elimination of ascorbic acid while monitoring dopamine. Electroanalysis, 2004, 17: 231-238
    [253] Sotomayor M D T, Tanaka A A, Kubota L T, et al. Tri(2,2’-bipyridil) cupper(II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction. Electrochim. Acta, 2003, 48: 855-865
    [254] Dai Z, Yan F, Chen J, et al. Reagentless Amperometric Immunosensors Based on Direct Electrochemistry of Horseradish Peroxidase for Determination of Carcinoma Antigen-125. Anal. Chem., 2003, 75: 5429-5434
    [255] Khoo S B, Chen F. Studies of Sol-Gel Ceramic Film Incorporating Methylene Blue on Glassy Carbon: An Electrocatalytic System for the Simultaneous Determination of Ascorbic and Uric Acids. Anal. Chem., 2002, 74: 5734-5741
    [256] Zhang F, Dryhurst G. Effects of L-Cysteine on the Oxidation Chemistry of Dopamine: New Reaction Pathways of Potential Relevance to Idiopathic Parkinson's Disease. J. Med. Chem., 1994, 37: 1084-1098
    [257] Zen J M, Chen P J. A Selective Voltammetric Method for Uric Acid and Dopamine Detection Using Clay-Modified Electrodes. Anal. Chem., 1997, 69: 5087-5093
    [258] Milczarek G, Ciszewski A. 2,2-Bis(3-Amino-4-hydroxyphenyl) hexafluoro- propane Modified Glassy Carbon Electrodes as Selective and Sensitive Voltammetric Sensors. Selective Detection of Dopamine and Uric Acid. Electroanalysis, 2004, 16: 1977-1983
    [259] Zare H R, Nasirzadeh N, Ardakani M M. Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem., 2005, 577: 25-33
    [260] Aguilar R, Dávila M M, Elizalde M P, et al. Capability of a carbon–poly vinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid. Electrochim. Acta, 2004, 49: 851-859
    [261] Li Y, Lin X. Simultaneous electroanalysis of dopamine , ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sens. Actuat. B-Chem., 2006, 115: 134-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700