纳米粒子构建的电化学生物传感器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于生物识别的高度专一性与电化学信号检测的放大作用相结合的电化学生物传感器,具有灵敏度高、选择性好、易于微型化和自动化等优点,在生物分析和环境检测等领域具有广泛的应用前景。纳米材料具有特殊的结构以及由此产生的一系列独特的物理、化学性质,因此将纳米材料作为一种新型的生物传感介质应用于生物化学领域吸引了众多研究者的兴趣。电化学生物传感器的研制是纳米技术与生命科学的交叉,它可以在纳米尺度空间从分子层次上研究目标分子的结构与功能的关系,解决纳米技术在生物医学领域以及环境检测领域中的基础问题,发展新技术和新方法。
     本论文将生物化学、纳米技术和电分析化学理论和方法有机地结合起来,致力于研制新型纳米材料和纳米修饰电极(电化学传感器),以有机小分子掺杂SiO2、量子点以及基于金属卟啉的纳米粒子构建了一系列新型生物传感器,并将其应用生物信息分子及环境分析中农药的检测。全文共分四个部分:
     第一章绪论
     本部分综述了生物传感器、纳米材料的研究进展及特点、纳米材料在电化学生物传感器领域中的应用三部分。文中简要介绍了纳米材料特征、制备及表征等,着重介绍了纳米材料在电化学生物电分子方面的应用,提出了本论文研究工作的内容和意义。
     第二章有机小分子掺杂SiO2纳米材料在生物传感器技术中的应用研究
     我们利用反相微乳液技术将有机小分子掺杂于SiO2三维网状机构中,得到的纳米粒子用作电子媒介体制备电化学生物传感器,实现了对生物分子的电化学催化,并用于实际样品中生物分子的测定,获得了满意的结果。
     第一节壳聚糖固定TTF掺杂SiO2纳米粒子修饰生物传感器及其用于血液中葡萄糖检测的研究
     利用反相微乳液技术,通过正硅酸四乙酯的水解制备了掺杂有四硫富瓦烯(TTF)的SiO2(TTF@SiO2)纳米颗粒,制备的TTF@SiO2纳米粒子不仅具有良好的生物兼容性,而且作为电子传递介体的TTF分子掺杂于纳米二氧化硅颗粒的三维网状结构中,防止了介体(TTF)的流失,为传感器的长期稳定使用创造了条件。同时通过Si02表面的硅氧基与壳聚糖(CHIT)分子的氨基之间的共价键合作用,得到了基于TTF@SiO2-CHIT的稳定性能良好的复合膜。选择葡萄糖氧化酶作为研究对象,制得GCE/TTF@SiO2-CHIT-GOx生物传感器。在优化实验条件下测定葡萄糖的线性范围为1.0×10-5~5.0×10-3mol/L,检出限为5.0×10-6mol/L(S/N=3)。
     第二节中性红掺杂SiO:纳米粒子修饰的谷胺酸生物传感器用于大鼠脑渗析液中谷氨酸检测的研究
     将制得的NR@SiO2纳米颗粒与谷氨酸氧化酶(GluOx)混合,再通过戊二醛交联修饰于玻碳电极表面,得到以NR@Si02纳米颗粒为媒介体的谷氨酸生物传感器。该传感器克服了传统介体型传感器中介体易流失的缺点,而且提高了检测的灵敏度,与微渗析技术联用,成功地用于正常大鼠和患糖尿病大鼠脑中谷氨酸的检测。
     第三章PVP包裹CdS量子点用于电化学生物传感器的研究
     由于聚乙烯基吡咯烷酮(PVP)良好的生物兼容性,能够保持酶的生物活性;同时PVP是一种很好的分散剂、稳定剂、粒径调节剂,故利用PVP能有效制备粒径均匀、稳定的PVP-CdS量子点。基于纳米材料的尺寸效应,PVP-CdS量子点可作为构筑电化学生物传感器的优良材料。第一节PVP包裹CdS量子点修饰乙酰胆碱酯酶传感器的制备及其用于有机磷农药敌百虫的测定
     将制备的PVP-CdS量子点用于固定乙酰胆碱酯酶(AChE),制备了QCdS-PVP/AChE传感器。实验结果表明,QPVP-CdS对巯基乙酰胆碱(ATCh)具有良好的电催化作用。ATCh在该传感器上有良好的电流响应,并且该传感器具有良好的稳定性和灵敏度。我们将该传感器用于有机磷农药敌百虫的测定,在优化条件下,该传感器对敌百虫的检测限在5 min的温育时间为12 ppb。第二节PVP包裹CdS量子点修饰的尿酸生物传感器的制备及其用于人体尿样中尿酸含量的测定
     用PVP-CdS量子点将尿酸氧化酶固定于电极表面,固定在PVP-CdS量子点上的尿酸氧化酶分子能很好地保持它的生物活性。PVP-CdS量子点良好的导电性和独特的纳米结构有利于酶分子与电极之间的直接的电子传递过程。这项工作通过将酶直接固定在PVP-CdS量子点上构建了一种新型无电子传递媒介体的传感器,为生物分子尿酸的测定提供了一种新方法。第四章基于金属卟啉纳米粒子为电子媒介体的电化学生物传感器的研究
     金属卟啉因其优异的电化学及电催化性能被广泛用于电化学传感器。我们利用混合溶剂法制备了金属卟啉纳米粒子。纳米结构的金属卟啉不仅保持了金属卟啉良好的催化及电化学性质,而且由于比表面积大、表面反应活性高、催化效率高及吸附能力强等特性使其更有利于应用于电化学生物传感器的研究。第一节新型金属铁卟啉纳米粒子作为电子媒介体用于葡萄糖生物传感器的研究
     制备了金属铁卟啉(FeTPP)的纳米粒子,将此纳米颗粒和葡萄糖氧化酶(GOx)依次修饰于光玻碳电极表面,得到了以金属铁卟啉纳米颗粒为电子媒介体的葡萄糖生物传感器。考察了该传感器在优化的实验条件下对葡萄糖的响应特性,实验结果表明该传感器在pH为6.9的磷酸缓冲溶液(PBS)条件下对葡萄糖的线性检测范围为10μmol/L~2.1 mmol/L,检测下限为5.0μmol/L。第二节金属铁卟啉纳米粒子修饰的生物传感器及其用于鼠脑中次黄嘌呤含量测定的研究
     将利用混合溶剂法制备得到的金属铁卟啉(FeTPP)纳米颗粒和黄嘌呤氧化酶依次修饰于光玻碳电极表面,得到了以金属铁卟啉纳米颗粒为电子媒介体的次黄嘌呤生物传感器。考察了该传感器在优化的实验条件下对次黄嘌呤的响应特性,实验结果表明该传感器在pH为6.9的PBS 6.9条件下对次黄嘌呤的线性检测范围为2.0μmol/L~0.34 mmol/L,检测下限为1.0μmol/L,与微渗析采样技术结合,成功测定了大鼠脑中次黄嘌呤的含量。
     第三节锰卟啉纳米修饰乙酰胆碱酯酶传感器结合流动注射技术检测有机磷农药的研究
     本文将制备的金属锰卟啉(MnTPP)纳米粒子应用于乙酰胆碱酯酶(AChE)传感器的制备,制备成新型MnTPP纳米粒子修饰AChE生物传感器。考察了该传感器在优化实验条件下对巯基乙酰胆碱(ATCh)的响应特性,并与流动注射技术联用,成功检测了有机磷农药的含量。通过生物传感器对敌百虫、辛硫磷和乐果三种有机磷农药的测定,结果表明,农药的抑制百分率与农药浓度的对数在一定范围成线性关系。检测限定义为可检测到的抑制电流10%时农药的浓度,按照I10%计算,传感器对敌百虫、辛硫磷和乐果的检测限分别为0.5×10-9、5.0×10-8和1.0×10-7mol/L。该传感器灵敏度高,稳定性好,可快速、灵敏、准确、简便的应用于有机磷农药的含量的检测。
Electrochemical biosensors combining the specific recognition of biomaterials with the magnification function of electrochemical determination have the advantages of high-sensitivity, nice-selectivity as well as easy miniaturization and automation. They can be applied to a wide range of analytical tasks, such as bioassay, environmental monitoring and industrial analysis. Nanomaterials have special structure, which results in series of interesting physical and chemical properties. In our work, the nanomaterials and composite nanomaterials are used to construct the electrochemical biosensors by means of the combination of biochemistry and electrochemical methods and we aim to develop new types of biosensors based on nanomaterials for the purpose of improving the long-term stability and the higher sensitivity of biosensors. The details are summarized as follows:
    Chapter One: Preface
    A critical review with regard to the biosensor and nanotechnology is given. In particular, the application of nanotechnology into biosensors is highlighted. After being introduced nanomaterials, the physical and other attributes of biosensors can be improved and analyzing multiple components in vivo is becoming available.
    Chapter Two
    (1) Biosensor based on TTF@SiO_2 nanoparticles as electron transfer mediator
    for the determination of glucose
    In this section, tetrathiafulvalene (TTF) was doped in SiO_2 network and the nanocomposite was used as mediator for the selective detection of glucose. The uniform TTF doped silica (TTF@SiO_2) nanoparticles were prepared by a water-in-oil (W/O) micromulsion method, and were characterized by transmission electron microscopy (TEM). The core-shell of structure TTF@SiO_2 could prevent TTF from leaching out into the aqueous solutions. Combined with chitosan (CHIT), which served as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@SiO_2-CHIT-GO_x biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0×10~(-5) to 5.0 × 10~(-3) mol/L with the detection limit down to 5.0 μmol/L (S/N = 3). The excellent selectivity, sensitivity and stability
    of the glucose biosensor show the potential for practical applications.
    (2) Amperometric Sensor Based on Neutral Red-Doped Silica Nanoparticles
    Coupled with Microdialysis for the Measurement of Glutamate in the Rat
    Striatum
    Amperometric sensor based on neutral red-doped silica (NR@SiO_2) nanoparticles (NPs) was fabricated and coupled with a microdialysis sampling system for the detection of glutamate (Glu) in the rat striatum. The NR@SiO_2 NPs (about 45 ± 3 nm) were prepared with water-in-oil (W/O) microemulsion method, and characterized by transmission electron microscope (TEM) technique. The neutral red (NR) doped in silica network could maintain its high electroactivity and behave as an excellent electron mediator for electrocatalysis of hydrogen dioxide. Furthermore, the silica surface could prevent the leakage of NR, hence, the stability of biosensor was improved. The novel Glu biosensor showed a linear range from 5.0 × 10~(-7) to 1.5 × 10~(-4) mol/L, with a detection limit of 5.0 × 10~(-7) mol/L (S/N = 3).
    Chapter Three
    (1) Development of Quantum Dots Modified Acetylcholinesterase Biosensor for the Detection of Trichlorfon
    Poly (N-vinyl-2-pyrrolidone) (PVP)-capped CdS quantum dots (QCdS-PVP) was synthesized with CdCl_2 and Na_2S in the presence of PVP. QCdS-PVP has been used for the immobilization and stabilization of the acetylcholinesterase (AChE). The electrocatalytic activity of QCdS-PVP leads to a greatly improved electrochemical detection of the enzymatically generated thiocholine product. In addition, the sensitivity and the stability of the biosensor are also improved. The GCE/QCdS-PVP/AChE biosensor was used for the detection of organophosphate pesticides (OPs), such as trichlorfon. The sensor performance, including pH and inhibition time, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 12 ppb trichlorfon with a 5-min inhibition time.
    (2) CdS Quantum Dots Derived Reagentless Uric Acid Biosensor
    A reagentless uric acid (UA) biosensor based on uricase immobilized on PVP-CdS quantum dosts was developed. Direct electrochemistry and thermal stability of immobilized uricase were studied. PVP-CdS quantum dosts show an electrocatalytic activity to the oxidation of uric acid without the presence of an electron mediator. The current response showed a linear dependence on the uric acid concentration ranging from 5.0 μmol/L to 1.0 mmol/L with a detection limit of 2.0 μmol/L at 3a. The attractive features might be attributed to the unique PVP-CdS quantum dosts nanorods matrix, which provided a favorable microenvironment for enzyme loading. Such successful procedures in enzyme immobilization may lead to a novel method in biosensor construction.
    Chapter Four
    (1) Biosensor Based on Iron Porphyrin Nanoparticles for Amperometric Detection of Glucose
    A new type of iron (III) meso-tetraphenylporphyrin (FeTPP) nanoparticles (NPs) was synthesized and its application in glucose biosensor was described. A glassy carbon (GC) electrode was modified with the FeTPP NPs, and then the glucose oxidase (GOx) was coated on the FeTPP NPs-terminated layer by cross-linking BSA with GOx via glutaraldehyde. The biosensor prepared under optimal conditions, the biosensor showed a fast response time (3s), high sensitivity (3.43 mA mol~(-1) L cm~(-2)), long-term operational stability, good suppression of interference and low detection limit (5.0 μmol/L). A linear calibration plot was obtained in the wide concentration range from 10 μmol/L to 2.1 mmol/L. A possible mechanism for the operation of the glucose biosensor was also proposed. Furthermore, the level of glucose in rat brain was also detected in order to demonstrate the practical usage of this biosensor.
    (2) Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on iron (III) meso-tetraphenylporphyrin nanoparticles modified glassy carbon electrode
    The preparation and performance of hypoxanhine electrochemical biosensor, which was based on iron (III) weso-tetraphenylporphyrin (FeTPP) nanoparticles (NPs), is reported in this work. FeTPP NPs were prepared by mixing solvent techniques with diameters ca. 25 ~ 45 nm and were used as a mediator. The XOD/FeTPPNP/GC electrode exhibited good amperometric signal for Hx. The biosensor could detect the concentration of Hx up to 0.34 mmol/L with a detection limit of 1.0 μmol/L. The usefulness of this biosensor for the analysis of real samples was also demonstrated by determining Hx in rat brain dialysate coupled with microdialysis. (3) Amperometric biosensor based on immobilization acetylcholinesterase on manganese porphyrin nanoparticles for detection of organosphate pesticides with flow injection system
    A highly sensitive flow injection amperometric (FIA) biosensor for the detection of organophosphate pesticides (OPs) is developed. The biosensor was fabricated by immobilized acetylcholinesterase (AChE) on manganese (III) meso-tetraphenylporphyrin (MnTPP) nanoparticles (NPs)-modified glassy carbon (GC) electrode. The MnTPP NPs used in this article were synthesized by mixing solvent techniques. AChE enzyme was immobilized on the MnTPP NPs surface by conjugated with chitosan (CHIT). The electrocatalytic activity of MnTPP NPs led to a greatly improved performance for thiocholine (TCh) product detection. The developed AChE-CHIT/MnTPPNP/GC biosensor integrated with a flow injection system was used to monitor OPs. The sensor displayed a linear response over a concentration range of 1.0 × 10~(-9)mol/L~ 1.0 × 10~(-3) mol/L for trichlorfon with a detection limit of 0.5 × 10~(-9) mol/L, over a range 1.0 × 10~(-7) ~ 9.0 × 10~(-4) mol/L for phoxim with a detection limit of 5.0 × 10~(-4)mol/L, and a range 2.0 ×10~(-7) ~1.0 × 10~(-3) mol/L for dimethoate with a detection limit of 1.0 × 10~(-7) mol/L.
引文
[1] 吴辉煌 主编.电化学(21世纪化学丛书).北京:化学工业出版社,2004,119.
    [2] 金利通,全威,徐金瑞,方禹之.化学修饰电极.上海:华东师范大学出版社,1992.
    [3] Bakker, E. Anal. Chem. 2004, 76, 3285-3298.
    [4] Bakker, E.; Telting-Diaz, M. Anal. Chem., 2002, 74, 2781-2800.
    [5] 汪尔康 主编.21世纪的分折化学.北京:科学出版社,1999.p36,175,185,196,216,225.
    [6] 梁文平,庄乾坤 主编.分析化学的明天—学科发展前沿与挑战.北京:科学出版社,2003,p12,158,314-327,369.
    [7] [意]G.Milazzo,[美]Martin Blank合编,肖科 等译 梅慧生 等校.生物电化学(生物氧化还原反应),天津:天津科学技术出版社,1990,p313.
    [8] 汪尔康 主编,单孝全,常文保,梁文平 副主编.分析化学新进展.北京:科学出版社,2002,p3,14,455.
    [9] 彭图治,杨丽菊 编著.生命科学中的电分析化学.杭州:杭州大学出版社,1999,p126.
    [10] 司士辉编 著.生物传感器.北京:化学工业出版社,2003,p35.
    [11] Dong, S.; Chen, X. J Biotechnol. 2002, 82, 303-323.
    [12] Chen, J.; Miao, Y.; He, N.; Wu, X.; Li, S. Biotech. Adv. 2004, 22, 505-518
    [13] Alocilja, E. C.; Radke, S. M.. Biosens. Bioetectron. 2003, 18, 841-846.
    [14] Farce, M.; Barcelo, D. Trends. Anal Chem. 2003, 22, 299-310.
    [15] Purohit, H. J. J. Clean. Produ. 2003, 11,293-301.
    [16] Clark, L. C.; Lyons, J. C. Ann. N.Y.Acad. Sci., 1962, 102, 29-45.
    [17] Updike, S. J.; Hicks, G. P. Nature, 1967, 214, 986-988.
    [18] Sasso, S.; Pierce, R.; Walla, R.; Yacynych. A. Anal. Chem. 1990,62, 1111-1117.
    [19] Malitesta, C.; Palmisano, F.; Torsi, L.; Zambonin. P. Anal Chem. 1990, 62, 2735-2740.
    [20] Zhang, Y.; Hu, Y.; Wilson, G. S.; Moati-Sirat, D.; Poitout, V.; Reach, G. Anal. Chem. 1994,66, 1183-1188.
    [21] Newman, J.; White, S.; Tothill, I.; Turner. A. P. Anal. Chem.1995, 67, 4594-4599.
    [22] Karaykin, A.; Gitelmacher, O.; Karaykina. E. Anal. Chem. 1995, 67, 2419-2423.
    [23] Chi, Q.; Dong. S. Anal. Chim. Acta 1995, 310,429-436.
    [24] Wang, J.; Wu. H. J. Electroanal. Chem.1995, 395, 287-291.
    [25] Cass, A .E.G.; Davis, G.; Francis, G. D.; Hill, H.A.O.; Aston, W. J.; Higgins, U.; Plotkin, E. V.; Scott, L. D. L.; Turner. A. P. F. Anal. Chem. 1984, 56, 667-671.
    [26] Zen, J. M.; Lo, C. W. Anal. Chem. 1996, 68, 2635-2640.
    [27] Gorton, G.; Csoregi, E.; Dominguez, E.; Emneus, J.; Jonsson Petersson, G.; Marko-Varga, G.;Persson, B. Anal. Chim. Acta 1991, 250, 203-248.
    [28] Hale, P. D.; Boguslavsky, L. I.; Inagaki, T.; Karan, H. I.; Lee, H. S.; Skotheim, T. A.;Okamoto, Y. Anal. Chem. 1991, 63, 677-682.
    [29] Hale, P. D.; Inagaki, T.; Karan, H. I.; Okamoto, Y.; Skotheim. T. A. J. Am. Chem. Soc.1989,111, 3482-3484.
    [30] Pandy, P.C.; Glazier, S.G.; Weetatl. H. H. Anal. Biochem.1993, 214, 233-237.
    [31] Umana, M.; Waller, J. Anal. Chem.1986, 58, 2979-2983.
    [32] Hendry, S. P.; Cardosi, M .F.; Neuse, E. W.; Turner. A. P. F. Anal. Chim. Acta 1995, 281,453-459.
    [33] Luong, J. H. T.; Masson, C.; Brown, R. S.; Male, K. B.; Nguyen. A. L. Biosens. Bioelectron. 1994, 9, 577-584.
    [34] Wring, S. A.; Hart, J. P.; Birch. B. J. Analyst, 1989, 114, 1563-1570.
    [35] Li, J.; Tan, S. N.; Ge. H. Anal. Chim. Aeta, 1996, 335, 137-145.
    [36] Shulga, A. A.; Koudelka-Hep, M.; Rooij, N. F. Anal Chem., 1994, 66, 205-210.
    [37] Katrlik, J.; Brandsteter, R.; Svorc, J.; Rosenberg, M.; Mierms, S. Anal, Chim. Acta 1997, 356,217-224.
    [38] Wang, J.; Golden, T. Anal. Chim. Acta 1989, 217, 343-351.
    [39] Leech, D.; Wang, J.; Smyth, M. R. Analyst 1990, 115, 1447-1450.
    [40] Gregg, B.A.; Heller, A. Anal. Chem. 1990, 62, 258.
    [41] Ni, F.; Feng, H.; Gorton, L.; Coton, T. M. Langmuir 1990, 6, 66-73.
    [42] Karyakin, A. A.; Karyakina, E. E.; Schuhrnann, W.; Schmidt, H. L.; Varfolomeyev, S. D. Electroanalysis1994, 6, 821-829.
    [43] Schlereth, D. D.; Katz, E.; Schmidt, H. L. Electroanalysis 1994, 6, 725-734.
    [44] Persson, B.; Gorton, L. J. EIectroanal. Chem.1990, 292, 115-138.
    [45] Persson, B.; Lan, H. L.; Gorton, L.; Okamoto, V.; Hale, P. D.; Boguslavsky, L. I.; Skotheim, T. Biosens. Bioelectron. 1993, 8, 81-88.
    [46] Oing, J.; Liu, Y.; Liu, H.; Yu, T.; Deng, J. Biosens. Bioelectron. 1997, 12, 1213-1218.
    [47] Lima Filho, J. L.; Pandy, P. C.; Weetall, H. H. Biosens. Bioelectron.1996, 11, 719-723.
    [48] Niu, J.; Lee, J.Y. Anal. Commun.1999, 36, 81-83
    [49] Cenas, N. K.; Kulys, J. J. Bioelectrochem. Bioenerg.1981, 8, 103-113.
    [50] Cooper, J. M.; Greenough, K. R.; McNeil, C. J. Eletroanal Chem, 1993, 347, 267.
    [51] Wollenberger, U.; Wang, J.; Ozsoz, M.; Gonzalez Romero, E.; Scheller, F.; Bioelectroehem. Bioenerg. 1991, 26, 287.
    [52] Jonsson, G.; Gorton, L. Electroanalysis 1959, 1,465.
    [53] Fortier, G.; Brassard, E.; Belanger, D. Biosens. Bioelectron. 1990, 5, 473-490.
    [54] Yang, Q.; Atanasov, P.; Wilkins, E. Biomed. Instrum. Technol. 1997, 31, 54-62.
    [55] Curulli, A.; Carelli, I.; Trischitta, O.; Palleschi, G.. Biosens. Bioelectron. 1997, 12,1043-1045.
    [56] Wang, J. Electroanalysis 2001, 13, 983-988.
    [57] Wu, B. L.; Zhang, G. M.; Zhang, Y.; et al. Anal. Biochem. 2005, 340, 181-183.
    [58] Baeumner, A. J.; Schlesinger, N. A.; Slutzki, N. S.; et al. Anal, Chem. 2002, 74, 1442-1448.
    [59] Willner, I.; Shabtai, V. H. J. Am. Chem. Soc. 1996, 118, 10321-10322.
    [60] Pasco N, Jeffries C, Davies Q, et al. Biosens. Bioelectron. 1999, 14,171-178.
    [61] Guilbault G G, Lubrano G J, Kauffmann J M, et al. Anal. Chim. Acta 1998, 206, 369-374.
    [62] Lei, Y.; Mulchandani, P.; Chen, W.; Mulchandani, A. J. Agric. Food Chem. 2005, 53,524-527.
    [63] Volpe G, Mascini M. Talanta, 1996, 43,283-289.
    [64] Karube, I.; Okada, T.; Suzuki, S.; et al. European Journal of Applied Microbiol Biotechnology, 1982, 15, 127-132.
    [65] Tamiya, H. S. E.; Karube, I. Anal.Chim. Acta 1987, 199, 85-91
    [66] Mazzei, F.; Botre, F.; Montilla, S.; et al. J. Electroanal. Chem. 2004, 574, 95-100.
    [67] Campanella, L.; Cocco, R.; Sammartino, M. P.; et al. Science Total Environment 1992, 123-124 (12): 1-16.
    [68] Kata, E.; Andress, F. J. Am. Chem. Soc. 2001, 123, 10752-10753.
    [69] Abdullat, I. M.; Battah, A.H.; Hadidi, K.A. Forensic Science International 2006, 162,126-130.
    [70] Jaegfeldt, H.; Torstensson, A.; Gorton, L.; Johansson, G. Anal, Chem. 1981, 53, 1979-1982.
    [71] Hodak, J.; Etchenique, R.; Calvo, E. J.; Singhal, K.; Bartlett. P. N. Langmuir 1997, 13,2708-2716.
    [72] Wang, J.; Chen, L.; Jiang, M.; Lu, F. Anal. Chem. 1999, 71, 5009-5011.
    [73] Fortier, G.; Vaillancourt, M.; Belanger, D. Electroanalysis 1992, 4, 275-285.
    [74] Konash, A.; Magner, E. Anal, Chem, 2005, 77, 1647-1654.
    [75] Mcquade, D.T.; Pullen, A.E.; Swager, T. M. Chem. Rev. 2000, 100, 2537-2574.
    [76] Filipiak, M.; Fludra, K.; Goscimiaka, E. Biosens. Bioelectron. 1996, 11,335-364.
    [77] Lanniello, R. M.; Yacynych, A. M. Anal. Chem. 1981, 53, 2090-2095.
    [78] Rockel, H.; Huber, J.; Gleiter, R.; Schuhmann, W. Adv. Mater.1994, 6, 568-571.
    [79] Welzel, H. P.; Kossmehl, G.; Engelmann, G.; Neumann, B.; Wollenberger, U.; Scheller, F.; Schroder, W. Macromol. Chem. Phys.1996, 197, 3355-3363,
    [80] Oyama, N.; Ohsaka, T.; Mizunuma, M.; Kobayashi, M. Anal. Chem. 1988, 60, 2534-2536.
    [81] Khan, G. F. Biosens. Bioelectron. 1996, 11, 1221-1227.
    [82] Nath, N.; Chilkoti, A. Anal. Chem., 2002, 74, 504-509.
    [83] Chan, S; Homer, S. R.; Fauchet, P. M.; Miller, B. L. J. Am. Chem. Soc. 2001, 123,11797-11798.
    [84] Santra, S.; Zhang, P.; Wang, K. M.; Tapec, R.; Tan, W. H. Anal. Chem. 2001, 73, 4988-4993,
    [85] Soukka, T.; Harma, H.; Paukkunen, J; Lovgren, T. Anal. Chem. 2001, 73, 2254.
    [86] Shenton, W.; Davis, S. A.; Mann, S. Adv. Mater.1999, 11, 449.
    [87] Schobel, U.; Coille, I.; Brecht, A.; Steinwand, M.; G auglitz, G. Anal. Chem. 2001, 73, 5172.
    [88] Chen, J. R.; Miao, Y. Q.; He, N. Y.; Wu, X. H.; Li, S. J. Biotechnol. Adv. 2004, 22, 505-518.
    [89] Martin, C. R.; Mitchell, D. T.; Anal. Chem. 1998, 322A.
    [90] Topoglidis, E.; Astuti, Y.; Duriaux, F.; Grdtzel, M.; Durrant, J. R.; Langmuir 2003, 19, 6894-6900.
    [91] Chi, Q. J.; Zhang, J. D.; Dong, S. J.; Wang, E. K. Electrochimi. Acta.,1994,39, 2431-2438.
    [92] Fan, C. H.; Suzuki, I.; Chen, Q.; Li, G. X.; Anzai, J. Anal. Lett. 2000, 33, 2631-2644.
    [93] Rusling, J. F.; Nassar, A. E. F. J. Am. Chem. Soc. 1993, 115, 11891-11897.
    [94] Chatopadhyay, K.; Mazumdar, S. Bioelectrochemistry 2000, 53, 17-24.
    [95] Yang, J.; Hu, N. F. Bioelectrochem. Bioenerg. 1999, 48, 117-127.
    [96] Liu, H. Y.; Wang, L. W.; Hu, N. F. Electrochimi. Acta, 2002, 47, 2515-2523.
    [97] Huang, R.; Hu, N. F. Bioelectroehemistry 2001, 54, 75-81.
    [98] Hu, Y. J.; Hu, N. F.; Zeng, Y. H. Talanta 2000, 50, 1183-1195
    [99] Lvov, Y. M.; Lu, Z. Q.; Schenkman, J. B.; Zu, X. L.; Rusling, J. F. J. Am. Chem. Soc. 1998,120, 4073-4080.
    [100] Huang, R.; Hu, N. F. Biophysi. Chem. 2003, 104,199-208.
    [101] Ferri, T.; Poscia, A.; Santucci, R. Bioelectrochem. Bioenerg. 1998, 45, 221-226.
    [102] 董绍俊,车广礼,谢远武,《化学修饰电极》,科学出版社,2003,2.
    [103] Shipway, A. N.; Katz, E.; Willner, I, Chem. Phys. Chem. 2000, 1, 18.
    [104] Shipway, A. N.; Willner, I. Chem. Commun. 2001, 2035.
    [105] Shipway, A. N.; Lahav, M.; Willner, I. Adv. Mater. 2000, 12, 993.
    [106] Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F.; Willner, I. Science, 2003, 299, 1877.
    [107] C. Retna Raj, Takeyoshi Okajima, Takeo Ohsaka, J. Electroanal. Chem. 2003, 543, 127.
    [108] Zhao, J.; Henkens, R. W.; Stonehuemer, J. J. Electroanal. Chem., 1992, 327, 109-119.
    [109] Yi, X,; Ju, H. X.; Chen, H. Y.Anal. Biochem. 2000, 278, 22-28.
    [110] Liu, S. Q.; Ju, H. X. Anal. Biochem. 2002, 307,110-116.
    [111] Gan, X.; Liu, T.; Zhong, J.; Liu, X.; Li. G. Chembiochem.2004, 5, 1686-1691.
    [112] Morales, A.; Cespedes, F.; Munoz, J.; Martinez-Fabregas, E.; Alegret, S. Anal. Chim. Acta 1996, 332, 131-138.
    [113] You, T. Y.; Niwa, O.; Kurita, R.; Iwasaki, Y.; Hayashi, K.; Suzuki K.; Hirono, S. Electroanalysis, 2004, 16, 54.
    [114] Mirsky, V. M. Ultrathin Electrochemical Chemo-and Biosensors, 2004.
    [115] Zhu, M.; Liu, M.; Shi, G.; X u, F.; Ye, X.; Chen, J.; J in, L.; J in, J. Anal. China. Acta. 2002,455,199.
    [116] Forzani, E. S.; Zhang, H.; Nagahara, L. A.; Analani, I.; Tsui, R.; Tao, N. J. Nano. Lett. 2004,4, 1785.
    [117] Ramanathan, K.; Bangar, M. A.; Yun, M.; Chen, W.; Mulchandani, A.; Myung, N. V. Nano.Lett. 2004, 4, 1237.
    [118] Iijima, S. Nature 1991, 354, 56-58.
    [119] Iijima, S.; Ichihashi, T. Nature 1993, 363,603-605.
    [120] Wang, J. Electroanalysis 2005, 17, 7-14.
    [121] Patolsky, F.; Weizmann, Y.; Willner, I. Angew Chem. Int. Ed., 2004, 43, 2113-2117.
    [122] Zhao, G. C.; Zhang, L.; Wei, X. W.; Yang, Z. S. Electrochem. Commun. 2003, 5, 825-829.
    [123] Cai, C. X.; Chen, J. Anal. Biochem. 2004, 325, 285-292.
    [124] Wang, J. X.; Li, M. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N. Anal. Chem. 2002, 74, 1993-1997.
    [125] Wang, G.; J. J. Xu, H. Y. Chen, Electrochem. Commun. 2002, 4, 506-509.
    [126] Wang, S. G.; Zhang, Q.; Wang, R. L.; Yoon, S. F. Biochem. Biophys. Res. Commun. 2003,311, 572-576.
    [127] Wang, L.; Wang, J. X.; Zhou, F. M. Electroanalysis, 2004, 16, 627-632.
    [128] Zhao, Q.; Zhan, D.; Ma, H.; Zhang, M.; Zhao, Y.; Jing, P.; Zhu, Z.; Wan, X.; Shao, Y.;Zhuang, Q. Front. Biosci. 2005, 10, 326-334.
    [129] Rochette, J. F.; Sacher, E.; Meunier, M.; Luong, J. H. Anal. Biochem.2005, 336, 305-311
    [130] Gooding, J. J.; Wibowo, R.; Liu, J. Q.; Yang, W.; Losic, D.; Orbons, S.; Mearns, F. J.;Shapter, J. G.; Hibbert, D. B.J. Am. Chem. Soc. 2003, 125, 9006.
    [131] Yu, X.; Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F.; Rusling, J. F. Electrochem Commun. 2003, 5, 408.
    [132] Hrapovic, S.; Liu, Y.; Male, K.; T. Luong, J. H. Anal. Chem. 2004, 76, 1083.
    [133] Guerente, L. C.; Cosnier, S.; Labbe, P. Chem. Mater. 1997, 9, 1348-1352.
    [134] Zhang, Y.; He, P. L.; Hu, N. F. Electrochim. Acta 2004, 49,1981-1988.
    [135] Qu, X. G.; Dong, X. T.; Cheng, Z. Y.; Lu, T. H.; Dong, S. J. J. Molecule Catalysis A:Chemical 1996,106,1-5.
    [136] Popescu, C.; Zeterberg, G.; Gorton, L. Biosens. Bioelectron. 1995, 10, 443-461.
    [137] Lutz, M.; Burestedt, E.; Emneus, J.; Liden, H.; Gobhadi, S.; Gorton, L.; Varga, G. M. Anal. Chim. Acta 1995, 305, 8-17.
    [138] Ikeda, O.; Ohtani, M.; Yamaguchi, T.; Komura, A. Electrochim. Acta 1998, 43,833-839.
    [139] Palecek, E.; Fojta, M. Anal Chem. 2000, 73, 75A.
    [140] Gooding, J. J. Electroanalysis 2002, 14, 1149.
    [141] Wang, J.; Xu, D.; Kawde, A. N.; Polsky, R. Anal. Chem. 2001, 73, 5576.
    [142] Authier, L.; Grossiord, C.; Brossier, P.; Limoges, B. Anal. Chem. 2001, 73, 4450.
    [143] Dequaire, M.; Degrand, C.; Limoges, B. Anal. Chem. 2000, 72, 5521.
    [144] Cai, H.; Xu, Y.; Zhu, N.; He, P.; Fang, Y.Analyst 2002, 127, 803.
    [145] Wang, J.; Liu, G.; Merkoci, A. Anal. Chim. Acta 2003, 482, 149.
    [146] Wang, J.; Liu, G.; Merkoci, A. J. Am. Chem. Soc. 2003, 125, 3214.
    [147] Liu, G.; Wang, J.; Kim, J.; Jan, M. R.Anal. Chem. 2004, 76, 7126-7130.
    [148] Zhu, N.; Zhang, A.; He, P. G.; Fang, Y. Z. Analyst, 2003,128, 260-264.
    [149] Wang, J.; Liu, G. D.; Merkoci, A. Anal. Chim. Acta, 2003, 482, 149-155.
    [150] Cai, H.; Zhu, N.; Jiang, Y.; He, P.; Fang, Y. Biosensens. Bioelectron., 2003, 18, 1311-1319.
    [151] Wang, J.; Xu, D.; Polsky, R. J Am. Chem. Soc., 2002, 124, 4208.
    [152] Thomas, J. H.; Kim, S. K.; Hesketh, P. J.; Halsall, H. B.; Heineman, W. R. Anal. Biochem. 2004, 328,113-122.
    [153] Wang, J.; Xu, D.; Kawde, A. N.; Polsky, R. Anal. Chem. 2001, 73, 5576-5581.
    [154] Wang, J.; Polsky, R.; Danke, X. Langmuir 2001,17, 5739-5741.
    [155] Wang, J.; Xu, D.; Polsky, R. J. Am. Chem. Soc. 2002,124, 4208-4209
    [156] Patolsky, F.; Zheng, G.; Hayeden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. Proc. Natl. Acad. Sci. USA 2004, 101, 14017.
    [157] Ramanathan, K.; Bangar, M. A.; Yun, M.; Chen, W.; Myung, N. V.; Mulchandani, A. J. Am. Chem. Soe. 2005, 127, 496-497.
    [158] Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Shi Kam, N. W.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. USA 2003, 100, 4984.
    [159] Wang, J.; Liu, G.; Jan, M. J. Am. Chem. Soc. 2004, 126, 3010.
    [160] Wang, J.; Kawde, A.; Mustafa, M. Analyst 2003, 128, 912.
    [161] Li, J.; Ng, H. T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Meyyappan, M. Nano. Lett. 2003, 3, 597.
    [162] Koehne, J. E.; Chen, H.; Cassell, A. M.; Yi, Q.; Han, J.; Meyyappan, M.; Li, J. Clin. Chem. 2004, 50, 1886.
    [1] Zhang, S.; Wang, N.; Niu, Y.; Sun, C. Sens. Actuators B, 2005, 109, 367-374.
    [2] Bharathi, S.; Nogarni, M. Analyst, 2001, 126(11), 1919-1922.
    [3] Lim S H, Wei J, Lin J Y, et al. Biosens. Bioelectron., 2005, 20(11), 2341-2346.
    [4] Liu, S.; Chen, A. Langmuir, 2005, 21, 8409-8413.
    [5] Kim, K.; Kim, H. S.; Park, H. K. Langmuir, 2006, 22(19), 8083-8088.
    [6] Evans, S. A. G.; Elliott, J. M.; Andrews, L. M.; Bartlett, P. N.; Doyle, P. J.; Denuault, G. Anal. Chem. 2002, 74, 1322-1326.
    [7] Free, M.; Free, H. Anal. Chem. 1984, 56, 664.
    [8] Reach, G.; Wilson, G. S. Anal, Chem., 1992, 64, 381A.
    [9] Brousseau, L. C. Ⅲ; Zhao, Q.; Shultz, D.; et al., J. Am. Chem. Soc. 1998, 120, 7645.
    [10] Favier, F.; Erich, C. W.; Zach, M. P. etal., Science, 2001, 293,-2227.
    [11] Li, C. Z.; He, H. X.; Bogozi, A.; et al., Appl. Phys. Lett., 2000, 76, 1333.
    [12] Kong, J.; Franklin, N. R.; Zhou, C. W.; et al., Science, 2000, 287, 622
    [13] Cui, Y.; Wei, Q.; Park, H.; et al., Science, 2001, 293, 1289.
    [14] Bogozi, A.; Lam, O.; He, H. X.; et al., J. Am. Chem. Sot., 2001,123, 4585.
    [15] Hahm, J.; Lieber, C. M. Nano Lett., 2004, 4, 51.
    [16] Few, J.; Hill, H. A. Anal. Chem., 1987, 59, 933A.
    [17] Morris, N.A.; Cardosi, M. F.; Birch, B. J.; et al., Electroanalysis, 1992, 4, 1.
    [18] Green, M.; Hilditch, P. Anal. Proc., 1991, 28, 374.
    [19] Francesco, P.; Pier, G. Z.; Diego, C.; et al., Anal. Chem., 2002, 74, 5913.
    [20] Campuzano, S.; Gálvez, R.; Pedrero, M.; et al., Anal, Bioanal. Chem., 2003, 377, 600.
    [21] Campuzano, S.; Gálvez, R.; Pedrero, M.; et al., J Electoanal. Chem., 2002, 526, 92.
    [22] Qhobosheane, M. ; Santra, B. ; Zhang, P. ; et al., Analyst, 2001,126, 1274.
    [23] Krajewska, B. Acta Biotechnol., 1991, 11,269.
    [24] Spagna, G.; Andreani, F.; Salatelli, E.; et al., Process Biochem., 1998, 33, 57.
    [25] Tan, X. C.; Zhai, H. Y.; Li, Y. et al., Chem. J. Chinese Universities, 2004, 25, 1645.
    [26] Arriagada, F. J. ; Osseo-Asare, K. JColloid Interf Sci., 1999, 211,210.
    [27] Petit-Dominguez, M, D.; Shen, H.; Heineman, W. R.; Seliskar, C. J. Anal. Chem., 1997, 69,703.
    [28] Campuzano, S.; Galvez, R.; Pedrero, M.; et al., J Electroanal Chem., 2002, 526, 92.
    [29] Wendszinski, F.; Grundig, B.; Rermeberg, R.,, et al., Biosen. BioeIectron., 1997, 12, 43.
    [30] Céspedes, F., Martínez-Fáibregas, E.; Alegret, S. Electroanalysis, 1994, 6, 759.
    [31] Brown, R. S.; Male, K. B.; Luong, J. H. T. Anal. Biochem. 1994, 222,131.
    [32] Bhadriraju, K.; Chen, C. Drug Diseov. Today, 2002, 7, 612.
    [33] Burmeister, J.; Pomerleau, F.; Palmer, M.; Day, B.; Huettl, P.; Gerhardt, G. J. Neurosci. Meth. 2002, 119, 163.
    [34] Finnie, J.W. Aust. Vet. J., 2001, 79, 628.
    [35] Karyakin, A. A.; Karyakina, E. E.; Gorton, L. Anal Chem. 2000, 72, 1720.
    [36] Niwa, O.; Torimitsu, K.; Morita, M.; Osborne, P.; Yamamoto, K. Anal. Chem. 1996, 68, 1865.
    [37] Cordek, J.; Wang, X.; Tan, W. Anal. Chem. 1999, 71, 1529.
    [38] Bemers, M.; Boutelle, M.; Fillenz, M. Anal. Chem. 1994, 66, 2017.
    [39] Paul P, Werner G K. Anal. Chem. 1993, 65, 623- 630.
    [40] Kulagina, N. V.; Shankar, L.; Michael, A. C. Anal. Chem. 1999, 71, 5093.
    [41] Poitry, S.; Poitry-Yamate, C.; Innocent, C.; Cosnier, S.; Tsacopoulos, M. Electrochim. Acta, 1997, 42, 3217.
    [42] O'Neill, R. D.; Chang, S.-C.; Lowry, J. P.; McNeil, C. J. Biosens. Bioelectron. 2004, 19, 1521.
    [43] Hirano, A.; Moridera, N.; Akashi, M.; Saito, M.; Sugawa, M. Anal Chem. 2003, 75, 3775.
    [44] Daisuke, O. J. Neurosci. Methods 2000, 101, 85.
    [45] Chen, S. M.; Lin, K. C. J. Electroanal. Chem. 2001, 511,101.
    [46] Arkady, A.K.; Yulia, N.I.; Elena, E.K. Electrochem. Commun. 2003, 5, 677.
    [47] Creager, S.E.; Marks, G.T.; Aikens, D.A.; Richtol, H.H.J. Electroanal. Chem. 1983, 152,197.
    [48] Vicente, F.; Roig, A.; Garcia-Jarefio, J.J.; Trijueque, J.; Navarro-Laboulais, J.; Scholl, H. Port. Electrochim. Acta 1995, 13, 137.
    [49] Luo, X.L.; Xu, J.J.; Zhao, W. ; Chen, H.Y. Sens. Actuators, B 2004, 9, 249.
    [50] Chen, Z.J. ; Ou, X.M. ; Tang, F.Q. ; Jiang, L. Colloids Surf, B: Biointerf 1996, 7, 173.
    [51] Bao, X. M.; Su, Y. The Stereotaxic Atlas of the Rat Brain, People's Healthy Press, Beijing, China, 1991.
    [52] Sun, Y.X., Ye, B. X., Zhang, W.M., Zhou, X.Y. Anal. Chim. Acta, 1998, 363, 75.
    [53] Walker, M. C.; Galley, P. R.; Errington, M. L.; Shorvon, S. D.; Jefferys, G. R. J. Neurochem.1995, 65, 725.
    [54] Lada, M.; Kennedy, R.T.J. Neurosci. Methods 1995, 63, 147.
    [55] Kulagina, N. V.; Shankar, L.; Michael, A. C. Anal. Chem., 1999, 71, 5093.
    [56] Stover, J. F.; Lowitzsch, K.; Kempski, O. S. Neurosci. Lett. 1997, 238, 25.
    [1] Nakaoka, Y.; Nosaka, Y. Langmuir, 1997, 13, 708.
    [2] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Science 1998, 281, 2013.
    [3] Chan, W. C., W.; Nie, S. M. Science 1998, 281, 2016.
    [4] Willner, I.; Patolsky, F.; Wasserman, J. Angew.Chem., Int. Ed. 2001, 40, 1861.
    [5] Mitchell, G. P.; Mirkin, C.A.; Letsinger, R.L.J. Am.Chem. Soc. 1999, 121, 8122.
    [6] Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000,405, 665.
    [7] Wang, D.; Rogach, A. L.; Caruso, F.; Nano. Lett. 2002, 2, 857.
    [8] Ding, S.Y.; Jones, M.; Tucker, M. P.; Nedeljkovic, J. M.; Wall, J.; Simon, M. N.; Rumbles, G.; Himmel, M. E. Nano. Lett. 2003, 3, 1581.
    [9] Sapsford, K.E.; Medintz, I. L.; Golden, J. P.; Deschamps, J.R.; Uyeda, H.T.; Mattoussi, H. Langrnuir 2004, 20, 7720.
    [10] Jones, M.; Nedeljkovic, J.; Ellingson, R. J.; Nozik, A. J.; Rumbles, G. J. Phys. Chem. B. 2003, 107, 11346.
    [11] Thantu, N. J. Luminescence 2005, 111, 17.
    
    [12] Chen, Y.; Rosenzweig, Z. Nano Lett. 2002, 2, 1299.
    
    [13] Wang, J.; Xu, D.K.; Polsky, R. J. Am. Chem. Soc. 2002,124, 4208.
    
    [14] Wang, J.; Liu, G.D.; Rivas, G. Anal. Chem. 2003, 75, 4667.
    
    [15] Vossmayer T, Katsikas L, Giersig M, Popovic I. G.; Diesner K, Chemseddine, A.; Eychmulier, A.; Weller, H. J. Phys. Chem. 1994, 98, 7665-7673.
    
    [16]Peng, X.; Manna, L.;Yang, W.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59-61
    
    [17]Chang, A.; Pfeifer, W. F.; Guillaume, B.; Baral, S.; Fendler, J. H. J. Phys. Chem.1990, 94, 4284-4289.
    
    [18] Kaneda, Y.; Tsutsumi, Y.; Yoshioka, Y.; Kamada, H.; Yamamoto, Y.; Kodaira, H.; Tsunoda, S.; Okamoto, T.; Mukai, Y.; Shibata, H.; Nakagawa, S.; Mayumi, T. Biomaterials 2004, 25, 3259.
    
    [19] Ahuja, S. K.; Ferreira, G. M.; Moreira, A. R. Crit. Rev. Biotechnol. 2004, 24, 125-154.
    
    [20] Terry, L. A.; White, S. F.; Tigwell, L. J. J. Agric. Food Chem. 2005, 53, 1309-1316.
    
    [21] Snejdarkova, M; Svobodova, L.; Nikolelis, D. P.; Wang, J.; Hianik, T. Electroanalysis 2003, 14, 1185.
    
    [22] Liu, B.; Yang, Y. H.; Wu, Z. Y.; Wang, H.; Shen, G. L.; Yu, R. Q. Sens. Actuators B 2005, 104, 186.
    
    [23] Mulchandani, A.; Kaneva, I.; Chen, W. Anal. Chem. 1998, 70, 5042.
    [24] Wang, J.; Mulchandani, A.; Chen, L.; Mulchandani, P.; Chen, W. Anal. Chem. 1999, 71, 2246.
    
    [25] Mulchandani, A.; Mulchandani, P.; Kaneva, I.; Chen, W.Anal. Chem. 1998, 70, 4140.
    
    [26] Sole, S.; Merkoci, A.; Alegret, S. Crit. Rev. Anal. Chem. 2003, 33, 89.
    [27] Sotiropoulou, S.; Fournier, D.; Chaniotakis, N. A. Biosens. Bioelectron. 2005, 20, 2347.
    [28] Lin, Y.; Lu, F.; Wang, J. Electroanalysis 2004,16, 145.
    [29] Joshi, K.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchandani, A. Electroanalysis 2005, 17, 54.
    
    [30] Jeanty, G.; Ghommidh, C; Marty, J. L. Anal. Chim. Acta 2001, 436, 119.
    [31] Marty, J. L.; Mionetto, N.; Lacote, S.; Barcelo, D.Anal. Chim. Acta 1995, 311, 265.
    [32] Liu, G. D.; Lin Y. H. Anal. Chem. 2006, 78, 835.
    [33] Hart, J. P.; Hartley, I. C. Analyst 1994,119, 259.
    [34] Halbert, M. K.; Baldwin, R. P. Anal. Chem. 1985, 57, 591.
    [35] Ricci, F.; Aeduini, F.; Amine, A.; Moscone, D.; Palleschi, G. J. Electroanal. Chem. 2004, 563, 229.
    
    [36] Martorell, D.; Cespedes, F.; Fabreagas, E. M.; Alegret, S. Anal. Chim. Acta 1997, 337, 305.
    [37] Stoytcheva, M.; Sharkova, V.; Magnin, J. P. Electroanalysis 1998, 11,994.
    [38] Nwosu, T. N.; Palleschi, G.; Mascini, M. Analy. Lett. 1992, 25, 821-835.
    [39] Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987,109, 5649.
    [40] Sooklal, K.; Hanus, L. H.; Ploehn, H. J.; Murphy, C. J. Adv. Mater. 1998, 10, 1083.
    [41] Huang, J.; Sooklal, K.; Murphy, C. J.; Ploehn, H. J. Chem. Mater. 1999, 11, 3595.
    [42] Bernabei, M.; Chiavarini, S.; Cremisini C.; Palleschi, G. Biosensor Bioelectron. 1993, 8, 265.
    [43] Cremisini, C.; Di Sario, S.; Mela, J.; Pilloton, R.; Palleschi G. Anal. Chim. Acta 1995, 311, 273.
    [44] Mionetto, N.; Marry, J. L.; Karube, I. Biosensor. Bielectron. 1994, 9, 463.
    [45] Nyamsi Hendji, A.M.; Jaffrezic-Renault, N.; Martelet, C.; Clechet, P. Anal. Chim. Aeta 1993, 281, 3.
    [46] Olivia, D.U.; Henry, S.W. Anal. Chem. 2002, 74, 4577.
    [47] Evtugyn, G. A.; Budnikov, H. C.; Nikolskaya, E. B. Talanta, 1998, 46, 465-484.
    [48] Lee, H. S.; Kim, Y. A.; Cho, Y. A.; et al. Ckemospkere 2002, 46, 571.
    [49] Wan, K.; Chovelon, J. M.; Jaffrezic-Renault, N.; Soldatkin, A. P. Sens. Actuators B 1999, 58, 399.
    [50] Gogol, E. V.; Evtugyn, G. A.; Marty, J. L.; Budnikov, H. C.; Winter, V. G. Talanta 2000, 53, 379.
    [51] Sotiropoulou, S.; Chaniotakis, N. A. Anal. Chim. Acta 2005, 530, 199.
    [52] Neufeld, T.; Eshkenazi, I.; Cohen, E.; Rishpon, J. Biosens. Bioelectron. 2000, 15, 323.
    [53] Harper, H. A. Review of Pkysiological Ckemistry, Langeb Medical Publications, San Francisco, CA, 16 th edn.1977, p.406.
    [54] Retna, R.; Takeo, O. J. Eleetroanal. Chem. 2003, 540, 69277.
    [55] Kissinger, P. T.; Pachla, L. A.; Reynolds, L. D.; Wright, S.; J. Assoc. Off. Anal. Chem. 1987,70,1.
    [56] Gonzalez, Parient, F.; Lorenze, E.; Hernandez, L. Anal. Chim. Aeta, 1991, 242, 267.
    [57] Weetall, H. H. Anal. Chem. 1974, 46, 602A.
    [58] Bowers, L.D. Anal. Chem. 1986, 58, 513A
    [59] Wang, J.; Liu, J.; Cepra, G. Anal. Chem. 1997, 69, 3124.
    [60] Zhang, F.; Wang, X.; Ai, S.; Sun, Z.; Wan, Q.; Zhu, Z.; Xian, Y.; Jin, L.; Yamamoto, K.; Analy. Chim. Acta. 2004, 519, 155-160.
    [1] Chou, J. H.; Kosal, M. E.; Nalwa, H. S.; Rakow, N. A.; Suslick, K. S.; In the Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard, R. Eds. New York: Academic Press, 2000, 6,43-131.
    [2] Chambron J. C.; Heitz, V.; Sauvage, J. P. In the Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard, R. Eds. New York: Academic Press, 2000, 6, 1-42.
    [3] Frey, H. H.; McNeil, C.J.; Keay, R. W.; et al. Electroanalysis 1998, 10, 480-485.
    [4] 吴惠霞,金利通.化学传感器,1996,16,232-235.
    [5] Collman, J. P.; Kaplun, M.; Sunderland, C. J.; Boulatov, R. J. Am. Chem. Soc. 2004, 126, 11166.
    [6] Khorasani-Motlagh, M.; Noroozifar, M.; Ghaemi, A.; Safari, N. J. Electroanal. Chem. 2004, 565, 115.
    [7] Oyama, N.; Ohsaka, T.; Mizunuma, M.Anal. Chem. 1988, 60, 2534.
    [8] Quintino, M. S. M.; Winnischofer, H.; Nakamura, M.; Araki, K.; Toma, H. E.; Angnes, L. Anal. Chim. Acta 2005, 539, 215.
    [9] Chen, J.; Ikeda, O.; Hatasa, T.; Kitajima, A.; Miyake, M.; Yamatodani, A. Electrochem. Commun. 1999, 1,274.
    [10] Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chem. 1999, 71, 2502.
    [11] Kong, Y.T.; Boopathi, M.; Shim, Y.-B. Biosens. Bioelectron. 2003, 19, 227.
    [12] Atunasov, P.; Gamburzev, S.; Wiikins, E. Electroanalysis, 1996, 8, 158-164.
    [13] Deng, Q,; Dong, S. J. Analyst, 1996,121, 1123.
    [14] Lehn J. M. Pure Appl. Chem., 1994, 66:1961-1966.
    [15] Lindsey, J. S. New J. Chem., 1991, 15: 153-180.
    [16] Stang, P. J.; Olenyuk, B. Acc. Chem. Res., 1997, 30: 502-518.
    [17] Belanger, S.; Hupp, J. T. Angew. Chem., Int. Ed, 1999, 38: 2222-2224.
    [18] Crossley, M. J.; Prashar, J. K. Tetrahedron Lett. 1997, 38: 6751-6754.
    [19] Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Angew. Chem. Int. Ed., 1998, 37:2344-2347.
    [20] Drain, C. M.; Lehn, J. M. Chem. Commun, 1994, 2313-2315.
    [21] Milic, T. N.; Chi, N.; Yablon, D. G.; Flynn, G. W.; Batteas, J. D.; Drain, C. M. Angew. Chem. Int. Ed., 2002, 42:2117-2119.
    [22] Gong, X. C.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. J. Am. Chem. Soc., 2002, 124:14290-14291.
    [23] Keuren, E. V.; Georgieva, E.; Adrian, J. Nano Lett., 2001, 1: 141-144.
    [24] Wiese, H.; Horn, D. Bet. Bunsen-Ges. Phys. Chem., 1993, 97: 1589-1597.
    [25] Debuigne, F.; Jeunieau, L.; Wiame, L. J.; Nagy, J. B. Langmuir, 2000, 16:7605-7611.
    [26] Fu, H. B.; Yao, J. N. J. Am. Chem. Soc., 2001, 123: 1434-1439.
    [27] Li, M.; Jiang, M.; Zhu, L.; Wu, C. Macromolecules, 1997, 30: 2201-2203.
    [28] Hopwood, M. C. R. S. E.; Strong, A. J.; Boutelle, M. G. Trends in Analytical Chemistry,2003, 22, 487.
    [29] Updike, S. J.; Hicks, G. P. Nature, 1967, 214, 986-988.
    [30] Bao, X. M.; Su, Y. The Stereotaxic Atlas of the Rat Brain, People's Healthy Press, Beijing, China, 1991.
    [31] Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
    [32] Drain, C. M.; Batteas, J. D.; Flynn, G. W.; Milic, T.; Chi, N.; Yablon, D. G.; Sommers, H. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6498.
    [33] Purrello, R.; Scolaro, L. M.; Bellacchio, E.; Gurrieri, S.; Romeo, A. Inorg. Chem. 1998, 37,3647.
    [34] Shigehara, K.; Anson, F. C. J. Phys. Chem. 1982, 86, 2776.
    [35] Bouwkamp-Wijnoltz, A. L.; Visscher, W.; Veen, J. A. R.; Boellaard, E.; van der Kraan, A. M.; Tang, S. C. J. Phys. Chem. B 2002, 106, 12993-13001.
    [36] Chaniotakis, N. A.; Chasser, A. M.; Meyerhoff, M. E.; Groves, J. T. Anal. Chem. 1988, 60,185.
    [37] Liu, S.; Ju, H. Biosens. Bioeletron. 2003, 19, 177-183.
    [38] Wu, S.; Zhao, H.; Ju, H.; Shi, C. Zhao, J. Electrochem. Commun. 2006, 8, 1197-1203.
    [39] Zhao, H.; Ju, H. Anal. Biochem.2006, 350, 138-144.
    [40] Yang, Y.; Yang, H.; Yang, M.; Liu, Y.; Shen, G.; Yu, R.Anal. Chim. Acta, 2004, 525, 213.
    [41] Yu, J. H.; Liu, S. Q.; Ju, H. X. Biosens. Bioelectron. 2003, 19, 401.
    [42] Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. Biosens. Bioelectron. 2005, 21,984-988.
    [43] Wang, J. Electroanalysis 2001,13, 983.
    [44] Yang, L.; Janle, E.; Huang, T.; Gitzen, J.; Kissinger, P. T.; Vreeke, M.; Heller, A. Anal. Chem. 1995, 67, 1326.
    [45] Shi, G.; Lu, J.; Xu, F.; Zhou, H. G.; Jin, L.; Jin, J. Anal. Chim. Acta, 2000, 413, 131.
    [46] 赵保路.氧自由基和天然抗氧化剂.北京:科学出版社,1999.96.
    [47] Zweig, M. H.; Campbell. Q. Clin. Chem. 1993,3, 561.
    [48] 许素菊,柳天平,胡玉钦等.临床检验杂志,1998,16,97.
    [49] 赵晓莉,崔小兵,狄留庆等.中药材,2002,25,716.
    [50] Nguyen, A. L.; Luong, J. H. T.; Masson, C. Anal Chem. 1990, 62, 2490-2493.
    [51] Gonzalez, E.; Pariente, F.; Lorenzo, E.; Hernandez, L. Anal Chim. Acta 1991, 242, 267-273.
    [52] Haemmerli, S. D.; Suleiman, A. A.; Guilbault, G. G. Anal Lett. 1990, 23, 577-588.
    [53] Hu, S.; Xu, C.; Luo, J.; Luo, J.; Cui, D.Anal. Chim. Acta 2000, 412, 55-61.
    [54] Hu, S.; Liu, C. C. Electroanalysis 1997, 5, 372-377.
    [55] Cayuela, G.; Pena, N.; Reviejo, A. J.; Pingarrón, J. M. Analyst 1998, 123, 371-377.
    [56] Turner, A. P. F.; Hendry, S. P.; Cardosi, M. F. Biosensor: instrumentation and processing, in: The World Biotchnology Report, 1987, Vol. 1, Online Publications, London, 1987.
    [57] Shi, Ch.; Anson, F. C. Inorg. Chem. 1990, 29, 4298-4305.
    [58] Bettelheim, A.; Kuwana, T. Anal. Chem. 1979, 51, 2257-2260.
    [59] Alfonso, M.; Duran, R.; Campos, F.; et al. Neurochem. Res. 2003,28, 1487.
    [60] Shi, G. Y.; Lu, J. X.; Xu, F.; et al. Anal. Chim. Acta 1999, 391,307.
    [61] Pei, J.; Li, X. Y. Analytica Chimica Acta 2000, 414, 205-213.
    [62] Goyal, R. N.; Tyagi, A. Electroehim. Acta 2006, 52, 1226-1233.
    [63] Kirg6z, U. A.; Timur, S.; Wang, J.; Telefoncu, A, Electrochem. Commun. 2004, 6, 913-916.
    [64] Niwa, O.; Horiuchi, T.; Kurita, R.; Tabei, H.; Torimitsu, K. Anal Sci. 1998, 14, 947-953.
    [65] Shibutani, Y.; Ueo, T.; Yamamoto, T.; Takahashi, S.; Moriwaki, Y.; Higashino, K. Clin. Chim. Aeta 1999, 285, 183-189.
    [66] Stover, J. F.; Lowitzsch, K.; Kempski, O. S. Neurosci. Lett. 1997, 238, 25-28.
    [67] Zhang, S.; Zhao, H.; John, R. Biosens. Bioelectron. 2001, 16, 1119-1126.
    [68] Fennouh, S.; Casimiri, V.; Burstein, C. Biosens. Bioelectron. 1997, 12: 97-104.
    [69] Cremisini, C.; Disario, S.; Mela, J.; Pilloton, R.; Palleschi, G. Anal Chim. Acta 1995, 311:273-280.
    [70] Guerrieri, A.; Monaci, L.; Quinto, M.; Palmisano, F. Analyst 2002, 127: 5-7.
    [71] Chapalamadugu, S.; Chaudhry, G. S. Crit. Re V. Biotechnol. 1992, 12: 357-389.
    [72] United States Department of Agriculture, Agricultural Statistics, United States Government Printing Office, Washington, DC, 1992, p 395.
    [73] Sherma, J. Anal. Chem. 1993, 65: 40R.
    [74] 章咏华,蒙光.分析化学,1989,17,469-478
    [75] Evtugyn, G. A.; Budnikov, H. C.; Nikolskaya, E. B. Analyst, 1996, 121, 1911-1915.
    [76] Lacorte S,; Barcelo D. J. Chromatogra. A, 1995, 712:103-112
    [77] Auletta, A. E.; Dearfild, K. L.; Cimino, M. C. Environmental and Molecular Mutagenesis,1993, 21: 38-45; discussion 46-57
    [78] Skladal, P. Anal. Chim. Acta, 1992, 269:281-287
    [79] Guilbault, G. G. Handbook of enzyme methods of analysis, New York: Marcel Dekker Inc., 1976, 18-21
    [80] Ghindilis, A. L.; Morzunova, T. G.; Barmin, A. V.; et al. Biosens. Bioelectron., 1996, 11: 873-880
    [81] Nwosu, T. N.; Palleschi, G.; Mascini, M. Analy. Lett. 1992, 25, 821-835
    [82] Deng, Q.; Dong, S. Analyst 1996, 121:1123-1126.
    [83] Anitha, K.; Mohan, S. V.; Reddy, S. J. Biosens. Bioelectron. 2004, 20: 848-856.
    [84] Liu, G.; Lin, Y. Anal. Chem. 2006, 78: 835-843.
    [85] Moore, R. R.; Banks, C. E.; Compton, R. G. Analyst 2004, 129: 755.
    [86] Wei, X.; Zhang, M.; Gorski, W. Anal. Chem. 2003, 75: 2060-2064.
    [87] Evtugyn, G. A.; Budnikov, H. C.; Nikolskaya, E. B. Talanta, 1998, 46: 465-484.
    [88] Jeanty, G.; Marty, J. L. Biosens. Bioeleetron. 1998, 13: 213-218.
    [89]Ivanov, A. N.; Lukachova, L. V.; Evtugyn, G. A.; Karyakina, E. E.; Kiseleva, S. G.; Budnikov, H. C.; Orlov, A. V.; Karpacheva, G. P.; Karyakin, A. A. Bioelectrochemistry 2000, 55: 75.
    [90]. Wan, K.; Chovelon, J. M.; Jaffrezic-Renault, N.; Soldatkin, A. P. Sens. Actuators B 1999, 58: 399.
    [91] Gogol, E. V.; Evtugyn, G. A.; Marty, J. L.; Budnikov, H. C.; Winter, V. G. Talanta 2000, 53:379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700