二氧化钛—聚丙烯酸酯有机—无机杂化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2的热稳定性好、比表面大,具有光催化活性和折光指数高的特性,对可见光透过率高,而对紫外光吸收强,因此TiO_2杂化材料在光学材料、非线性材料、光折变材料、信息存储材料和三维图像显示材料、光屏蔽材料、太阳能电池、光催化降解材料等得到了广泛的应用。但是现有的聚合物基TiO_2杂化材料的研究主要集中于纳米粒子直接分散法和溶胶—凝胶法。采用纳米粒子直接分散法,有机相和无机相易产生相分离,严重影响杂化材料的透明性,因此一般需对纳米粒子进行表面改性,但反应时间长、反应温度高,工艺烦琐。而采用溶胶—凝胶法合成TiO_2杂化材料,由于钛酸丁酯的水解速率极快,易产生沉淀和絮凝现象,因此探寻新的方法或途径仍然是有机—无机杂化材料研究的热门课题。我们提出了集纳米粒子的制备与表面改性于一体的反胶束溶胶—凝胶法和原位光聚合制备聚合物基杂化材料的构想,首先采用丙烯酸单体与钛酸丁酯反应,形成羧酸钛配位键以抑制钛酸丁酯的水解速率,同时采用反胶束溶胶—凝胶法使钛酸丁酯的水解缩合反应限制在反胶束“水池”中进行,以得到稳定性好、粒径分布窄的纳米TiO_2粒子,然后采用光聚合法低温快速合成纳米TiO_2-聚丙烯酸酯杂化薄膜,原位形成的大分子网络可进一步抑制纳米粒子的团聚、聚集和絮凝,通过羧酸钛配位键在有机和无机相间形成化学键的连接,抑制了宏观的相分离,得到透明的杂化薄膜,最后的后期热处理可促进TiO_2纳米粒子表面钛羟基的进一步缩合反应,以提高TiO_2的含量和折光指数,得到了耐热、耐光、折光指数可调的TiO_2-聚丙烯酸酯杂化材料,在光学材料、非线性材料、光折变材料、信息存储材料和三维图像显示材料、光屏蔽材料等领域具有潜在的应用前景。本论文的主要研究结果如下:
     (1)首次以石油醚为油相,系统研究了醇含量、油含量以及氧化还原引发剂(NH_4)_2S_2O_8—NaHSO_3浓度、丙烯酸、丙烯酰胺单体浓度等多种因素对CTAB体系和SDBS体系微乳液溶水量和微乳液结构、渗滤阈值以及渗滤温度的影响。实验结果表明,通过改变丙烯酸和丙烯酰胺浓度,可改变溶水量,改变微乳
Titanium dioxide hybrid materials have been widely used in the areas of optic, nonlinear, photorefractive, holographic storage, UV absorbent, solar cell and photocatalytic materials because of its high thermal stability, high surface area, high photocatalysis, high refractive index and good visible light transmittance and high UV light absorbance. However, most of the polymer-based titanium dioxide hybrid materials are concentrated on the methods of direct nanoparticles dispersion and sol-gel process. For the former, there exist severe inorganic and organic phase separation and thus remarkably affect the transparency of the materials. So the surface modification of the nanoparticles is needed by way of time-consuming and complex process at high temperature. For the latter, direct precipitation happen due to the fast hydrolysis of Ti precursor. Therefore seeking a new synthesis method of hybrid materials is a hot topic wordwide. We bring forward a new synthesis method of hybrid materials by way of sol-gel process in reverse micelles and subsequent photopolymerization, with characteristics of in situ nanoparticle formation and surface modification. That is, we use acrylic acid as an organic ligand to react with titanite butoxide (TTB) to control the hydrolysis rate of TTB. At the same time, the hydrolysis and condensation reaction can be limited within the nanoscale reverse micelles "water pool" and the stable titanium dioxide nanoparticles can be obtained with narrow size distribution and then be exposed to rapid photopolymerization to further control the aggregation, conglomeration and flocculation by organic networks formed during photopolymerization.The carboxylic bidentate coordination bridges the organic phase and inorganic phase, and retrains the microseparation between them, therefore the transparent hybrid
引文
1. Kubo R P. Phys. Soc. Jpn., 1962, 17:975
    2. Kawabata A, Kubo R. J. Phys. Soc. Jpn., 1966, 21:1765
    3. Y Ping, G C. Hdjinanayis, et al. Appl. Phys, 1990, 67: 4502;
    4. P Ball, L Grawin. Nature, 1992, 355: 762.
    5. VI Bukhtiyarov, M.G. Slin'ko. Russian Chemical Reviews, 2001, 70 (2): 147-159.
    6. Halperin W P. Rev. of Modern Phys., 1986, 58:532
    7. Ball P, Garwin L. Nature, 1992, 355:761
    8. M Leon, Y Wang, L Jones, et al. Science 1995, 270:1502-1506
    9. P Ball, L Garwin. Nature, 1992, 355: 761.
    10. Arnim H. Chem. Rev, 1989, 89(8): 1861-1873.
    11. Anders H, Michael G. Chem. Rev. 1995; 95(1): 49-68.
    12. Y Wang, N J Herron. J. Phys. Chem., 1991, 91 : 525-528
    13. A J Leggest, S Chakravarty, et al. Rev. Mod Phys., 1987, 59: 1-4.
    14. D D Awschalom, M A McCord, et al. Phys. Rev. Lett., 1990, 65: 783-789.
    15. T Tahagahara. Phys. Rev. B, 1993, 97(6): 1224-1228.
    16. Lu J, Tinkhan M. Physics, 1998, 27 (3): 137
    17. Feldhein D L, Keating C D. Chem. Soc. Rev, 1998, 27:145
    18. Y Kanernitsu. Appl. Phys. Lett., 1992, 18: 2187-2190.
    19. RN Bhargagra, D Gallagher. Phys. Rev. Lett., 1994, 15(10): 1234-1236.
    20. R Roussignool, D Ricard. Phys. Rev. Lett., 1989, 62:312-318.
    21. Y Ren, Z Zhang, E Gao, S Fang, S Cal. Journal of Applied Electrochemistry, 2001, 31: 445-447
    22. N Hebestreit, J Hofmann, U Rammelt, W. Plieth. Electrochimica Acta, 2003, 48:1779-1788
    23. Y J Ren, Z C Zhang, S B Fang. Solar Energy Materials & Solar Cells, 2002, 71: 253-259
    24. S Wang, Y L Li, C M Du. Synthetic Metals,2002, 128:299-304
    25. G Kron, T Egerter, G Nelles, A Yasud. Thin Solid Films, 2002, 403:242-246
    26. P M Jayaweera, S S Palayangoda , K Tennakone, Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140:173-177
    27. Liang H, Ueno A, Shinohara K. Chemical Engineering Research and Design, Transactions of the Institute of Chemical Engineers, Part A, 2000, 78(1): 49-54
    28. Yang HY, Zhu S K, Pan N. Journal of Applied Polymer Science, 2004, 92(5): 3201-3210
    29. Wang B L, Liu Q J, Wu X H, et al.Key Engineering Materials, 2002,v 224-226, p 233-236
    30. Lee R H, Huang C Y, Chen C T. Journal of Applied Polymer Science, 2004, 92(3): 1432-1436
    31. Shevaleevskij O I, Tsvetkov A A, Lim K S. Khimicheskaya Fizika, 2002, 21 (2): 99-103
    32. Komiyama M, Li Y J. Japanese Journal of Applied Physics, 2004, 43(7): 4584-4587
    33. Anukunprasert T, Saiwan C. Science and Technology of Advanced Materials, 2005, 6(3-4):359-363
    34. Francioso L, Presicce D S, Epifani M, et al. Sensors and Actuators, B: Chemical, 2005, 107(2): 563-571
    35. Si S H, Fung Y S, Zhu D R. Sensors and Actuators, B: Chemical, 2005, 108(1-2): 165-171
    36. H Zhang, X Li, S Li, Y Xin, M. Zhao. Nanostructured Materials, 1994, 4: 285-287.
    37. H Miyoshi. J. Electron. Chem., 1990, 295: 71-78.
    38. Vincenzo A, Claudio B, Alessandra B P, et al. Chemosphere, 2002, 49:1223-1230
    39. Anita R, Machiraju S, Pierre B. Applied Catalysis B: Environmental 37, 2002,37 : 301-308
    40. H D Jang, S K Kim, S J Kim. Journal of Nanoparticle Research, 2001, 3:141-147
    41. Muruganandham M, Swaminathan M. Dyes and Pigments, 2006, 68(2-3): 133-142
    42. Zhang T Y, You, L Y, Zhang, Y L. Dyes and Pigments, 2006, 68(2-3): 95-100
    43. Liu C C, Hsieh Y H, Lai P F, et al. Dyes and Pigments, 2006, 68(2-3): 191-195
    44. Senthilkumaar S, Porkodi K, Gomathi R, et al. Dyes and Pigments, 2006, 69(1-2): 22-30
    45. Hood E. Nanotechnology, 2004, 112(13): 740
    46. Mainardes M, Silva L P. Curr Drug Targets, 2004,5(5): 449
    47. Fujihara K, Kotaki M, Ramakrishna S. Biomaterials, 2005, 26(19): 4139
    48. Brongersma M L. Nature Materials, 2003, 2:296
    49. Montemagno C D, Ann N Y. Acad Sci, 2004, 1013:38
    50. Hueso L, Mathur N. Nature, 2004, 427(6972): 301
    51. LivageJ, Sanchez C. J Non-cryst Solids, 1992, 145:11-19.
    52. Sanchez C, Ribot F. Mater Chem, 1994, 18: 1007-1047.
    53. Wen J, Wilkes G L. Chem Mater, 1996, 8: 1667-1681.
    54. Zhang B L, Chen B S, Shi K Y. Applied Catalysis B: Environmental, 2003, 40:253-258
    55. T F Wen, J P Gao, J Y Shen. Journal of Materials Science, 2001, 36:5923-5926
    56. M J Alam, D C Cameron. Journal of Sol-Gel Science and Technology, 2002, 25:137-145
    57. S Nad,P Sharma, I Roy, et al. Journal of Colloid and Interface Science, 2003, 264:89-94
    58. K Y Chen, Y W Chen. Journal of Sol-Gel Science and Technology, 2003, 27:111-117
    59. P D Cozzoli, A Kornowski, H Weller. J. Am. Chem. Soc. 2003, 125:14539-14548
    60. O Harizanov, A Harizanova. Solar Energy Materials & Solar Cells, 2000, 63: 1858—195
    61. P Fataras, A P Xagas. Journal of Materials Science, 2002, 37:3855-3860
    62. Y Bessekhouad, D Robert, J V Weber. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157:47-53
    63. K D Kim, H T Kim, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207:263-269
    64. Boutonnet M, Kizhig J, Stenius P.Colloids and Surfaces, 1982, 5: 209—225.
    65. Pileni M P, Lisiecki I, Motte L, et al. Progr Colloid Polym Sci, 1993, 93: 1.
    66. Lisiecki I, Pileni M P.J Am Chem Soc, 1993, 115: 3887.
    67. Barnickel P, Workaun A, Sager W, et al. J Coll Inter Sci, 1992, 148: 80.
    68. Rajdip B, Kumar R, Gandhi K S. Langmuir, 1997, 13: 3610—3620.
    69. J Zhang, L D Sun, C S Liao, C H Yan, Solid State Communications, 2002, 124:45-48
    70. Lianos P, Thomas J K. J Coll Inter Sci, 1987, 117:505-512
    71. Murthy T, Sukanta B, Vijay T J, et al. Colloids and Surfaces A, 1997, 127: 42.
    72. Anthony J, Ward I, Elva C O, et al. J Coll Inter Sci, 1993, 6: 316-320.
    73. A Kasuya, G Milczareka, I Dmitruk. Colloids and Surfaces A: Physicochemicat and Engineering Aspects, 2002, 202:291-296
    74. Judith T, Pileni M P. Adv Mater, 1995, 10(7): 862-864.
    75. Barnickel P, Workaun A, Sager W, et al. J Coll Inter Sci, 1992, 148: 80.
    76. Hiroshi S, Takeshi O, Isao K, Journal of Colloid and Interface Science, 2000, 230:200-204
    77. E Joselevich, I Willner. J Phys Chem, 1994, 98: 7628.
    78. Arriagada F J, Osseo A. J Coll Inter Sci, 1995, 170: 8-17.
    79. K C Song, J H Kim. Powder Technology, 2000, 107:268-272
    80. L Castro. Journal of Sol-Gel Science and Technology, 2002, 25:159-168
    81. M Chatterjee, M K. Naskar, D Ganguli. Journal of Sol-Gel Science and Technology, 2003, 28: 217-225
    82. X Zhang, F Zhang, KY Chan. Materials Letters, 2004,58: 2872-2877
    83. M F Garc, A. M Arias, A I Juez. Journal of Catalysis, 2000, 194:385-392
    84. A Turkovic, Z C Orel, M Kosec. Solar Energy Materials & Solar Cells, 2000, 62 : 329-334
    85. P.D. MORAN, Journal of Sol-Gel Science and Technology, 1997, 8:65-69
    86. Francois N, Ginzherg B, Bilmes S A. Journal of Sol-gel Science and Technology, 1998, 13 (1-3): 341-346.
    87. Sakai H, Kawaha H, Shimazaki V, et al. Langmuir, 1998, 14(8): 2208-2212.
    88. Hirai T, Sato H, Komasava I, et al. Industrial &Engineering Chemistry Research, 1993, 32(12): 3014-3019.
    89. R B Zhang, L Gao. Materials Research Bulletin, 2002, 37(9): 1659-1666.
    90. Kim E J, Oh S H, Hahn S-H, et al. Chemical Engineering Communications, 2001, 187: 171-184.
    91. E Stathatos, P Lianos, Journal of Sol-Gel Science and Technology, 1997, 10:83-89
    92. Y Mori, Y Okastu ,Y Tsujimoto. Journal of Nanoparticle Research, 2001, 3:219-225
    93. Wu Q D, Cheng B, Zhang G K. Rare Metals, 2003, 22(2): 150
    94. S D Romano, D H Kurlat. Chemical Physics Letters, 2000, 323:93-97
    95. S S Hong, MS Lee, G D Lee. Materials Letters, 2003, 57: 2975- 2979
    96. P Kluson, P Kacer, T Cajthaml, et al. J. Mater. Chem., 2001, 11: 644-651
    97. Dagani R. Chem Eng News, 1999, 77:25
    98. MacLachlan M J, Manners I, Ozin G A. Adv Mater, 2000, 12:675
    99. Novak B M.Adv Mater, 1993, 5:422
    100. Ulrich D R. J Non-Cryst Solids, 1990, 121:465
    101. Calvert E Nature, 1991, 353:501
    102. Schubert U, Husing N, Lorenz A. Chem Mater, 1995, 7:5
    103. Rodrigues D E, Brennan A B, Betrabet C, et al. Chem Mater, 1992, 4(6): 1437~1446.
    104. Ahmad Z, Sarwar M I, Wang S, et al. Polymer, 1997, 38(17): 4523~4529.
    105. Gao Z M, Zhao Z D, Ou Y C, et al .Polymer International, 1996, 40:187~192.
    106. Liu G. Hu N, Xu X, et al. Macromolecules, 1994, 27: 3892-3896.
    107. Liu G, Ding J, GuoA, et al. Macromotecules, 1997, 30: 1851-1855.
    108. T Kotoky, S K. Dolui. Journal of Sol-Gel Science and Technology, 2004, 29:107-114
    109.黄智华,丘坤元.高等学校化学学报,1995,18(5):803-806
    110. Wei Y, Jang G W, Chen C C, et al. J electrochem soc, 1996, 143: 2591.
    111. Wei Y, Yang D, Tang L, Hutchins M K. J Mater Res, 1993, 8(5): 1143
    112. Suzuki F, Onozato K.A. J Appl Polym Sci.1990,39:371-381.
    113. NH Park, K Dusuh.J Appl Polym Sci, 1996, 71: 1597-1561.
    114. Huang H H, B Orlerm, G L Wilkes. Polymer bulletin, 1985, 14: 557.
    115. Wei Y, Yang D C, Tang L G. J mater res, 1993,8:1143
    116.黄智华,丘坤元.高分子学报,1997,(3):434.
    117. Schmidt H. J Non-Cryst Solids, 1989, 112: 48-57.
    118. Eusworkth U W, Novak B M. J Am Chem Soc, 1991, 113: 2756-2758.
    119. Novak B M, Grobbs R H. J Am Chem Soc, 1988, 110: 7542-7543.
    120. Huang Z H, Qiu K Y, Polymer, 1997, 38: 521.
    121. Wei Y, Jin D, Yang C, Wei G.J Sol-Gel Sci Tech, 1996, 7: 191
    122. Wei Y, Jin D L, Yang C C, et al. Polym mater sci, 1996, 74: 244.
    123. Pope E J A, Asami M, Mackenzie J D. J Mater res, 1989, (4): 1018
    124. Zhang J, Luo S C, Gui L. J mater sci,1997,32:1469.
    125. Hiroyo S, Kanayo T, Yasuhiko A, et al. Thin Solid Films, 2004, 466: 48-53
    126. Z Sassi, J C Bureau, A Bakkali. Vibrational Spectroscopy, 2002, 28:251-262
    127. Iwona Z G, Wlodzimierz M, Wieslaw S. Optical Materials, 2004, 26:207-211
    128. M E L Wouters, D P Wolfs, M C.V Linde, et al. Progress in Organic Coatings, 1999, 51:312-320
    129. Eusworkth U W, Novak B M. J Am Chem Soc, 1991, 113: 2756-2758.
    130. Novak B M, Grobbs R H. J Am Chem Soc, 1988, 110:7542-7543.
    131. E S Smotkin, L E E Chongmok, A J Bard, et al. Chem. Phys. Lett., 1988, 152: 265.
    132. X K Zhao, J H J. Fendler, et al.J Phys. Chem., 1991, 95:3716
    133. M Y Gao, X Zhang, B Yang, et al. J. Chem. Soc. Commun, 1994, 3:1055
    134. V L Colvin, A N Golgstein, A P Alivisatos, J. Am. Chem. Soc., 1992, 114: 5221.
    135. N Kimizuka, T. kunitake, Adv. Mater., 1996, 8: 89.
    136. Y. Sun, E. Hao, X. Zhang, et al. J. Chem. Soc. Commun., 1996, 34: 2381.
    137. V. L. Colvin, A. N. A. P. Alivisatos, J. Am. Chem. Soc., 1992, 114: 5221.
    138. Gao M Y, Gao M L, Zhang X, et al. J Chem Soc, Chem Commun, 1994, 8:2777
    139. J M Huang, Y Yang, B Yang, et al. Polymer Bulletin, 1996, 36:337
    140. Zhou M Q, Crooks R M. Adv Mater, 1999, 11 (3): 217-220.
    141. Godovsky D Y. Advances in Polymer Science. 1995, 5:119
    142. Gao M Y, Yang Y ,Yang B, et al. J.Chem.Soc.,Chem.commun., 1994,8:2779
    143. Wu C G, Thomas B. Science, 1994, 264(5166): 1756-1761.
    144. M Steinhart, J H Wendorff, A Greiner, et al. Science, 2002, 296:14
    145. Stacy A. Johnson, Patricia J. Ollivier, Thomas E. Mallouk, Science, 1999, 283:12
    146. A Blaaderen, R. Ruel, P. Wiltzius, Nature, 1998, 385: 321.
    147. M Moffitt, H Vali, A Eisenberg, Chem. Mater., 1998, 10: 1021.
    148.赵竹第,李强;欧玉春;漆宗能等.高分子学报,1997,5:519-522.
    149.乔放,李强;漆宗能;王佛松.高分子通报,1997,3:135-137.
    150. X Tong, H C Zhao, T Tang, et al. Journal ofpolymer science.PartA: Polymerchemistry, 2002, (40): 1706-1711.
    151. Lee W J, Chu M K, Dong C L. Journal of polymer science partB:Polymer physics. 2001, (39): 719-727.
    152. Suprakas S R, Mukul B. Materials Research Bulletin, 1999, 34(8): 1187~1194.
    153. G H Chen, X Q Chen, Z Y Lin, et al. Jorrnal of Materials Science Letter, 1999, (18): 1761-1763.
    154. Ruiz H E. Adv Mater, 1993, 5(5): 334-340.
    155. Solomon D H, Loft B C. JAppl Polym Sci, 1998, 67: 1253-1257.
    156. Y Z Wang, L Q Zhang, C H Tang, et al. Journal of Applied Polymer Science, 2000, (78): 1879-1883
    157. L Q Zhang, Y Z Wang,Y Q Wang, et al. Journal of Applied Polymer Science, 2000, (78): 1873-1878.
    158. Wu J, Lerner M M. Chem Mater, 1993, 5: 835-838.
    159. C Jimenez, N B Cyate. J.Appl.Polym.Sci., 1997, (11): 2211
    160. Furuichi N, Kurokawa Y, Fujita K, et al. J Mater Sci,1996, 3B: 4307
    161. Ruiz H E. Advanced Materials, 1995, 7(2): 180
    162. Giannelis E P. Adv Mater, 1996, 8(1): 29-35.
    163. Vaia R A, Ishii H, Giannelis E P. Chem Mater, 1993, 5: 1694-1696.
    164. Vaia RA, Vasudevans, Korawice W, et al. Adv Mater, 1995, 7: 154-160.
    165. Markus G,Wolfram G, Peter et al. Rubber Chemistry and Technology, 2001, (74): 221-235.
    166. T Jesionowski, A Krysztafkiewicz. Applied Surface Science, 2001, 172:18
    167. E Fekete, B Puknszky, A Toth, I Bertoti. J.Colloid.Interface.Sci., 1990, 35(1): 201
    168. H S Xia, C H Zhang, Q Wang. J.Appt.Poly.Sci., 2001, 80:1130~1139
    169. Elodie B L, Jacques L. J.Collid Interface Sci., 1998, 197:293~308
    170. J Wang, L Gao. Nanos.Mater., 1999, 11(4): 451~457
    171. S W Shang, J W Wiuiams, et al. J Mater Sci, 1992, 27:4949~4954
    172. Carotenuto C. Appl. Comp. Mater, 1998, 6: 385.
    173. Vaia RA, Giarnnelis E P. Chem Mater, 1993, 5: 1694-1696.
    174. Frank B, Volker S, Horst E. Macromol. Chem. Phys, 2003, 204:375-383
    1. Yong J K, Byung K K, Hyungsik et al. Synthesis of Ag nanopowders from reverse micelles. Journal of matastable and nanocrystalline materials, 2004, 20-21: 303-310.
    2. Kiboshita T, Seino S,Okitsu K, et al.Magnetic evaluation of nanostructure of gold-iron composite particles synthesized by a reverse micelle method. Journal of alloys and compounds, 2003, 359(1-2): 46-50.
    3. Tamura S, Takeuchi K, Mao G M, et al.Colloidal silver iodide: synthesis by a reverse micelle method and investigation by a small-angle neutron scattering study. Journal of electroanalytical chemistry, 2003, 559:103-109.
    4. Yaghmur A, Aserin A, Garti N. Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols. Colloids and surfaces A: Physicochemical and engineering aspects, 2002, 209:71-81
    5. Kantaria S, Rees G D, Lawrence M J. Formulation of electrically conducting microemulsion-based Organogels. International journal of pharmaceutics, 2003, 250:65-83
    6. Hou M J, Shah D O. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir, 1987, 3: 1086-1096
    7. Rabie H R, Weber M E, Vera J H. Effects of surfactant purity and concentration of surfactant counterion and of different ions on the water-uptake of dioctyldimethyl ammonium salt decanol-isooctane reverse micellar systems, J. colloid interface sci. 1995, 174: 1-9.
    8. Barnikel P, Wokaum A, Sager W, et al. Size tailoring of silver colloids by reduction in w/o microemulsions. J. colloid interface sci, 1992, 148: 80-90.
    9. D J Liu, J M Ma, H M Cheng, Z G Zhao, Solubilization behavior of mixed reverse micelles: effect of surfactant component, electrolyte concentration and solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, (143): 59-68
    10. Feldman Y, Kozlovich N, Nir I, et al. On the mechanism of transport of charge carriers in the sodium bis (2-ethylhexyl)sulfosuccinate-water -decane microemulsion near the percolation temperature threshold, J Phys Chem, 1996, (100): 3745-3748
    11. Shilpa Kantaria, Gareth D. Rees, M. Jayne Lawrence, Formulation of electrically conducting microemulsion-based organogels, International Journal of Pharmaceutics 250 (2003) 65-/83
    12. K Kurumada, S Nagamine, M Tanigaki. Structure and properties of bis (2-ethyhexyl)phospheric acid microemulsions with a network structure: Effect of counter-ions. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 1999, 148:305-311
    13. A Yaghmur, AAserin, N Garti, Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209:71-81
    14. K Hamada, T Ikeda, T Kawai, et al. Ionic Strength Effects of Electrolytes on Solubilized States of Water in AOT Reversed Micelles, Journal of Colloid and Interface Science, 2001,233: 166-170
    15. Carlos R, Durga P. Acharya S H, Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems, Journal of Colloid and Interface Science, 2003, 262: 500-505
    16. KAramaki, K Ozawa, H Kunieda, Effect of Temperature on the Phase Behavior of Ionic-Nonionic Microemulsions, Journal of Colloid and Interface Science, 1997, 196:74-78
    17. P D I Fletcher, A M Howe, B H Robinson, J. Chem. Soc., Faraday Trans. 1987, 83:985
    18. Pileni M P, Lisiecki I, Motte L, et al. Sythesis "insitu" of nanoparticles in reverse micelles, Progr Colloid Polym Sci, 1993, 93: 1.
    19. Danino D, Talmon Y, Zana R. J. Colloid Interface SCI, 1997, 185(1): 84-93
    20. Cho C, Lansbury P T J. J.Org.Chem, 1996, 61(6):1920-1921
    21. LeydetA, Boyer B, Lamaty G. Langmiur, 1994, 10(4):1000-1002
    22. Kang H, Lee BM, Yoon J.et al .Journal of Colloid and Interface Science, 2000, 231(2):255-264
    23. Goto M, Ono T, Nakashio F, et al. Biotechnology and Bioengineering, 1997, 54(1): 26-32
    24. Paradkar V, Dordick J S. Biotechnology and Bioengineering, 1994, 43: 529-540
    25. RenoufP, Mioskowski C, Lebeau L. Tetrahedron Letters, 1998, 39(6): 1357-1360
    26. F Candau, M Pabon, J Y Anquetil. Polymerizable microemulsions: some criteria to achieve an optimal formulation, Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1999, 153:47-59
    27. Ufuk Y, Ignac C, Microemulsion polymerization of styrene in the presence of macroinimer, Polymer, 2003, 44:2193-2200
    28. Palaniraj W R, Sasthav M, Cheung H M. Polymerization of single-phase microemulsions dependence of polymer morphology on microemulsion structure. Polymer, 1995, 36:2637
    29. Menger F M, Elrington A R. Organic reactivity in microemulsion systems. J. Am .Chem .Soc, 1991, 113:9621
    30. Schomacker R, Robinson B H, Fletcher P D I. Interaction of enzymes with surfactants in aqueous solution and in water-in-oil microemulsion, J.Chem.Soc.FaradayTrans., 1988, 84:4203
    31. Schomacker R, Stickdorn K, Knoche W. Chemical reactions in microemulsions:kinetics of the alkylation of 2-alkylndan-1,3-diones in micreoemulsions and polar organic solvent. J.Chem. Soc.Faraday Trans, 1991, 87:847
    32. Mackay RA, Electrochemistry in association colloids.Colloids & Surfaces A, 1994, 82:1
    33. Chhatre A S,Joshi R J,Kulkarni B D.Microemulsions as media for organic synthesis,selective nitration of phenol to ortho-nitrophenol using dilute nitric acid, J.Colloid Inter face Sci., 1993, 158:183
    34. Jacques L, Giuseppe, M R, Structure and Dynamics of cetyltrimethylammonium bromide water-in-oil microemulsions. J Phys Chem, 1990, 94: 3069- 3074
    35. Li Q, Li T, Wu J G, Zhou N F. Comparative study on thestructure of water in reverse micelles stabilized with sodium bis(2-ethylhexyl) sulfosuccinate or sodium bis(2-ethylhexyl) phosphate in n-heptane, J. Colloid Interface Sci, 2000, 1(229): 298-302.
    46. Hauser H, Haering G. Pande A, Luisi P L. Interaction of water with sodium bis (2-ethyl-1-hexyl) sulfosuccinate in reversed micelles. J. Phys. Chem. 1989, (93): 7869.
    37. Cho C H, Chung M., Lee J, Mguyen T, et al. Time- and space-resolved studies of the physics and chemistry of liquid water near a biologically relevant interface. J. Phys. Chem.1995, (99): 7806-7812.
    38. Mo C S, Zhong M H, Zhong Q.Investigation of structure and structural transition in microemulsion systems of sodium dodecyl sulfonate/n-heptane/n-butanol/water by cyclic voltammetric and electrical conductivity measurements. Journal of Electroanalytical Chemistry, 2000, 1-2(493): 100-107
    39. Q Li, T Li, J G Wu, Electrical conductivity of water/sodium bis (2-ethylhexyl) sulfosuccinate/n-heptane and water/sodium bis(2-ethylhexyl) phosphate/n-heptane systems: the Influences of water content, bis(2-ethylhexyl) phosphoric acid, and temperature. Journal of Colloid and Interface Science, 2001, (239): 522-527
    40.Weigert S, Eicke H F, Meier W.Electric conductivity near the percolation transition of a nonionic water-in-oil microemulsion. Physica A, 1997, 1-2(242): 95-103
    41. Lagourette B, Peyrelasse J, Boned C, et al.Percolative conduction in microemulsion type systems. Nature, 1979, (281): 61
    42. Fang J, Raymond L V. Conductivity study of the microemulsion system sodium dodecylsulfate hexylamine heptane water. J Colloid Interface Sci, 1978, (116): 269
    43. Garc'ia R L, Herv'es P, Mejuto J C. Effects of alkylamines on the percolation phenomena in water/AOT/isooctane microemulsions. Journal of Colloid and Interface Science, 2000, (225): 259-264
    1. Y C Yeh, T T Tseng, D A Chang, J Am.Ceram Soc, 1989, 72:1472
    2. L. Ketron. Am.Ceram.Soc.Bull, 1989, 68:860
    3. G. Deo, A M.Turek, I E Wachs, et al. Appl.Catal, 1992, A91:27
    4. N.Serpone, Solar Mater, Solar Cells, 1995, 38, 369
    5. B O Regan, M.Gratzel, Nature, 1991, 353:737
    6. P.Sheng. Scattering and Localization of Classical. Wave in Random Media.WorM Scientific, Sigapore, 1990
    7. K.Fukushima, L.Yamada, J.Appl.Phys, 1989, 65:619
    8. O. Maruyama, Y. Senda, S. Omi, Non-linear optical properties of titanium dioxide films containing dispersed gold particles, Journal of Non-Crystalline Solids, 1999, 259:100-106
    9. Liang H, Ueno A, Shinohara K. UV protection effectiveness of plastic particles coated with titanium dioxide by rotational impact blending ,Chemical Engineering Research and.Design, Transactions of the Institute of Chemical Engineers, Part A, 2000, 78(1): 49-54
    11. Yang, H Y, Zhu S K, Pan, N. Studying the mechanisms of titanium dioxide as. ultraviolet-blocking additive for films and fabrics by an improved scheme, Journal of Applied Polymer Science, 2004, 92(5): 3201-3210
    12. Wang B L, Liu Q J, Wu, X H, et al. Preparation and study of UV-absorbing multi-layer films, Key Engineering Materials, 2002, 224-226:233-236
    13. Lee R H, Huang C Y, Chen C T. Design of organic electroluminescent displays with ultraviolet-shielding filters. Journal of Applied Polymer Science, 2004, 92(3): 1432-1436
    14. Macyk W, Kisch H. Photosensitization of crystalline and amorphous titanium dioxide by platinum(Ⅳ) chloride surface complexes, Chemistry - A European Journal, 2001, 7(9): 1862-1867
    15. Shevaleevskij O I, Tsvetkov A A, Lim K S. Photosensitization of nanoerystalline layers of titanium dioxide with phthalocyanines in solar cells of Gretzel type, Khimicheskaya Fizika, 2002, 21(2): 99-103
    16. Komiyama M, Li Y J. Photoresponse of titanium dioxide surface on atomic scale: Site for visible light absorption,Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2004, 43(7): 4584-4587
    17. Anukunprasert T, Saiwan C, Traversa E. The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2, Science and Technology of Advanced Materials, 2005, 6(3-4): 359-363
    18. Francioso L, Presicce D S, Epifani M. et al. Response evaluation of TiO2 sensor to flue gas on spark ignition engine and in controlled environment, Sensors and Actuators, B: Chemical 2005, 107(2): 563-571
    19. Si S H, Fung Y S, Zhu D R. Improvement of piezoelectric crystal sensor for the detection of organic vapors using nanocrystalline TiO2 films,Sensors and Actuators, B: Chemical 2005, 108(1-2): 165-171
    20. Muruganandham M., Swaminathan, M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process, Dyes and Pigments, 2006, 68(2-3): 133-142
    21. Zhang T Y, You L Y, Zhang Y L. Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titaninm dioxide particles, Dyes and Pigments, 2006, 68(2-3): 95-100
    22. Liu C C, Hsieh Y H, Lai P F, et al. Photodegradation treatment of azo dye wastewater by UV/TiO2 process, Dyes and Pigments, 2006, 68(2-3): 191-195
    23. Senthilkumaar S, Porkodi K, Gomathi R., et al. Sol-gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution, Dyes and Pigments, 2006, 69(1-2): 22-30
    24. T. Fuyuki, H. Matsunami, Jpn. J. Appl. Phys. 1986, 25: 1288.
    25. PA Bertrand, P D. Fleschauer, Thin Solid Films ,1983, 103: 167.
    26. Li C S, Tseng C C, Lai H H, Chang, C W, Ultraviolet Germicidal Irradiation and Titanium Dioxide Photocatalyst for Controlling Legionella pneumophila, Aerosol Science and Technology, 2003, 37, 12:961-966
    27. Kim B, Kim D, Cho D Y, Cho S Y, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 2003, 52(1): 277-281
    28. Kepenek B, Seker U O S, Cakir A F, Urgen M, Tamerler C. Photocatalytic Bactericidal Effect of TiO2 Thin Films Produced by Cathodic Arc Deposition Method, Key Engineering Materials, 2004, 254-256:463-466
    29. Choi Y L, Kim S H, Song, Y S, Lee Y, Deuk Y, Photodecomposition and bactericidal effects of TiO2 thin films prepared by a magnetron sputtering, Journal of Materials Science, 2004, 39(18): 5695-5699
    30. Maness P C, Smolinski S, Blake D M., et al.Bactericidal activity of photocatalytie TiO2 reaction: Toward an understanding of its killing mechanism, Applied and Environmental Microbiology, 1999, 65(9): 4094-4098
    31. Sunada K, Watanabe T, Hashimoto K, Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination, Environmental Science and Technology, 2003, 37(20): 4785-4789
    32. Popov A P, Kirillin M Y, Priezzhev A V. et al. Optical sensing of titanium dioxide nanoparticles within horny layer of human skin and their protecting effect against solar UV radiation, Progress in Biomedical Optics and Imaging-Proceedings of SPIE, 2005, 5702, Optical Diagnostics and Sensing V:113-122
    33. Popov A P, Priezzhev A V, Lademann J, Myllyla R. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens,Journal of Physics D: Applied Physics, 2005, 38(15): 2564-2570
    34. Li H, Wang D Q, Chen H L, et al. The shielding effect Of nano TiO_2 on collagen under UV radiation, Macromolecular Bioscience, 2003, 3(7): 351-353
    35. F Wei, U Tokiyoshi, F Akihiko, et al. Enhancement of photoresponse by enlarging the effective interface between conducting polymer and titanium Oxide in photovoltaic device, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2004, 43(6): 3473-3478
    36. Nazeeruddin, M. K, Zakeeruddin S M., Humphry B R, et al. Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO_2 films, Langmuir, 2002, 18(3): 952-954
    37. H Kohjiro, S Hideki, T Yasuhiro, et al. Dye-sensitized nanocrystalline TiO_2 solar cells based on ruthenium(Ⅱ) phenanthroline complex photosensitizers, Langmuir, 2001, 17(19): 5992-5999
    38. Espinosa R, Zumeta I, Santana J L, et al. Nanocrystalline TiO_2 photosensitized with natural polymers with enhanced effciency from 400 to 600 nm, Solar Energy Materials and Solar Cells, 2005, 85(3): 359-369
    39. Maruyama O, Senda Y, Omi S. Non-linear optical properties of titanium dioxide films containing dispersed gold particles, Journal of Non-Crystalline Solids, 1999, 259:100-106
    40. Gayvoronsky V, Galas A, Shepelyavyy E, et al. Giant nonlinear optical response of nanoporous anatase layers, Applied Physics B: Lasers and Optics, 2005, 80(1): 97-100
    41. Wang W Y, Zhang D F, Xu T. et al. Nonlinear electrical and dielectric properties of (Ca, Ta)-doped TiO2 varistors, Physica Status Solidi (A) Applied Research, 2002, 194(1): 118-128
    42. Zhang C F, Liu Y, You G J, et al. Ultrafast nonlinear optical response of Au:TiO_2 composite nanoparticle films,Physica B: Condensed Matter, 2005, 357(3-4): 334-339
    43. P D Moran. Formation and Gelation of Titania Nanoparticles from AOT Reverse Micelles, Journal of Sol-Gel Science and Technology, 1997, 8:65-69
    44. Francois N, Ginzherg B, Bilmes S A. Parameters involved in the sol-gel transition of titania in reverse micetles. Journal of Sol-gel Science and Technology, 1998, 13 (1-3): 341-346.
    45. Sakai H, Kawaha H, Shimazaki V, et al. Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reverse micelles: effect of alcohol addition. Langmuir, 1998, 14(8): 2208-2212.
    46. Hirai T, Sato H, Komasava I, et al. Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrahutoxide. Industrial &Engineering Chemistry Research, 1993, 32(12): 3014-3019.
    47. R B Zhang, L Gao. Preparation of nanosized titania by hydrolysis of alkoxide titanium in micetles. Materials Research Bulletin, 2002, 37(9): 1659-1666.
    48. Kim E J, Oh S H, Hahn S H, et al. Influence of calcination on microstructures and photoactivities of alkoxide-derived TiO_2 nanoparticles prepared in w/o microemulsions, Chemical Engineering Communications, 2001, 187:171-184.
    49. Y Mori, Y Okastu, YTsujimoto. Titanium dioxide nanoparticles produced in water-in-oil emulsion, Journal of Nanoparticle Research, 2001, 3:219-225
    50. Wu Q D, Cheng B, Zhang G K. Preparation of TiO2 nanometer thin films with high photocatalytic activity by reverse micellar method, RARE METALS,2003, 22(2): 150
    51. B Ginzberg, S A Bilmes. Titania sols and gels from reverse micelles. Colloid Polym Sci, 1996, 102, 5:340.
    52. J M Barthez, F Molino, J. Marignan, et al. Hydrolysis and Condensation of Transition Metal Alkoxide: Experiments and Simulations. Journal of Sol-Gel Science and Technology, 1997, 8 (1-3): 83-88.
    53. D Papoutsi, P Lianos, P Yianoulis, et al.Sol- gel derived TiO_2 microemulsion gels and coatings. Langmuir, 1994, 10: 1684-1689.
    54. E Stathatos, P Lianos, F, DelMonte D, et al. Formation of TiO_2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates, Langmuir, 1997, 13: 4295-4300.
    55. S K Kwak, S H Kim. Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO_2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane. Environ. Sci. Technol., 2001, 35:2388-2394
    56. Madhusudan K R, Gopal C V, Manorama S V. Preparation, characterization, and spectral studies on nanocrystalline anatase TiO_2, Journal of Solid State Chemistry, 2001, 158:180-186
    57. Montes M, Getton F P, Vong M S, et al. Titania on Silica. A Comparison of Sol-Gel Routes and Traditional Methods, J Sol-gel.Sci. Technol, 1997, 8:131-137
    1. Decker C, Moussa K. Makromol.Chem, 1988, 189:2381
    2. O. Soppera, C. C Barghorn. Real-Time Fourier Transform Infrared Study of the Free-Radical Ultraviolet-Induced Polymerization of a Hybrid Sol-Gel. Ⅱ. The Effect of Physicochemical Parameters on the Photopolymerization Kinetics, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 831-840
    3. T Y Lee, T M Roper, E SJonsson, et al. The kinetics of vinyl acrylate photopolymerization, Polyme, 2003, 44:2859-2865
    4. H G Kou, A Asif, W F Shi, Photopolymerization Kinetics of Hyperbranched Acrylated Aromatic Polyester, Journal of Applied Polymer Science, 2003, 89:1500-1504
    5. B George , R Dhamodharan, A study of the photopolymerization kinetics of methyl methacrylate using novel benzophenone Initiators, Polymer International, 2001, 50:897-905
    6. Benjamin F, Santiago M, Vallinas N, James V C. Monitoring Photopolymerization Reactions with Optical Pyrometry, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 579-596
    7. F Rouddel, J M Buisine. Photopolymerization kinetics and phase behaviour of acrylate based polymer dispersed liquid crystals, Liquid Crystals, 1998, 24(4): 555-561
    8. V Pamedytyte, M J M. Abadie, R Makuska, Photopolymerization of N,N-Dimethylaminoethylmethacrylate Studied by Photocalorimetry, Journal of Applied Polymer Science, 2002, 86:579-588
    9. P. Bosch, J. Serrano, J L Mateo, P Calle, C. Sieiro, Kinetic Investigations on the Photopolymerization of Di-and Tetrafunctional (Meth)acrylic Monomers in Polymeric Matrices. ESR and Calorimetric Studies.Ⅰ. Reactions Under Irradiation, Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36:2775-2783
    10. Q. Yu, S. Nauman J. P. Santerre, et al. Photopolymerization behavior of di (meth)acrylate oligomers, Journal of Materials Sciences, 2001, 36 : 3599-3605
    11. L Valette, V Massardier, J P Pascault, Synthesis and Photopolymerization of Acrylic Acrylate Copolymers, Journal of Applied Polymer Science, 2002, 86:753-763
    12. G. A. Brady, J. W. Halloran. Differential photo-calorimetry of photopolymerizable ceramic suspensions, Journal of Materials Sciences, 1998, 3:4551- 4560
    13. Guo C X, Ai Y L, Li D Z, et al. Synthesis and Characterization of Silica Nanocomposite In Situ Photopolymerization, Journal of Applied Polymer Science, 2003,90: 837 - 840
    14. Sangermano M, Malucelli G, Amerio E, et al. Photopolymerization of epoxy coatings containing silica nanoparticles. Progress in Organic Coatings, 2005,54(2): 134-138
    15. Cho J D, Ju H T, Hong J W. Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles. Journal of Polymer Science, Part A: Polymer Chemistry, 2005,43(3): 658-670
    16. Allen N S. In: Allen NS, editor. Degradation and stabilisation of polyolefins. London: Elsevier Science, 1983, 8: 337
    17. Allen N S, McKellar J F. Photochemistry of dyed and pigmented polymers. London: Applied Science; 1980.
    18. Rabek J F. Photostabilisation of polymers: principles and applications. London: Elsevier Applied Science; 1990.
    19. Bryk M T. Degradation of filled polymers. London: Ellis Horwood, 1991. 20.Kloosterboer J G Network formation by chain crosslinking photopolymerization and its application in electronics. Adv.Polym. Sci, 1988, 84: 1-61
    21.Anseth K S, Newman S M, Bowman C N, Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. Adv.Polym.Sci, 1995,122:177-217.
    22. Decker C. Photoinitiated crosslinking polymerization. Prog Polym Sci, 1996,21: 593-650
    23. G Odian. Principles of Polymerization. John Wiley & Sons, Inc, New York, 3rd, edition, 1991
    24. Peppas.S.P. editor. Radiation curing-a personal perspective.In: Radiation curing science and technology. New York: Plenum Press, 1992: 1-20 (Chapter 1).
    25. K S Anseth, C. M. Wang, C. N. Bowman, Polyme, 1994,35: 3243.
    26. Ohngemach J, Neisius K H, Eichler J, et al. Kontakte. 1980. 3(79): 37
    27. Jockusch S, Turro N. J Am Chem.Soc, 1999,121: 3921
    28. P D I Fletcher, A M Howe, B H Robinson, J. Chem. Soc, Faraday Trans. 1987, 83: 985
    29. Pileni M P, Lisiecki I, Motte L, et al. Sythesis "in situ" of nanoparticles in reverse micelles. Progr Colloid Polym Sci, 1993, 93: 1.
    30. Michelle L, Griffith J, Halloran W, J. Appl. Phys. 1997, 81,19:2538.
    [1]. Yong J K, Byung K K, Hyungsik C, et al. Journal of matastable and nanocrystalline materials, 2004, 20-21:303-310.
    [2]. Kitchens C, McLeod M C, Roberts C B. J.Phys.Chem, B, 2003; 107(41): 11331-11338.
    [3]. E Agnoli, W. L. Zhou, C. J, O Connor, Advanced Materials, 2001, 13(22): 1697-1699.
    [4]. Tamura S, Takeuchi K, Mao G M, et al. Journal of Electroanalytical Chemistry, 2003, 559:103-109.
    [5]. Kinoshita T Seino S, Okitsu K, et al. Journal of Alloys and Compounds, 2003, 359(1-2):46-50.
    [6]. Dong B H, Li M, Ji M, Hu M H, J. Mater. Chem, 2002, 12 (12), 3677-3680.
    [7]. Nad S, Sharma P, Roy I, et al. Journal of Colloid and Interface Science, 2003, 264(1): 89-94
    [8]. Dong H C , Min J C, Hyuk Y, et al. Fast response of the diffraction efficiency in photopolymer prepared by sol-gel process,Optical Materials, 2004, 27:85-89
    [9]. S Y K Wak, S H Kim. Preparation and Characterization of TiO_2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC)Membrane, Environ. Sci. Technol. 2001, 35: 2388-2394
    [10]. Gerhard S. Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials, Chem. Mater. 2001, 13:3422-3435
    [11]. John N, Hay H, Raval M. Synthesis of Organic-Inorganic Hybrids via the Non-hydrolytic Sol-Gel Process, Chem. Mater. 2001, 13:3396-3403
    [12]. Vlasoula B, Elias S, Panagiotis L, et al. Studies on Hybrid Organic/Inorganic Nanocomposite Gels Using Photoluminescence Techniques, Monatshefie fur Chemie, 2001, 132: 97-102
    [13]. Ceren O Z, Krzysztof K, David V B, et al. Preparation and properties of polyamide-6-boehmite hybrid materials, Polymer, 2004, 45:5207-5214
    14. Wei Y, Yang D, Tang L, Hutchins M K. J Mater Res, 1993, 8(5): 1143
    15. Pope E J A, Asami M, Mackenzie J D, Transparent silica gel-PMMA composites. J Mater res, 1989, (4): 1018
    16. Zhang J, Luo S C, Oui L L. Poly(methyl methacrylate)-titania hybrid materials by sol-gel processing. J mater sci, 1997, 32: 1469.
    17. Z Sassi,J C Bureau, A Bakkali. Structual characterization of the organic/inorganic networks in the hybrid material (TMOS-TMSM-MMA), Vibrational Spectroscopy, 2002, 28:251-262
    18. Oh I S, Park N H, Suh K D, Mechanical and surface hardness properties of ultraviolet cured polyurethaneacrylate anionomer/silica composite film. J Appl Polym Sci, 2000, 75: 968-975.
    19. Hiroyo S, Kanayo T, Yasuhiko A, et al. Patterning of hybrid titania film using photopolymerization, Thin Solid Films, 2004, 466 : 48-53
    20. M E L Wouters, D P Wolfs, V D Linde, et aL Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method, Progress in Organic Coatings, 2004, 51:312-320
    21. Lee L H, Chen W C. Chem Mater 2001, 13:1137.
    22. Iwona Z G, Wlodzimierz M, Wieslaw S, Synthesis and properties of an inorganic-organic hybrid prepared by the sol-gel method,Optical Materials, 2004, 26:207-211
    23. O. Soppera, C. C Barghorn. Real-Time Fourier Transform Infrared Study of Free-Radical UV-Induced Polymerization of Hybrid Sol-Gel Ⅰ. Effect of Silicate Backbone on Photopolymerization Kinetics, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 716-724
    24. O. Soppera, C. C Barghom. Real-Time Fourier Transform Infrared Study of the Free-Radical Ultraviolet-Induced Polymerization of a Hybrid Sol-Gel Ⅱ. The Effect of Physicochemical Parameters on the Photopolymerization Kinetics, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 831-840
    25. Su W F, Yuan H K. High refractive index organic/inorganic hybrid materials prepared from polymerizable titanium/bismuth methacryl ethoxide, Polymer Preprints, Division of Polymer Chemistry, 2000, 41(1): 574-575
    26. M Yoshida, M lal, N D Kumar, P N Prasad. TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles, Journal of Materials Sciences, 1997, 32: 4047-4051
    27. Montes M, Getton F P, Vong M S, et al. Titania on Silica, A Comparison of Sol-Gel Routes and Traditional Methods, J Sol-gel.Sci. Technol, 1997, 8:131-137
    28. R C Mehrotra, R Bohra, Metal Carboxylates (Academic Press, London, 1983), p. 48.
    29. S Doeuff, M Henry, C Sanchez, J. Livage, J. Non-Cryst. Solids, 1987, 8:206
    30. D D Dunuwila, D Gagliardi, KA Berglund, Chem. Mater.1994, 6:1556
    31. A. Yasumori, K. Ishizu, S. Hayashi, and K. Okada, J. Mater.Chem, 1998, 8:2521
    32. ImaiH, Morimoto H, Tominaga A, et al. J.Sol-Gel Sci.Technol, 1997, 10:45
    33. Shultz, A. N, Jang, W, Hetherington, W. M., et al. Surf. Sci. 1995, 339:114.
    34. Sanjines, R, Tang H, Berger, H, et al. J. Appl. Phys. 1994, 75: 2945.
    35. Wang R, Hashimoto K, Fujishima A, et al. Adv. Mater. 1998, 10: 135.
    36. Sakai N, Wang R, FujishimaA, et al. Langmuir 1998, 14, 5918.
    37. Shannon R D, Pask, J A. J. Am. Ceram. Soc. 1965, 48: 391.
    38. Imai H, Morimoto H, Awazu K. Thin Solid Films. 1999, 351:91
    39. Imai H, Morimoto H, Tominaga A, et al. J.Sol-Gel Sci. Technol, 1997, 10:45
    40. Hirai S,Shimakage K, Sekiguchi M.. J.Am.Ceram.Soc, 1999, 82:2011-2016
    41. Makekawa S, Ohisi T, J.Non-cryst.Solids, 1992, 147:493-498
    1. Binnig G, Quate C F, Gerber C, Atomic force microscopy, Phys.Rev.Lett, 1986, 56: 930-933
    2. S A Zavyalov, A N Pivkina, J Schoonman, Formation and characterization of metal-polymer nanostructured composites, Solid State Ionic, 2002, 147:415- 419
    3. H Okudera, Y Y okogawa. Formation of TiO thin films by hydrolysis of Ti-tetraethoxide in ethanol: kinetics, surface morphology, constituent phases and their formation mechanism, Thin Solid Films, 2001, 44:124-130
    4. Y L Liu, C Y Hsu, W L Wei, R J Jeng.Preparation and thermal properties of epoxy-silica hybrid materialss from nanoscale colloidal silica, Polymer, 2003, 44:5159-5167
    5. G Y Wen, X Li, Y G Liao, L J An. Surface phase separations of PMMA/SAN blends investigated by atomic force microscopy, Polymer, 2003,44:4035-4045
    6. J Y Kim, H K Lee, S C Kim. Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy, Journal of Membrane Science, 1999, 163:159-166
    7. Matthew F. P. A comparison of atomic force microscope friction and phase imaging for the characterization of an immiscible polystyrene/poly(methyl methacrylate) blend film, Polymer,2003, 44:6345-6352
    8. K Fukui, S Sugiyama, Y Iwasawa. Atomic force microscopic study on thermal and UV-irradiative formation and control of Au nano-particles on TiO2(110) from Au(PPh3)(NO3), Phys. Chem. Chem. Phys., 2001, 3:3871-3877
    9. E. Radovanovic, E. Carone Jr, M.C. Goncalves, Comparative AFM and TEM investigation of the morphology of nylon6-rubber blends, Polymer Testing, 2004, 23:231-237
    10. T Yamamoto, M Hasegawa, A Kanazawa, et al. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquidcrystal films, J Mater. Chem., 2000, 10:337-342
    11. Mohammad A. Wahab I K, Chang S H, Microstructure and properties of polyimide / poly (vinylsilsesquioxane) hybrid composite films, Polymer, 2003, 44: 4705-4713
    12. A Karim, T M Slawecki, S K Kumar. Phase-Separation-Induced Surface Patterns in Thin Polymer Blend Films, Macromolecules, 1998, 31:857-862
    13. Hiroshi Sato, Takeshi Ohtsu, Isao Komasawa, Atomic Force Microscopy Study of Ultrafine Particles Prepared in Reverse Micelles. Journal of Colloid and Interface Science, 2000, 230: 200-204
    14. W C Chen, S J Lee, L H Lee, J L Lin, Synthesis and characterization of trialkoxysilane-capped poly (methyl methacrylate)-titania hybrid optical thin films, J. Mater. Chem., 1999,9:2999-3003
    15. S Kirsch, A Pfau, J Stubbs, D Sundberg, Control of particle morphology and film structures of carboxylated poly (n butylacrylate)/poly (methyl methacrylate) composite latex particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185: 725-737
    16. M N Xiong, B You, S X Zhou, L M Wu, Study on acrylic resin/titania organic-inorganic hybrid materials prepared by the sol-gel process, Polymer, 2004, 45: 2967-2976
    17. X P Luo, N Silikas, M Allaf, N H F Wilson, et al. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic,Surface Science, 2001, 491: 388-394
    18. F Tian, C Wang, Z Lin, J W Li, C L Bai. Surface morphology studies of in situ polycondensation microcomposites using atomic forcemicroscopy, Appl. Phys. A, 1998, 66: S591-S596
    19. J G Yu, Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method, Journal of Sol-Gel Science and Technology, 2002,24; 229-240
    20. Riedl K, Girard B W, Lencki R. JMembr Sci, 1998, 139: 155-166
    21. Hamza A, Chowdhury G, Matsuura T, et al. J Membr Sci, 1997, 129: 55-64
    22. Seung Y K, Min O Y, I1 Juhn Roh, et al. J Membr Sci, 1997, 132: 183-191
    23.Y F Gao, Y Masuda, Z F Peng. Room temperature deposition of a TiO_2 thin film from aqueous peroxotitanate solution, J. Mater. Chem., 2003,13: 608-613
    24. H P Lang, M Hegner, E Meyer, Ch Gerber. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology, Nanotechnology, 2002, 13: R29-R36
    25. Y Wang, R Song, Y S Li, J S Shen, Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers, Surface Science, 2003, 530: 136-148
    26. Viatcheslav F, Jack G, Sofia B, TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study, Journal of Membrane Science, 2002, 209: 283-292
    27. Li L, Chan C M, Li J X, Ng K M, Yeung K L, Weng L T. Macromolecules, 1999, 32: 8240.
    28. Knoll A, Magerle R, Krausch G. Macromolecules, 2001, 34: 4159.
    29. Stocker W, Beckmann J, Stadler R, Rabe JP. Macromolecules, 1996, 29: 7502.
    30. Konrad M, Knoll A, Krausch G, Magerle R. Macromolecules, 2000, 33:5518.
    31. McLean R S, Sauer B B. Macromolecules 1997, 30: 8314.
    32. Bar G, Thomann Y, Wangbo M H. Langmuir 1998, 14: 1219.
    1. Z W Zhao, B K Tay, G.Q Yu, Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique, Applied Optics, 2004, 43 : 1281-1285
    2. H. K. Pulker, "Thin Film Science and Technology," Vol. 6: Coatings on Glass (Elsevier, Amsterdam, 1984).
    3. B E Yoldas, T W Okeefe, Appl. Opt. 1979, 18: 3133.
    4. M. YOSHIDA, M. LAL, N. DEEPAK KUMAR, P. N. PRASAD, TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles, JOURNAL OF MATERLALS SCIENCE, 1997, 32: 4047-4051
    5. Su W F, Yuan H K, High refractive index organic/inorganic hybrid materials prepared from polymerizable titanium/bismuth methacryl ethoxide,American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 2000, 41(1): 574-575
    6. Yang S H, Nguyen T P, Le R D, et al. Optical and electrical properties of PPV/SiO_2 and PPV/TiO 2 composite materials, Composites Part A: Applied Science and Manufacturing, 2005, 36(4): 509-513
    7. Yu W N, Akhmad H, Xue J M, Wang J, et al. Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior, Journal of Materials Chemistry, 2003, 13(6): 1475-1479
    8. Smirnova T N, Sakhno O V, Bezrodnyj V I, Stumpe J. Nonlinear diffraction in gratings based on polymer-dispersed TiO_2 nanoparticles, Applied Physics B: Lasers and Optics, 2005, 80(8): 947-951
    9. Jakubiak R, Timothy J, Richard A, et al. Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials, Advanced Materials, 2003, 15(3): 241-244
    10. S Naoaki, T Yasuo, K Takashi. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,Applied Physics Letters, 2002, 81(22): 4121-4123
    11. Jakubiak R, Brown D P, Vatansever F, et al. Holographic Photopolymerization for Fabrication of Electrically Switchable Inorganic-Organic Hybrid Photonic Structures, Proceedings of SPIE - The International Society for Optical Engineering, 2003, 4991:89-97
    12. N S Allen, M Edge, T Corrades, et al.Stabiliser interactions in the thermal and photooxidation of titanium dioxide pigmented polypropylene films, Polymer Degradation and Stability, 1998, 61: 139-149
    13. Norman S. A, Michele E, Amaya O, et al. Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings, Polymer Degradation and Stability, 2002, 78:467-478
    14. Clayton J. Ultrafine titanium dioxide for wood finishes. Am Paint Coatings J, 1994, 6:49
    15. Vignolo C E. Some applications of ultrafine titanium dioxide. Eur Coat J 1995, 5:359
    16. Xiong M N, Zhou S X, You B O, et al. Effect of preparation of titania sol on the structure and properties of acrylic resin/titania hybrid materials,Journal of Polymer Science, Part B: Polymer Physics, 2004, 42(20): 3682-3694
    17. Warner S B, Patra P K, Kim Y K, et al. Nano-structured polymer coatings for ultraviolet protection, Materials Research Society Symposium-Proceedings, 2003, 788:589-594
    18. Allen, Norman S.; Edge, Michete; Ortega, Amaya; et al. Degradation and stabilisation of polymers and coatings: Nano versus pigmentary titania particles, Polymer Degradation and Stability, 2004, 85(3): 927-946
    19. Macyk W, Kisch H. Photosensitization of crystalline and amorphous titanium dioxide by platinum(Ⅳ) chloride surface complexes., Chemistry, 2001, 7(9): 1862-1867
    20. Allen N S, Sandoval G, Ortega A, et al.. Polym Degrad Stab 2002, 76: 305.
    21. Balfour J.G., J. Oil Colour Chem. Assoc.1990, 73: 478.
    22. C P A Dilks, TA Egerton, J. Mater Sci. 2000, 35: 5353.
    23. Allen N S, Edge M. Fundamentals of Polymer Degradation and Stabilization. Elsevier, 1992, London.
    24. Allen N.S., H. Katami,. Adv. Chem. Ser. 1996, 249: 537.
    25. Gugumus F. In: Scott G. ed. Mechanisms of Polymer Degradation and Stabilisation. Elsevier, 1990, London, pp. 169.
    26. K Leodidou, P Margraf, W Caseri, U W Suter, Polym. Adv. Technol. 1997, 8, 505.
    27. Gesenhues U. Polym. Deg. Stab. 2000, 68: 185.
    28 Hirai S, Shimakage K, Sekiguchi M. J.Am.Ceram.Soc., 1999, 82:2011-2016
    29. J M Hermann, J. Disdier, M.N. Mozanega, E Pichat, J. Catal. 1979, 60: 369.
    30. S.J. Pappas, R.M. Fischer, J. Paint. Technol. 1979, 46: 65.
    31. H.G. Voelz, G. Kaempf, H.G. Fitzky, A. Klaeren, in: S.P. Pappas, F.H. Winslow (Eds), ACS Symposium Series, vol. 151, ACS,Germany 1981, p. 163.
    32. R.B. Cundall, B. Hulme, R. Rudham, M.S. Salim, J. Oil. Colour Chem.1978, 61: 351.
    33. R.I. Bickley, R.K. Jayanti, Faraday Disc. Chem. Soc. 1974, 58: 194.
    34. S.G. Schrank, H.J. Jose, R F Moreira, J. Photochem. Photobiol. A.2002, 9:909
    35. Fairhurst D, Mitchnick M.A. Particulate sun blocks: general principles. In: N.J. Lowe, N.A. Shaath and M.A. Pathak (eds), Sunscreens: development, evaluation, and regulatory aspects (2nd ed, revised and expanded). Cosmetic Science and Technology, Series 15. Marcel Dekker, New York. 1997, pp. 313-352.
    36. S V Manorama, K Madhusudan Reddy, C V Gopal Reddy, Photostabilization of dye on anatase titania nanoparticles by polymer capping, Journal of Physics and Chemistry of Solids, 2002, 63:135-143
    37. Michael S, Franz W M, Cornelia D. Photo-physics of surface-treated titanium dioxides, Journal of Photochemistry and PhotobiologyA: Chemistry, 2002, 149:227-236
    38. R J Nussbaumer, W Caseri, T Tervoort, P Smith Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof, Journal of Nanoparticle Research, 2002,4:319-323
    39. S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B, 2000, 104: 9842-9850.
    40. E Konstantinova, J Weidmannand, T Dittrich, J. Porous Mater., 2000, 7: 389-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700