鸭茅分子遗传连锁图谱构建及开花基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭茅(Dactyl is glomerata L.)起源于欧洲和北非及亚洲温带地区,是世界著名的多年生牧草,具有草质柔嫩、高产、优质、耐荫且适应性强等优点,蕴藏着丰富而优良的基因资源,开发利用潜力大。但该物种分子遗传育种基础研究滞后,育种效率低,急需加快分子育种进程。开展鸭茅资源分子遗传多样性评价、遗传图谱构建及重要农艺性状基因定位对于鸭茅基因资源保护、综合利用、重要农艺性状遗传改良及提高鸭茅育种水平和育种效率有重要意义。因此本研究利用鸭茅SSR分子标记分析了亚洲地区二倍体和四倍体鸭茅种质内和种质间遗传变异;同时综合利用SSR和SRAP两种分子标记构建了首张二倍体鸭茅遗传连锁图谱;在此基础上利用鸭茅EST-SSR分子标记和AFLP标记构建了四倍体鸭茅遗传图谱并首次定位鸭茅抽穗期QTL;通过454高通量测序平台,获得大量鸭茅开花基因序列,并成功定位了Vrn3春化基因。主要研究结果如下:
     1、二倍体与四倍体鸭茅遗传多样性及亲缘关系的SSR分析
     用SSR标记对来自亚洲地区的16份鸭茅(Dactylis glomerata L.)种质的160个单株进行遗传多样性研究。获得下述结果:(1)21对引物共扩增出多态性条带143条,平均每对引物扩增出6.8条,多态性条带比率(P)达90.7%;多态性信息含量(PIC)范围在0.17(A01F24)到0.45(A01E02)之间,平均为0.33;Shannon多样性指数(Ⅰ)范围在0.0463到0.3547之间,表明供试鸭茅种质具有丰富的遗传多样性。(2) AMOVA分析表明65.75%的遗传变异存在于鸭茅种质内部,75.58%的遗传变异存在于地理区域内,二倍体与四倍体鸭茅群体间遗传差异不显著,其遗传变异仅为2.62%。(3)对各地理类群基于Nei氏无偏估计的遗传一致度(GI=0.876)可将16份鸭茅分为两大类:所有的四倍体聚为同一大类,二倍体在两个大类中都有分布。聚类结果总体表明:来自相同或相似生态地理环境、相同倍型的材料基本聚为一类,呈现出一定的相关性。
     2、二倍体鸭茅遗传连锁图谱构建
     以遗传和表型差异大的鸭茅亲本01996和YA02-103杂交获得的111个F1单株为作图群体。利用164个SSR标记和108个SRAP标记构建二倍体鸭茅遗传连锁图谱。父本遗传图谱涉及9个连锁群,包含90个标记(57个SSR和33个SRAP),图谱总长为866.7cM,标记间平均图距为9.6cM,基因组覆盖率为81%。母本遗传图谱涉及10个连锁群,包含87个标记(54个SSR和33个SRAP),图谱总长为772.0cM,标记间平均图距为8.9cM,基因组覆盖率为75%。标记偏分离比率为15%,基于10个“桥标记”共检测到5个同源连锁群。研究结果可为鸭茅重要农艺性状QTL定位奠定基础,为鸭茅分子育种研究提供了基础信息。
     3、四倍体鸭茅遗传连锁图谱构建及抽穗期QTL定位
     本研究以鸭茅抽穗期存在显著差异的鸭茅亚种him271(晚花型)和asch621(早—中等开花型)为杂交亲本,获得了包含284个单株的F1作图群体,综合利用鸭茅EST-SSR和AFLP分子标记构建了四倍体鸭茅高密度遗传连锁图谱。亲本图谱分别包含了28个共分离连锁群和7个整合连锁群。利用亲本图谱间共有的38个“桥标记”,构建了7个同源连锁群,并基于鸭茅EST-SSR标记与水稻基因组的线性关系,确定了7个同源连锁群与鸭茅染色体间的对应关系。Him271图谱总长947cM,包含183个标记位点,标记平均密度为5.2cM。而asch621图谱包含193个标记,图谱全长1038cM,标记平均密度为5.5cM。亲本连锁群长度在98到187cM之间。利用区间作图法在连锁群2、5和6上共检测到7个影响开花性状的QTL,解释的表型变异在7.85%到24.19%之间。该研究结果为鸭茅分子标记辅助育种,重要农艺性状遗传改良,混播草地晚熟鸭茅品种选育及近一步开展功能基因和比较基因组研究奠定了重要基础。
     4、鸭茅开花基因发掘与定位
     基于水稻、小麦、黑麦草、高羊茅等物种的开花基因(如:FT、Hd、VRN基因等)保守序列,设计基因探针28条。并利用开花基因探针对鸭茅基因组开花基因序列进行捕获。通过454高通量测序平台,共获得读长(reads)约21000条,叠连群(Contig)序列2094条,序列长度在105bp到1975bp之间。BLASTn序列搜索表明:Contig40、Contig441和Contig558与VRN、Hd和FT基因具有较高同源性。根据同源序列设计了20对候选开花基因引物,并对F1作图群体扩增以检测其分离比例。最终Vrn3基因引物在F1作图群体中具有1:1的分离比例,成功定位在Him271的第3个连锁群上。
Orchardgrass (Dactylis glomerata L.) is indigenous to Eurasia and northern Africa, has been naturalized on nearly every continent, and is one of the top perennial forage grasses grown worldwide, owing to its good nutrition, high yield and good adaptability. Orchargrass gene resources are diverse and rich and have a great potential for breeding use. But few tools and information are available for molecular breeding, gene mapping and genetic improvement of the species. Accordingly, this research aimed to offer an important information and basis for further molecular assisted selection (MAS) breeding, improve economically important traits, enhance breeding efficiency and shorten breeding process of the speices.
     In this study, SSR molecular markers were used to detect the genetic diversity and variation between and within diploid and tetraploid orchardgrass accessions collected in Asian. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers was used to construct the first diploid orchardgrass map. Orchardgrass EST-SSR markers and AFLP markers were employed to construct a high-density tetraploid orchardgrass maps. QTLs associated with heading date in this species were reported first. Based on454high-throughput sequencing, we obtained amounts of sequences of flowering candidate genes in orchardgrass. Finally, Vrn3gene was successfully mapped on previous maps. These results were as follows:
     1. Diversity comparison and phylogenetic relationships of diploid and tetraploid orchardgrass(Dactylis glomerata L.) germplasm as revealed by SSR markers
     Phylogenetic relationships among or within16accessions collected from Asia were investigated using SSR markers. The21SSR primer pairs generated a total of143polymorphic alleles, with an average allele per locus of6.8. The average polymorphic rate (P) for this species was90.7%. The polymorphic information content (PIC) ranged from0.17(A01F24) to0.45(A01E02) with an average of0.33. And the Shannon's information index of diversity (Ⅰ) ranged from0.0463to0.3547, suggesting a high degree of genetic diversity. Analysis of molecular variation (AMOVA) revealed larger genetic variation within accessions (65.75%) and geographical regions (75.58%) rather than between them, while the ploidy level variance among the accessions contributed only2.62%. The16accessions were grouped into two major clusters (GI=0.876). Specifically, all tetraploid accessions originating from different regions were grouped into the same cluster whereas the diploid accessions were grouped into the two major clusters. The dendrogram was concordant with the morphological variability, agronomic traits and karyotype.
     2. Genetic linkage maps of diploid orchardgrass (Dactylis glomerata L.)
     The objective of this study was to construct a diploid (2n=2x=14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among164simple sequence repeats (SSR) and108sequence-related amplified polymorphism (SRAP), assayed in a pseudo-testcross F1segregating population generated from a cross between two diploid parents were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contained90markers (57SSR markers and33SRAP) over9linkage groups and the maternal genetic map was comprised of87markers (54SSR and33SRAP) assembled over10linkage groups. The total map distance of the male map was866.7cM representing81%genome coverage, whereas the female map spaned772.0cM, representing75%coverage. The average map distance between markers was9.6cM in the male map and8.9cM in the female map. The level of segregation distortion observed in this cross was15%. Homology between the two maps was established between five linkage groups of the male maps and five of the female map using10bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species and will serve as a framework for mapping QTLs and provide basic information for further molecular breeding studies.
     3. A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) and QTL analysis for heading date
     A combination of EST-based SSR markers and AFLP markers were used to genotype an F1population of284individuals derived from a very late heading D. glomerata ssp. himalayensis parent (him271) and an early to mid-heading D. glomerata ssp. aschersoniana parent (asch621). Two parental maps were constructed with28cosegregation groups and seven consensus linkage groups each, and homologous linkage groups were tied together by38bridging markers. The him271map consisted of183markers with a total length of974cM, the mean density between markers was5.2cM. The asch621map consisted of193markers and spanned a total length of1038cM with mean density between markers of5.5cM. Parental linkage group lengths varied from98to187cM. All but two mapped SSR markers had homologies to physically mapped rice (Oryza sativa L.) genes, and seven orchardgrass linkage groups were assigned based on this putative synteny with rice.7QTLs were detected for heading date on linkage groups2,5, and6in both parental maps, explaining between7.85%and24.19%of the penotypic variation. These results laid a theoretical foundation for further molecular assisted selection (MAS) breeding, improvement of important agronomic traits, later-mature cultivar release for mixture pasture and functional and comparative genetic analysis.
     4. Flowering gene identification and mapping in orchardgrass
     The conserved sequences of flowering candidate genes (VRN, Hd, FT) in rice, wheat, ryegrass and tall fescue were used to design28baits. Solution capture method was employed to capture flowering genes in orchardgrass. Approximately21,000reads were generated from454sequencing, which were assembled into2,094contigs varying in size from105bp to1975bp. After BLASTn searches, contig404, contig441and contig558had hits to these bait sequences, including the Vrn, Hd, and FT candidate genes.20pairs of candidate gene primers were designed and amplified in F1mapping population to test segregation ratio. Finally, Vrn3with1:1segregation ratio was successfully mapped on LG3of the him271parental map.
引文
[1].车永和,李立会,何蓓如.冰草属植物遗传多样性取样策略基于醇溶蛋白的研究[J].植物遗传资源学报,2004,5:216-221.
    [2].丁成龙,刘颖,许能祥,等.日本结缕草抗寒相关性状的QTL分析[J].草地学报,2010,18(5):703-707.
    [3].方程,韩建国.牧草遗传图谱构建研究概述[J].草地学报2006,14(3):15-19.
    [4].高杨.鸭茅新品系农艺性状及抗旱性初步研究.[硕士学位论文].四川农业大学,2008.
    [5].郭海林,刘建秀,高鹤,等.结缕草属优良品系SSR指纹图谱的构建[J].草业学报,2007,16(2):53-59.
    [6].何祯祥,施季森,邱进清,等.林木遗传图谱构建的技术与策略[J].浙江林学院学报1998,15(2):151-157.
    [7].蒋吕顺,马欣荣,邹冬梅,等.应用微卫星标记分析柱花草的遗传多样性[J].高技术通讯,2004,14,(4):25-30.
    [8].李永祥,李斯深,李立会,等.披碱草属12个物种遗传多样性的ISSR和SSR比较分析[J].中国农业科学,2005,38(8):1522-1527.
    [9].李媛媛,沈金雄,王同华,等.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱[J].中国农业科学,2007,40(6):1118-1126.
    [10].林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48:2063-2067.
    [11].逯晓萍,云锦凤.高丹草遗传图谱构建及农艺性状基因定位研究[J].草地学报,2005,3:15-19.
    [12].梅娟,别治法.种用鸭茅锈病的防治[J].中国草地学报,1991,(2):76.
    [13].潘俊松,王刚,李效尊.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学进展,2005,15:167-172.
    [14].潘全山,张新全,等.禾本科优质牧草—黑麦草、鸭茅[M].台海出版社.2000,103.
    [15].潘全山.优质饲用作物和牧草[J].河北畜牧兽医.2002,18(6):36.
    [16].彭燕,张新全,刘金平,等.野生鸭茅种质遗传多样性的AFLP分子标记[J].遗传,2006,28(7):845-850.
    [17].彭燕,张新全,曾兵.野生鸭茅植物形态学特征变异研究[J].草业学报,2007,16(2):69-75.
    [18].彭燕,张新全.鸭茅种质资源多样性研究进展[J].植物遗传资源学报,2003,4(2):179-183.
    [19].彭燕.野生鸭茅种质资源遗传多样性及优异种质筛选[D].四川雅安:四川农业大学,2006.
    [20].匡崇义,薛世明,吕兴琼,等.十五鸭茅品种在云南不同气候带的品比试验研究[J].四川草原.2005,(11)1-5.
    [21].帅素容,张新全,白史且.不同倍性鸭茅同工酶比较研究[J].草业科学,1998,(6):11-16.
    [22].宋迎辉.四倍体鸭茅SSR连锁图谱构建及品种的遗传多样性分析[D].中国北京:中国农业大,2011.
    [23].隋晓青,王堃.克氏针茅ISSR-PCR反应体系的建立与优化[J].草业学报,2008,17(3):71-78.
    [24].万刚,张新全,刘伟,等.鸭茅栽培品种与野生材料遗传多样性比较的SSR分析[J].草业学报.2010,6,187-196.
    [25].王赞,李源,吴欣明,等.PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定[J].中国草地学报,2008,30(1):50-54
    [26].魏惠军,杜胜利,马德华.分子标记和种类及其发展[J].生物技术通报,1999,15(4):21-26.
    [27].谢文刚,张宝艺,张新全,等.鸭茅杂交种SRAP分子标记鉴定及遗传分析[J].中国农业科学,2010,43(16):3288-3295.
    [28].谢文刚,张新全,马啸,等.中国西南区鸭茅种质遗传变异的SSR分析[J].草业学报,2009, 18(4):138-146.
    [29].徐柱.中国牧草手册[M].北京:化工出版社,2004,42.
    [30].薛丹丹,郭海林,郑轶琦,等.结缕草属植物杂交后代杂种真实性鉴定—SRAP分子标记[J].草业学报,2009,18(1):72-79.
    [31].杨桂英,靳宗立.冷地型鸭茅不同品种生产性能的研究[J].山西农业大学学报.2000,20(2):132-135.
    [32].于忠禾,宫玉芝,赵德林,等.寒地鸭茅引种初探[J].草业科学,1995,12(4):23-25.
    [33].曾兵,兰英,伍莲.中国野生鸭茅种质资源锈病抗性研究[J].植物遗传资源学报,2010,11(3):278-283.
    [34].曾兵,张新全,范彦,等.鸭茅种质资源遗传多样性的ISSR研究[J].遗传2006,28(9):1093-1100.
    [35].曾兵,张新全,彭燕,等.鸭茅RAPD分子标记反应体系优化[J].安徽农业科学,2005,33(7):1151-1153.
    [36].曾兵,左福元,张新全,等.利用小麦SSR标记分析鸭茅种质资源的遗传多样性[J].农业生物技术学报,2009,4:677-683.
    [37].曾兵.鸭茅种质资源遗传多样性的分子标记及优异种质评价[D].四川雅安:四川农业大学,2007
    [38].张阿英,胡宝忠,姜述君,等.影响紫花苜蓿SSR分析因素的研究[J].黑龙江农业科学,2002,(1):15-17.
    [39].张新全,杜逸,郑德成.鸭茅二倍体和四倍体生物学特性的研究[J].四川农业大学学报,1996,14(2):202-206
    [40].张新全,杜逸,郑德成.鸭茅二倍体和四倍体PMC减数分裂、花粉育性及结实性研究.中国草地,1996,(6):38-40。
    [41].张新全,张锦华,杨春华,等.四川省牧草种质资源现状及育种利用[J].四川草原,2002,1:6-9.
    [42].中国科学院中国植物志编写组.中国植物志(第39卷)[M].北京:科学出版社,2002,89-90.
    [43].钟声,杜逸,郑德成,等.二倍体鸭茅农艺性状的初步研究[J].草地学报,1997,(1):54-61.
    [44].钟声,杜逸,郑德成,等.野生四倍体鸭茅农艺性状的初步研究[J].草业科学,1998,(2):20-23.
    [45].钟声,黄梅芬,段新慧.野生二倍体鸭茅染色体加倍及杂交利用研究[J].热带农业工程.2009,33(3):40-43.
    [46].钟声.野生鸭茅杂交后代农艺性状的初步研究[J].草业学报,2007,16(1):69-74.
    [47].周自玮,奎嘉祥.云南野生鸭茅的核型分析[J].草业科学,2000,17(6):48-51.
    [48].Alm V, Busso CS, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue(Festuca pratensis Huds.). Theor Appl Genet,2011,123:369-382.
    [49]. Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA. A linkage map of meadow fescue(Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet,2003,108:25-40.
    [50].Amirouche N and Misset MT. Morphological variation and distribution of cytotypes in the diploid-tetraploid complex of the genus Dactylis L. (Poaceae) from Algeria. PI Syst Evol,2007, 264:157-174.
    [51]. Andersen JR, Jensen LB, Asp T, Liibberstedt T. Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat(Triticum monococcum) VRN1 and rice (Oryza sativa) Hdl. Plant Mol Biol,2006,60:481-494.
    [52].Armstead IP, Skφt L, Turner LB, Skφt K, Donnison IS, Humphreys MO, King IP. Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hdl (Sel) and barley HvCOl CONSTANS-like genes through comparative mapping and microsynteny. New Phytol,2005,167:239-247.
    [53].Armstead IP, Turner LB, Farrell M, Skφt L, Gomes P, Montoya T, Donnison IS, King IP, Humphreys MO. Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet,2004,108:822-828.
    [54].Armstead IP,Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D.cldentifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol,2008, 178:559-571.
    [55].Barcaccia G, Albertini E, Tavoletti S, Falcinelli M and Veronesi F. AFLP fingerprinting in Medicago spp.:Its development and application in linkage mapping. Plant Breed,1999,118: 335-340.
    [56].Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquiere M. Quantitative trait loci for leaf length in perennial ryegrass(Lolium perenne L.). Grass Forage Sci,2009,64,310-321.
    [57]. Barrett BA, Baird IJ, Woodfield DR. A QTL analysis of white clover seed production. Crop Sci, 2005,45:1844-1850.
    [58].Bert PF, Charmet G, Sourdille P, Hayward MD and Balfourier F. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet,1999,99:445-452.
    [59]. Bethel CM, Sciara EB, Estill JC, Bowers JE, Hanna W, Paterso AH. A framework linkage map of bermudagrass (Cynodon dactylon × transvaalensis) based on single-dose restriction fragments. Theor Appl Genet,2006,112:727-737
    [60].Bolaric S, Barth S, Melchinger AE. Posselt UK. Genetic diversity in European perennial ryegrass cultivars investigated with RAPD markers. Plant Breed.2005,124:161-166.
    [61].Borrill M. Evolution and genetic resources in cocksfoot. Ann. Report Welsh Plant Breeding Station,1977 Aberystwyth, UK,1978, pp.190-209.
    [62].Bradshaw JF, Pande B, Bryan GJ, Hackett CA, McLean K, Stewart HE. Interval mapping of quantitative trait loci for resistance of late blight (Phytophthora infestans (Mont.) de Bary), height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. Tuberosum). Genetics,2004,168:983-995.
    [63].Bretagnolle F, Lumaret R. Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: Occurrence, morphological and genetic characteristics offirst polyploids. Euphytica,1995, 84(3):197-207.
    [64].Bretagnolle F. Thompson JD. Lumaret R. The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Annals of Botany,1995,76:607-615.
    [65].Brouwer DJ, Duke SH, Osborn TC. Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa. Crop Sci,2000,40:1387-1396.
    [66]. Brown RN, Barker RE, Warnke SE, Cooper LD, Brilman LA, Mian MAR, Jung G, Sim SC. Identification of quantitative trait loci for seed traits and floral morphology in a field-grown Lolium perenne×Lolium multiflorum mapping population. Plant breed,2010,129,29-34.
    [67].Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa. Theor Appl Genet,1993,86:329-332.
    [68].Bushman BS, Larson SR, Robins JG, Jensen KB, Hernandez A, Vullaganti D, Gong G, Thimmapuram J,Tuna M.Orchardgrass (Dactylis Glomerata L.) EST and SSR marker development, annotation, and transferability. Theor Appl Genet,2011,123:119-129.
    [69].Bushman BS, Robins JG, Jensen KB. Dry matter yield, heading date, and plant mortality of orchardgrass (Dactylis glomerata L.) subspecies in a semi-arid environment. Crop Sci,2012, 52(2):745-751.
    [70].Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D. Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica, 2009,166:61-70.
    [71].Cai HW, Inoue M, Yuyama N and Nakayama S. An AFLP-based linkage map of Zoysiagrass (Zoysia japonica). Plant Breed,2004,123:543-548.
    [72].Cai HW, Inoue M, Yuyama N, Takahasha W, Hirata H and Sasaki T. Isolation, characterization and mapping of simple sequence repeat markers in Zoysiagrass (Zoysia spp.). Theor Appl Genet, 2005,112:158-166.
    [73].Cai W H, Inoue M, Yuyama N, Nakayama S. An AFLP-based linkage map of Zoysiagrass (Zoysia japonica). Plant Breed,2004,123(6):543-548.
    [74].Casao C, Igartua E, Karsai I, Lasa JM, Gracia MP, and Casas AM. Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot,2011,62(6):1939-1949.
    [75].Catalan P, Torrecilla P, Rodriguez JAL, Olmsted RG. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phlogenet Evol.2004,31:517-541.
    [76].Chakraborty N, Curley J, Warnke S, Casler MD, Jung G. Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.). Theor Appl Genet,2006,113:1421-1435.
    [77].Chen A, Gusta LV, Brule-Babel A, Leach R, Baumann U, Fincher GB, Collins NC. Varietal and chromosome 2H locus-specific frost tolerance in reproductive tissues of barley (Hordeum vulgare L.) detected using a frost simulation chamber. Theor Appl Genet,2009,119:685-694.
    [78].Chen C, Sleper DA, Johal GS. Comparative RFLP mapping of meadow and tall fescue. Theor Appl Genet,1998,97:255-260.
    [79].Cho MJ, Choi H W and Lemaux PG. Transformed TO orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. Plant Cell Rep, 2001,20(4):318-324.
    [80]. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics,2004,166:1463-1502.
    [81].Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW. QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet,2005,110:363-380.
    [82]. Curley J, Sim SC, Warnke S, Leong S, Barker R, Jung G. QTL mapping of resistance to gray leaf spot in ryegrass. Theor Appl Genet,2005,111:1107-1117.
    [83].Dainese M. Impact of land use intensity and temperature on the reproductive performance of Dactylis glomerata population in the southeastern Alps. Plant Ecol,2011,212:651-661.
    [84].Denchev PD, Songstad DD, McDaniel JK etal. Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep,1997, 16:12,813-819.
    [85].Dracatos PM, Cogan NOI, Sawbridge TI, Gendall AR, Smith KF, Spangenberg GC, Forster JW. Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass(Lolium perenne L.). BMC Plant Biol,2009,9:62.
    [86].Dubcovsky J, Chen C, and Yan L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breeding,2005,15:395-407.
    [87].Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ. Linkage mapping in diploid alfalfa (Medicago sativa). Genome,1994,37:61-71.
    [88]. Ergon A, Fang C, J(?)rgensen (?), Aamlid TS, Rognli OA. Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue(Festuca pratensis Huds.). Theor Appl Genet,2006,112:232-242.
    [89].Etherington JR. Relationship between morphological adaptation to grazing, carbon balance and waterlogging tolerance in clones of Dactylis glomerata L. New Phytol,1984,98(4):647-658.
    [90].Excoffier L, Smouse P E, and Quattro J M. Analysis of molecular variance inferred from metric distance among DNA haplotypes:application to human mitochondria DNA restriction sites. Genetics,1992,131:479-491.
    [91].Falcinelli M, Cenci CA, Negri V. An assessment of Dactylis glomerata L. ecotypes. I. Botanical characteristics. Rivistadi Agronomia.1983,17:2,305-313.
    [92].Falistocco E, Falcinelli M, Mariani A. Preliminary trials on the characterization of Italian ecotypes of Dactylis glomerata L. Sementi Elette.1980,26:2,19-25.
    [93].Falistocco E, Caceres M E. Falcinelli M. Meiotic mechanisms of 2n pollen formation in Dactylis glomerata subsp. lusitanica. J Genet Breed.1994,48:1,41-45.
    [94].Felfoldi EM. Classification of Dactylis glomerata florets based on caryopsis size. Seed Sci Technol.1975,3:2,499-502.
    [95].Fjellstrom R G, Steiner J J, Beuselink P R. Tetrasomic linkage mapping of RFLP, PCR, and Isozyme Loci in Lotus corniculatus L. Crop Sci,2003,43:1006-1020.
    [96]. Fujimori M, Hirata M, Sugita S, Inoue M, Cai H, Akiyama F, Mano Y, Komatsu T. Development of a high density map in Italian ryegrass(Lolium multiforum Lam.) using amplified fragment length polymorphism. In:2nd international symposium on molecular breeding of forage crops, 19-24 November 2000, Lorne and Hamilton, Victoria, Australia.
    [97].Gale MD, Devos KM. Comparative genetics in the grasses. Proc Natl Acad Sci USA,1998,95, 1971-1974.
    [98].Gauthier P, Lumaret R. Bedecarrats ecotype differentiation and coexistence of two parapatric tetraploid subspecies of cocksfoot(Dactylis glomerata) in the Alps. New Phytol.1998,139:4, 741-750.
    [99].Gendall AR, Levy YY, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell,2001,107(4):525-535.
    [100]. Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt, Craig E, Kent J, Humphreys MO, Elborough KM, Gardner RC. A framework linkage map of perennial ryegrass based on SSR markers. Genome,2006,49:354-364.
    [101]. Glaszmann J C, Lumaret R, Debussche M. Ecological control of the gene flow between two subspecies of Dactylis glomerata:study of a contact zone in the south of the Massif Central (France). Acta Oecologica Oecologia Plantarum,1982,3,87-100.
    [102]. Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S. Quantitative trait locus analysis of multiple agronomic traits in the model legurne Lotus japonicus. Genome,2007,50:627-637.
    [103]. Grattapaglia D, Sedemff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers. Genetics,1994,137: 1121-1137.
    [104]. Greenup A, Peacock WJ, Dennis ES, Trevaskis B. The molecular biology of seasonal flowering-responses in Arabidopsis and cereals. Ann Bot,2009,103:1165-1172.
    [105]. Griffiths S, Dunford RF, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol,2003,131:1855-1867.
    [106]. Hackett CA, Milne I, Bradshaw JE, Lou Z. TetraploidMap for Windows:Linkage map construction and QTL mapping in autotetraploid species. J Hered,2007,98(7):727-729.
    [107]. Harris-Shultz KR, Schwartz BM, Hanna WW. Development, linkage mapping, and use of microsatellites in bermudagrass. J Amer Soc. Hort. Sci,2010,135(6):511-520.
    [108]. Hayward M D, Forster J W, Jones J G, Dolstra O, Evans C, McAdam N J, Hossain K G, Stammers M, Will J, Humphreys M O, Evans G M. Genetic analysis of Lolium. I Identification of linkage groups and the establishment of a genetic map. Plant Breed,1998,117:451-455.
    [109]. Herrmann D, Boller B, Studer B, Widmer F, Kolliker R. Improving persistence in red clover insights from QTL analysis and comparative phenotypic evaluation. Crop Sci,2008,48: 269-277.
    [110]. Herrmann D, Boller B, Studer B, Widmer F, Kolliker R. QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet,2006,112:536-545.
    [111]. Hirata M, Cai H W, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T and Fujimori M. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet,2006,113: 270-279.
    [112]. Hirata M, Yuyama N, Cai H. Isolation and characterization of simple sequence repeat markers for the tetraploid forage grass Dactylis glomerata. Plant breed,2011,130:503-506.
    [113]. Hu ZM, Wu XL,Larson SR,Wang RRC, Jones TA, Chatterton NJ, Palazzo AJ. Detection of linkage disequilibrium QTLs controlling low-temperature growth and metabolite accumulations in an admixed breeding population of Leymus wildryes. Euphytica,2005,141: 263-280.
    [114]. Hubner K. The importance of breeding cocksfoot (Dactylis glomerata L.) with few leaf denticles, the influence of the denticles on the fodder value and the possibilities of early selection methods. Journal of Agricultural Science.1976:61.
    [115]. Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphrey J, Skot L. A changing climate for grassland research. New Phytol,2005,169:9-26.
    [116]. Inoue M, Gao Z, Hirata M, Fujimori M, Cai HW. Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome,2004,47:57-65.
    [117]. Inoue M, Gao ZS, Cai HW. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet,2004,109:1576-1585.
    [118]. Isobe S, Klimenko I, Ivashuta S, Gau M, Kozlov NN. First RFLP linkage map of red clover (Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor Appl Genet,2003,108:105-112.
    [119]. Isobe S, Kolliker R, Hisano H, Sasamoto S, Wada T, Klimenko I, Okumura K, Tabata S. Construction of a consensus linkage map for red clover (Trifolium pratense L.).BMC Plant Biol, 2009,9:57.
    [120]. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M. Phytochrome mediates the external light signal to express FT orthologs in photoperiodic flowering of rice. Genes Dev, 2002,16:2006-2020.
    [121]. Jensen LB, Andersen JR, Frei Ursula, Xing YZ, Taylor C, Holm PB, Liibberstedt T. QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet,2005,110:527-536.
    [122]. Jessup RW, Renganayaki K, Reinert JA, Genovesi AD, Engelke MC, Paterson AH, Kamps TL, Schulze S, Howard AN, Giliberto B, Burson BL. Genetic mapping of fall armyworm resistance in Zoysiagrass. Crop Sci,2011,51:1774-1783.
    [123]. Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet,2002a,105:577-584.
    [124]. Jones ES, Hughes LJ, Drayton MC, Abberton MT, Michaelson-Yeates TPT, Bowen C, Forster JW. An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.). Plant Sci,2003,165:531-539.
    [125]. Jones ES, Mahoney N L, Hayward MD, Armstead IP, Jones JG, Humphreys M O, King IP, Kishida T,Yamada T, Balfourier F, Charmet G, Forster JW. An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome,2002b,45:282-295.
    [126]. Jones K., Carroll C P, and Borrill M A. Chromosome atlas of the genus Dactylis L..Cytologia,1961,26:333-343.
    [127]. Julier B, Flajoulot S,Barre P, Cardinet G, Santoni S,Huguet T, Huyghe C. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol,2003,3:9.
    [128]. Kalo P, Endre G, Zimanyi L, Csanadi G, Kiss GB. Construction of an imp roved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet,2000,100:641-657.
    [129]. Kaur P, Larson SR, Bushman BS, Wang RRC, Mott IW, Hole D, Thimmapuram J, Gong G, Liu L. Genes controlling plant growth habit in Leymus (Triticeae)maize barren stalkl (bal), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics,2008,8:375-386.
    [130]. Kim KY, Jang YS, Cha JY, Son DY, Choi GJ, Seo S, Lee SJ. Acquisition of thermo tolerance in transgenic orchardgrass plants with DgHSP17.2 gene. Asian Austral J Anim,2008,21(5): 657-662.
    [131]. Kim KY, Jang YS, Park GJ, Choi GJ, Seong BR, Seo S, Cha JY, Son DY. Production of transgenic orchardgrass overexpressing a thermotolerant gene, DgP23. Korean Society of Grassland Science,2005,25(4):267-274.
    [132]. King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM. Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUST gene. Plant Physiol,2006,141:498-507.
    [133]. Kolliker R, Stadelmann F J, Reidy, B, et al. Genetic variability of forage grass cultivars:a comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica,1999,106(3):261-270.
    [134]Konishi T,Ohnishi O. A linkage map for common buckwheat based on microsatellite and AFLP markers. Fagopyum,2006,23:1-6.
    [135]. Kubik C, Sawkins M, Meyer WA, Gaut BS. Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars Based on SSR markers. Crop Sci,2001,41:1565-1572.
    [136]. Labombada P, Pupilli F, Arcioni S. Optimal population size for RFLP-assisted cultivar identification in alfalfa (Medicago sativa L.). Agronomie,2000,20:233-240.
    [137]. LaRota M, Sorrels ME. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics,2004, 4:34-46.
    [138]. Larson SR, Kellogg EA. Genetic Dissection of Seed production traits and identifi cation of a major-effect seed retention QTL in hybrid Leymus (Triticeae) wildryes. Crop Sci,2009,49, 29-40.
    [139]. Larson SR, Mayland HF. Comparative mapping of fiber, protein, and mineral content QTLs in two interspecific Leymus wildrye full-sib families. Mol Breeding,2007,20:331-347.
    [140]. Larson SR, Wu XL, Jones TA, Jensen KB, Chatterton NJ, Waldron BL, Robins JG, Bushman BS, Palazzo AJ. Comparative mapping of growth habit, plant height, and flowering QTLs in two interspecific families of Leymus. Crop Sci,2006,46:2526-2539.
    [141]. Laurie DA, Pratchett N, Bezant JH, Snape JW. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L) cross. Genome,1995,38:575-585.
    [142]. Lee H S, Bae E Y, Kim K Y. Transformation of orchardgrass(Dactylis glomerata L.) with glutathione reductase gene. Korean Society of Grassland Science,2001,21(1):21-26.
    [143]. Lentz EM, Crane CF. An assessment of preferential chromosome pairing at meiosis in Dactylis glomerata. Can J Genet Cytol.1983,25(3):222-232.
    [144]. Leonova E, Pestsova E, Salina E, Efremova T, Roder M, Borner A.2003. Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed.122:209-212.
    [145]. Lewis E J. An alternative technique for the production of amphiploids. Annual report of the Welsh Plant Breed Station, Aberystwyth,1974,15
    [146]. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461.
    [147]. Li ML, Yuyama N, Hirata M, Han JG, Wang YW, Cai HW. Construction of a high-density SSR marker-based linkage map of zoysiagrass (Zoysia japonica Steud.). Euphytica,2009, 170:327-338.
    [148]. Lindner R and Garcia A. Genetic differences between natural populations of diploid and tetraploid Dactylis glomerata ssp. izcoi. Grass Forage Sci,1997,52:291-297.
    [149]. Lindner R, Garcia A. Velasco P. Differences between diploid and tetraploid karyotypes of Dactylis glomerata subsp. izcoi. Caryologia,1999,52:147-149.
    [150]. Litrico 1, Bech N, Flajoulot S, Cadier D, Talon C, Gibelin C, Barre P. Cross-species amplification tests and diversity analysis using 56 PCR markers in Dactylis glomerata and Lolium perenne. Mol Ecol Rep,2009,9:159-164.
    [151]. Lu XP, Yu JP, Gao CP, Surya A. Quantitative trait loci analysis of economically important traits in Sorghum bicolor×Sorghum sudanenes hybrid. Can J Plant Sci,2011,91(1):81-90.
    [152]. Lumaret R, Barrientos E. Phylogenetic relationshipsand geneflow between sympatric diploid and tetraploid plan ts of Dactylis glomerata (Gramineae). Plant Syst Evol,1990,169:81-96.
    [153]. Lumaret R, Bretagnolle F, Maceira NO.2n gamete frequency and bilateral polyploidization in Dactylis glomerata L. Proceedings of the workshop:Gametes with somatic chromosome number in the evolution and breeding of polyploid polysomic species:achievements and perspectives, Perugia, Italy,9-10 April 1992.1992:15-21.
    [154]. Lumaret R. Cytology, genetics, and evolution in the genus Dactylis. Crit Rev Plant Sci,1988, 7:55-89
    [155]. Lumaret R., Barrientos E. Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants of Dactylis glomerata (Gramineae). Plant Syst Evol.1990,169:81-96.
    [156]. Lundqvist U, Franckowiak JD, Konishi T. New and revised descriptions of barley genes. Barley Genet Newsl,l 997,26:22-516.
    [157]. Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Mllbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics,2001,157:1369-1385.
    [158]. Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D. Predicting parental genotypes and gene segregation for tetrasomic inheritance. Theor Appl Genet,2000,100:1067-1073.
    [159]. Luo ZW, Zhang ZE, Leach L, Zhang RM, Bradshaw JE, Kearsey MJ. Constructing genetic linkage maps under a tetrasomic model. Genetics,2006,172:2635-2645.
    [160]. Marshall DR and Brown AH. Optimum sampling strategies in genetic conservation. Pages 53-80 in O. H. Frankel and J. G.. Hawks, eds. Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK.1975.
    [161]. Mather K. Segregation and linkage in autotetraploids. J Genet,1936,32:287-313.
    [162]. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and Mapping of 2240 New SSR Markers for Rice(Oryza sativa L.). DNA research,2002,9:199-207.
    [163]. Tuna M, Khadka DK, Shrestha MK, Arumuganathan K, Golan-Goldhirsh A. Arumuganathan Characterization of natural orchardgrass(Dactylis glomerata L.) populations of the Thrace Region of Turkey based on ploidy and DNA polymorphisms. Euphytica,2004,135:39-46.
    [164]. Meyer RC, Milbourne D, Hackett CA, Bradshaw JE, McNichol JW, Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late boight (Phytophthora infestans). Theor Appl Genet,1998,259:150-160.
    [165]. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell,1999,11:949-956.
    [166]. Mika V, Kohoutek A, Odstrcilova V. Characteristics of important diploid and tetraploid subspecies of Dactylis from point of view of the forage crop production. Rostlinna Vyroba, 2002,48(6):243-248
    [167]. Miller, T.L. Evaluation of material selected for rust resistance in orchardgrass, Dactylis glomerata L. Dissertation Abstracts International.1976,36(7) 7:31-59.
    [168]. Mizianty M. Biosystematic studies on Dactylis (Poaceae).5. Variability of Dactylis glomerata subsp. glomerata in Poland. Fragmenta Floristica et Geobotanica.1994,39:1,235-254.
    [169]. Mizianty M. Cenci CA. Dactylis glomerata subsp. slovenica (Poaceae) in Italy. Fragmenta Floristica et Geobotanica.1996,41:1,405-409.
    [170]. Mizianty M. Comparative studies on Polish and Bulgarian populations of Dactylis glomerata subsp. glomerata (Poaceae). Fragmenta Floristica et Geobotanica.1996,41:1,411-418.
    [171]. Mizianty M. Frey L. Dactylis glomerata subsp. glomerata (Poaceae) in Poland. Fragmenta Floristica et Geobotanica.1996,41:2,580-582.
    [172]. Morell MK, Peakall R, Appels R, Preston LR, Lloyd HL.DNA profiling techniques for plant variety identification Aust. J Exp Agric.1995,35:807-819.
    [173]. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet,2002,30:194-200.
    [174]. Mott IW, Larson SR, Jones TA, Robins JG, Jensen KB, Peel MD. A molecular genetic linkage map identifying the St and H subgenomes of Elymus (Poaceae:Triticeae) wheatgrass. Genome, 2011,54:819-828.
    [175]. Muylle H, Baert J, Bockstaele EV, Pertijs J, Roldan-Ruiz I. Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity,2005,95,348-357.
    [176]. Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor Appl Gnenet,2007,114: 901-913
    [177]. Nei M. Analysis of gene diversity in subdivided populaion. Proceedings of National Academic Science,1973,70(2):3321-3323.
    [178]. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihra Y. Characterization and functional analysis of three wheat homology to CONSTANS flowering time gene in transgenic rice. Plant J,2003, 36:82-93.
    [179]. Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Eco,2004,13:1143-1155.
    [180]. Ortiz JA, Pessino SC, Bhat V, Hayward MD, Quarin CL. A genetic linkage map of diploid Paspalum notatum. Crop Sci,2001,41:823-830.
    [181]. Pankova K, Milec Z, Simmonds J, Waite ML, Fish L, and Snape JW.2008. Genetic mapping of a new flowering time gene on chromosome 3B of wheat. Euphytica,164:779-787.
    [182]. Pearson A, Cogan NOI, Baillie RC, Hand ML, Bandaranayake CK, Erb S, Wang JP, Kearney GA, Gendall AR, Smith KF, Forster JW. Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.).Theor Appl Genet,2011,122:609-622.
    [183]. Pfender WF, Saha MC, Johnson EA, Slabaugh MB. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet, 2011,122:1467-1480.
    [184]. Plaschke J, Korzun V, Koebner RMD, Schegel R, Gale MD. RFLP mapping of genes affecting plant height and growth habit in rye. Theor Appl Genet,1993,85:1049-1054.
    [185]. Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M. Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet,2002,104: 273-280
    [186]. Qrtiz JPA, Pessino SC, Bhat V, Hayward MD, Quarin CL. A linkage map of diploid paspalum notatum. Crop Sci,2001,41:823-830.
    [187]. Reeves G, Francis D, Davies M S, et al. Genome size is negatively correlated with altitude in naturalpopulations of Dactylis glomerata. Angiosperm genome size. Proceedings of a workshop and discussion meeting, Kew, London, UK,9-12 September,1997, Annals of Botany, 1998,82:99-105.
    [188]. Robins JG, Brummer EC. QTL underlying self-fertility in tetraploid alfalfa. Crop Sci,2010,50: 143-149
    [189]. Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen Jl, Brummer EC. Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci,2007,47:1-10.
    [190]. Rognli O A, Aastveit K, Munthe T. Genetic variation in(Dactylis glomerata L.) populations for mottle virus resistance. Euphytica,1995,83 (2):109-116
    [191]. Rohlf FJ. NTSYS-pc:Numerial Taxonomy and Multivariate Analysis System (Version 2.0).New York:Exter Softwere,1994.
    [192]. Roldan-Ruiz I, Dendauw J, Van Bockstaele E, et al. AFLP markers reveal high polymorphic rates in ryegrasses(Lolium spp.). Mol Breeding.2000,6,125-134.
    [193]. Rotter D, Amundsen K, Bonos SA, Meyer WA, Warnke SE, Belanger FC. Molecular genetic linkage map for allotetraploid colonial bentgrass. Crop Sci,2009,49:1609-1618.
    [194]. Rumball W.'Grasslands Kara', cocksfoot(Dactylis glomerata). N Z J Exp Agr,1982(10): 49-50.
    [195]. Saghai-Maroof MA, Soliman KM, Jorgensen RA. Ribosomal DNA spacer-length polymorphisms in barely:Ribosomal inheritance,chromosomal location, and population dynamics, Proc Natl Acad Sci USA,1984,81:801.
    [196]. Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins A. An SSR-and AFLP-based genetic linkage map of tall fescue(Festuca arundinacea Schreb.). Theor Appl Genet,2005, 110:323-336.
    [197]. Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell,2008,20:11-24.
    [198]. Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Stougaard J. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new Loci. Genetics, 2002,161:1673-1683.
    [199]. Sarma RN, Gill BS, Sasaki T, Galiba G, Sutka J, Laurie DA, and Snape JW. Comparative mapping of the wheat chromosome 5A Vrn-Al region with rice and its relationship to QTL for flowering time. Theor Appl Genet,1998,97:103-109.
    [200]. Sato T, Maceira N, Lumaret R, et al. Flowering characteristics and Fertility of interploidy progeny from normal and2n gametes in Dactylis glomerata L. New Phytol,1993,124(2): 309-319.
    [201]. Seppanen MM, Pakarinen K,Jokela V, Andersen JR, Fiil A, Santanen A, and Virkajarvi. Vernalization response of Phleum pretense and its relationship to stem lignifications and floral transition. Ann Bot,2010,106(5):697-707.
    [202]. Schejbel B, Jensen LB, Asp T, Xing Y and Lubberstedt T. Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. Plant breed,2008,127, 368-375
    [203]. Schejbel B, Jensen LB, Asp T, Xing Y and Lubberstedt T. QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection. Plant breed, 2007,126,347-352
    [204]. Schmidt J. Analysis of variability among ecotypes of cocksfoot(Dactylis glomerata L.) on the basis of material from a grass collection. Biuletyn Instytutu Hodowlii Aklimatyzacji Roslin. 1985,158:117-121.
    [205]Sheldon CC,Burn JE,Perez PP, Metzger J, Edwards JA,Peacock WJ, Dennis ES. The FLF MADS Box Gene:A Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation.Plant Cell,1999,11,445-458.
    [206]. Shindo C, Tsujimoto H, Sasakuma T.2003. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56-63.
    [207]. Skot L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP and Thomas ID.2007. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535-547.
    [208]. Skφt L, Humphreys, M O, Armstead, I, Heywood S, Skφt K P, Sanderson R, Thomas I D, Chorlton K H, Sackville-Hamilton NR. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol breeding,2005,15:233-245.
    [209]. Skot L, Sanderson R, Thomas A, Skφt K, Thorogood D, Latypova G, Asp T, and Armstead I. Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol,2011,155:1013-1022.
    [210]. Sledge MK, Bouton JH, Dall'Agnoll M, Parrott WA, Kochert G Identification and confirmation of Aluminum tolerance QTL in diploid Medicago sativa subsp. coerulea. Crop Sci,2002,42:1121-1128.
    [211]. Song Y, Liu F, Zhu Z, Tan L, Fu Y, Sun C, Cai H. Construction of a simple sequence repeat marker-based genetic linkage map in the autotetraploid forage grass Dactylis glomerata L. Grassland Sci,2011,57:158-167.
    [212]. Stebbins GL, Zohary D. Cytogenetics and evolutionary studies in the genus Dactylis L. Morphology, distribution and interrelationships of the diploid subspecies. Univ California Publ Bot,1959,31:1-40
    [213]. Steinhoff J, Liu W, Reif JC, Porta GD, Ranc N, and Wurschum T. Detection of QTL for flowering time in multiple families of elite maize.2012, Theor Appl Genet, Doi 10.1007/s00122-012-1933-4
    [214]. Stewart AV, Ellison NW. The genus Dactylis; wealth of wild Species:role in plant genome elucidation and improvement,2010, Vol.2. Springer, New York.
    [215]. Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kolliker R. Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet,2007,115:9-17.
    [216]. Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kolliker R. Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet,2006,113:661-671.
    [217]. Studer B, Jensen LB, Hentrup S, Brazauskas G, Kolliker R, Lubberstedt T. Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet,2008,117:781-791.
    [218]. Studer B, Kolliker R, Muylle H, Asp T, Frei U, Roldan-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skφt L, Armstead LP, Dolstra O, Lubberstedt T. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol,2010,10:177.
    [219]. Studer B, Byme S, Nielsen R, Panitz F, Bendixen C, Islam MS, etal. A transcriptome map of perennial ryegrass (Lolium Perenne L.). BMC Genomics,2012,13:140.doi:10.1186/ 1471-2164-13-140. PMID:22513206.
    [220]. Sugiyama S. Genographical distribution and phenotypic differentiation in populations of Dactylis glomerata L. in Japan. Plant Eco,2003,169:295-305.
    [221]. Tavoletti S, Veronesi F, Osborn TC. RFLP linkage map of an alfalfa meiotic mutant based on an F1 population. J Hered,1996,87:167-170.
    [222]. Tosun M, Akgun I, Sagsoz S. Determination of some cytological characters of wild orchardgrass(Dactylis glomerata L.) growing in Erzurum district. Turkish Journal of Agriculture and Forestry.1999,23(1):219-227.
    [223]. Tosun M, Sagsoz S, Akgun I. Determination of some chemical characters of hay, hay and seed yield of wild orchard grass (Dactylis glomerata L.). In:Turkey Ⅲ. Pasture and Forage Congress, Erzurum (Turkey),1996,17-19 June, p.402-407.
    [224]. Toth B, Galiba G, Feher E, Sutka J, Snape JW. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet,2003,107:509-514.
    [225]. Trejo-Calzada R, O'Connell MA. Genetic diversity of drought-responsive genes in populations of the desert forage Dactylis glomerata. Plant Sci,2005,168:1327-1335
    [226]. Tronsmo A M. Resistance to winter stress factors in half-sib families of Dactylis glomerata, tested in a controlled environment. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science,1993,43 (2):89-96.
    [227]. Tuna M, Khadka DK, Shrestha MK, Arumuganathan K, Golan-Goldhirsh. Characterization of natural orchardgrass (Dactylis glomerata L.) populations of the Thrace Region of Turkey based on ploidy and DNA polymorphisms. Euphytica,2004,135:39-46.
    [228]. Tuna M, Sabanc CO. A Evaluation of some agronomic characters of natural orchardgrass (Dactylis glomerata L.) populations collected from Thrace region of Turkey. Bulg J Agric Sci, 2004,10(1):57-64.
    [229]. Turner LB, Farrell M, Humphreys MO, Dolstra O. Testing water-soluble carbohydrate QTL eVects in perennial ryegrass (Lolium perenne L.) by marker selection. Theor Appl Gnenet, 2010,121:1405-1417
    [230]. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23: 4407-4414.
    [231]. Vuylsteke M, Mank R, Antonise R, Bastians E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M. Two high-density AFLP linkage maps of Zea mays L.:analysis of distribution of AFLP markers. Theor Appl Genet,1999,99:921-935.
    [232]. Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, et al.2005. Transfer of simple sequence repeat(SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour,3(1):45-57.
    [233]. Wang YH, Thomas CE, Dean RA. A genetic map of melon (Cucumis Melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet,1997, 95:791-798.
    [234]. Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, Pederson GA. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour,2005,3(1):45-57.
    [235]. Warnke SE, Barker R E, Jung G, Sim SC, RoufMian MA, Saha MC, Brilman LA, Dupal MP, Forster JW. Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet,2004,109:294-304
    [236]Wu X L, Larson S R,Hu Z,Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ. Molecular genetic linkage maps for alloteraploid Leymus wildryes (Gramineae: Triticeae).Genome,2003,46:627-646.
    [237]. Xie W, Zhang X, Cai H, Huang L, Peng Y, Ma X. Genetic maps of SSR and SRAG markers in diploid orchardgrass(Dactylis glomerata L.) using the pseudo-testcross strategy. Genome, 2011,54:212-221.
    [238]. Xie WG, Zhang XQ, Cai HW, Liu W, Peng Y. Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass(Dactylis glomerata L.). Bio Syst and Ecol.2010,38 (4):740-749.
    [239]. Xie WG, Zhang XQ, Ma X, et al. Diversity comparison and phylogenetic relationships of cocksfoot(Dactylis glomerata L.) germplasm as revealed by SSR markers. Can J Plant Sci, 2010,90(1):13-21.
    [240]. Xie WG, Zhang, XQ, Cai HW, Huang LK, Peng Y and Ma X. Genetic maps of SSR and SRAP markers in diploid orchardgrass(Dactylis glomerata L.) using the pseudo-testcross strategy. Genome,2011,54:212-221
    [241]. Xin YY, Zhang Z, Xiong YP, Yuan LP. Identification and purity test of super hybrid rice with SSR molecular markers. Rice Sci,2005,12(1):7-12.
    [242]. Xu WW. Sleper DA, Krause GF, Genetic diversity of tall fescue germplasm based on RFLPs. Crop Sci,1991,34:246-252.
    [243]. Xu WW, Sleper DA, Chao S. Genome mapping of polyploidy tall fescue(Festuca arundinacea Schreb.) with RFLP markers. Theor Appl Genet,1995,91:947-955.
    [244]. Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics,2000,154:885-891.
    [245]. Yaneshita M S, Kaneko S, Sasakuma T. Allotetraploidy of Zoysia species with 2n= 40 based on a RFLP genetic map. Theor Appl Genet,1999,98:751-756.
    [246]. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, and Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. PANS, 2011,103(51):19581-19586.
    [247]. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet,1997,95:1025-1032.
    [248]. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitively quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12:2473-2483.
    [249]. Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol,2001,127:1425-1429.
    [250]. Zeng B, Zhang XQ, Lan Y. Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Can J Plant Sci,2008,53-60.
    [251]. Zhang J, Wang Y, Wu S, Yang J, Liu H and Zhou Y. A single nucleotide polymorphism at the Vrn-Dl promoter region in common wheat is associated with vernalization response. Theor Appl Genet,2012, DOI10.1007/s00122-012-1946-z.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700