聚合物微流控芯片的制作、检测及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对极具应用前景的聚合物微流控芯片,在对国内外研究现状和存在问题进行深入分析的基础上,通过试验和数值模拟两种技术手段,对芯片的热模压工艺、热键合工艺及芯片微通道几何尺寸检测等问题进行了系统的研究。分析了各种工艺参数对芯片构型可能产生的影响,提出非等温键合方法来减小热键合时微通道的变形;将图像处理技术应用于芯片微通道尺寸的检测,实现了微流控芯片微通道尺寸的非接触测量;试验及仿真研究揭示了聚合物微流控芯片微通道在热模压及热键合过程中的变形规律,得到了微通道形状及尺寸等与工艺条件间的相互关系,为聚合物微流控芯片的制作打下了坚实的基础。
This dissertation is focused on the design and manufacture of polymer mcirofludic chips and the contents are as following:
     In the first part, the general situation of microfluidic chips research is reviewed. The structure of microfluidic chips, the selection of the chip’s materials, the manufacture of the microstructure and the measurement on the microfluidic chips are introduced. The hot embossing and bonding are emphasized and their merit and shortage are pointed out. Based on these, the numerical simulation and experiment on the manufacture of microchips are analyzed and the technical scheme and research contents are presented.
     In the second part, the hot embossing process is investigated. A polymer micro hot embossing process is characterized by experiment, a series of experiments were carried out with varied process conditions, including processing pressure, temperature, time, different materials and unload temperature, and both the depth and width of hot-embossed microchannel was investigated. The conclusions can be obtained as following: Firstly, when the temperature is lower than material glass temperature, the depth of the microchannel is incomplete. When the temperature is close to or exceeds the glass temperature, the depth is hardly variable and equal to the highness of the template’s raised size.
     Secondly, the width of the microchannel shows a ladder under various embossing temperature, namely, when the temperature is lower than glass temperature( low temperature stage), the with of the mcirochannel is nearly constant, its value less than the template aΔ1 and it not affected by the pressure, time and the width of the template’s raised region. When the temperature is exceed the glass temperature(transition stage), the width increases with the increasing of the temperature, namely,Δ1 is decreased gradually. When the embossing temperature is more highly than the glass temperature(high temperature stage), the width is constant except its value is also less aΔ2 than the template’s raised region, furthermore, theΔ2 is constant andΔ1>Δ2. When the temperature is extra high (extra high temperature stage), the width is instability and often caused distortion or air bubble, the process is difficult to control.
     Thirdly, the effect of the pressure and time on the sizes of the microchannel is small and is not necessary to adopt high pressure or too longer time. The law of is similar for different width of template’s raised region, different material and demolding temperature (lower than the glass temperature).
     Fourthly, in order to improve production efficiency, it is better to using non-thermal hot embossing when handles thick substrates.
     In the third part, the hot embossing process is investigated by numerical simulation. A finite element simulation based on a viscoelastic model is carried out. The variation of the depth and semi-width of the microchannel under different processing temperature, pressure, time are presented, the temperature distribution, the material flow manner and the distribution of the stress-strain in substrate are characterized and the causes are analyzed. The conclusions can be obtained as following:
     Firstly, the substrate material had a wave-like flow, which maybe causes nonuniform distribution of pressure and affect the substrate planeness and even the future bonding process.
     Secondly, the maximum temperature gradient local at the tow low corner of the microchannel, and the temperature gradient at low surface of microchannel is high than the other surface, this will cause the microchannel go up and shrink the width. Thirdly, the horizontal strain gradient of the substrate is larger than that of the vertical, and so the main shrinkage of the microchannel size will occur in horizontal direction
     Fourthly, the imprinting temperature plays an important role in hot embossing process. When the temperature is lower, the depth is shallow. When the temperature is close to the PMMA glass temperature, the depth of the microchannel do not vary much and approaches to the mold feature height. But the width of the microchannel is increasing gradually. when the temperature ranges from 120℃to the 130℃, a stable stage is gained.
     Fifthly, the effect of the imprinting pressure on the microchannel size is not much. Considering the effect of the error, it can be drawn a conclusion that it is unnecessary to choose excessive imprinting pressure during the hot embossing process.
     Sixthly, the hot embossing processing can be accomplished in a relatively short time and it is unnecessary to choose an excessive imprinting time during the hot embossing process.
     In the fourth part, the hot bonding process is investigated. a polymer micro hot bonding process is characterized by experiment for PMMA and PC, a series of experiments were carried out with varied process conditions, including processing pressure, temperature, time, different materials ,unload temperature, both the size changes , the bonding force and age effect of hot-bonding was investigated. The conclusions can be obtained as following:
     Firstly, in order to control microchannel’s size, the temperature is 70℃~90℃and the pressure is 0.15MPa-1.5MPa. The variable of the pressure has little effect on the microchannel size and 10 minutes is appreciated. The top lip’s distortion is increasing with the pressure and time. The relation with the temperature is more complex and can be divide into increasing or decreasing at 80℃.
     Secondly, the variable of the microchannel’s size is come from substrate and top lips. In order to decrease the change of the microchannel, nonisothermal bonding method is presented.
     Thirdly, hot embossing process has little effect. Unloading at 60℃is better. The age effect is small and PC chips have the similar rule. Fourthly, the bonding force is increasing with the temperature, pressure and time. But it must be care of the change of mcirochannel’s size during the increasing operation. In the fifth part, the hot bonding process is investigated by numerical simulation. A finite element simulation is carried out. The variation of the shape of the microchannel under different processing parameters is presented, the temperature distribution, the material flow manner and the distortion of the top lip are characterized and the causes are analyzed. The conclusions can be obtained as following:
     Firstly, the distribution of the temperature has a strong effect on the hot bonding. Adjusting the top lip temperature and maintain the substrate temperature can gain a mild temperature distribution, and the top lip’s temperature is arrived at a scheduled temperature while the temperature of the substrate is still low. This can guarantee the bonding force and gain a small size changes.
     Secondly, the material flow in the substrate and top lip are analyzed. It can be found that the material flows from down to up in substrate while the material flows from up to down in the top lips. This indicate that two regions are crucial for control the microchannel’s sizes.
     Thirdly, under the couple of the heat and pressure, selecting of a lower temperature substrate and a higher top lip can lead a smaller size changes, furthermore, higher top lip’s temperature is better to control the temperature distribution around the microchannel.
     In the sixth part, measurement on microchannels of PMMA microfluidic chips is carried out. Based on CCD-image, a measuring system for polymethyl methacrylate (PMMA) microchannel’s sizes of microfluidic chip is developed. Discussing the setup of measurement system, the microchip specimen preparation, the measuring method for microchannel sizes, including image preprocessing, selection of image binary-conversion threshold, secondary calibration, boundary encoding and calculation of microchannel's geometrical sizes, etc. and the reasons to cause the error are analyzed. Compared with those obtained using universal measuring microscope, the measurement results obtained using this method is conformable and the deviation is 2μm (semi-depth width). Experimental results show that this method is correct, feasible, and suiting for measurement under micro scale and simple to use, as well as can avoid the errors often made by stylus profiler in deeper mcirochannels.
     In the last part, the dissertation is summarized and the future work is prospected.
引文
[1] 刘静. 微米/纳米尺度传热学[M]. 北京:科学出版社,2001.
    [2] Darwin R R, Dimitri L, Pierre-Alain A, et al. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology[J]. Anal. Chem., 2002, 74: 2623-2636.
    [3] Torsten V, Dirk J, Andreas M. Micro Total Analysis Systems. Recent Developments[J]. Anal. Chem., 2004, 76: 3373-3386.
    [4] Petra S D, Kaoru T, Andreas M. Micro Total Analysis Systems. Latest Advancements and Trends[J]. Anal. Chem., 2006, 78: 3887-3908.
    [5] Backer H, Locascio L E. Review: Polymer Microfluidic Devices[J]. Talanta, 2002, 56: 267-287.
    [6] 邓延倬,何金兰. 高效毛细管电泳[M]. 北京:科学出版社,1996.
    [7] 方肇伦. 微流控分析芯片[M]. 北京:化学工业出版社,2003.
    [8] Skeggs L T. An automatic method for calorimetric analysis[J]. Am J Clin Pathol, 1957, 28: 311-322.
    [9] R??i?ka J, Hansen E H. Flow injection analyses: part 1. a new concept of fast continuous flow analysis[J]. Anal. Chim. Acta., 1975, 78: 145-157.
    [10] R??i?ka J, Hansen E H. Integrated microconduits for flow injection analysis[J]. Anal. Chim. Acta., 1984, 161: 1-25.
    [11] Pace S J, Wilmington D. Slicon semiconductor wafer for analyzing micronic biological samples[P]. U.S. Patent, 4908112, 1990.
    [12] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B, 1990, 1: 244-248.
    [13] Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1-2): 253-258.
    [14] Jacobson S C, Hergenroeder R, Koutny L B, et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices[J]. Anal. Chem. 1994, 66: 1107-1113.
    [15] Jacobson S C, Ramsey J M. Electrokinetic focusing in microfabricated channelstructures[J]. Anal. Chem., 1997, 69: 3212-3217.
    [16] Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic transport in microfabricated channel structures[J]. Anal. Chem., 1998, 70: 4494-4504.
    [17] Jacobson S C, McKnihgt T E, Ramsey J M. Microfluidic devices for electrokinetically driven parallel and serial mixing[J]. Anal. Chem., 1999, 71: 4455-4459.
    [18] Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic injection techniques in microfluidic devices[J]. Anal. Chem., 2000, 72: 3512-3517.
    [19] Thomas C D, Jacobson S C, Ramsey J M. Strategy for repetitive pinched injections on a microfluidic device[J]. Anal. Chem., 2004, 76: 6053-6057.
    [20] Woolley A T, Mathies R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips[J]. Anal. Chem., 1995, 67: 3676-3680.
    [21] Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device[J]. Anal. Chem., 1996, 68: 4081-4086.
    [22] Woolley A T, Sensabaugh G F, Mathies R A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips[J]. Anal. Chem., 1997, 69: 2181-2186.
    [23] Woolley A T, Lao K, Glazer A N, et al. Capillary electrophoresis chips with integrated electrochemical detection[J]. Anal. Chem., 1998, 70: 684-688.
    [24] Liu S, Shi Y, Ja W W, et al. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels[J]. Anal. Chem., 1999, 71: 566-573.
    [25] Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis Device[J]. Science, 1998, 282: 484-487.
    [26] Dolnik V, Liu S, Jovanovich S. Capillary electrophoresis on microchip[J]. Electrophoresis, 2000, 21: 41-54.
    [27] Jong J D, Lammertink R G H, Wessling M. Membranes and microfluidics: a review[J]. Lab Chip, 2006, 6: 1125-1139.
    [28] Kamholz A E. Proliferation of microfluidics in literature and intellectual property[J]. Lab Chip, 2004, 4: 16N-20N.
    [29] 张玉奎. 现代生物样品分离分析方法[M]. 北京:科学出版社,2003.
    [30] Duffy D C, McDonald J C, Schueller O J A, et al. Rapid prototyping ofmicrofluidic systems in poly(dimethylsiloxane)[J]. Anal. Chem., 1998, 70: 4974-4984.
    [31] Chen P J, Shih C Y, Tai Y C. Design, fabrication and characterization of monilithic embedded parylene microchannels in silicon substrate[J]. Lab Chip, 2006, 6: 803-810.
    [32] Fiorini G S, Jeffries G D M, Lim D S W. et al. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds[J]. Lab Chip, 2003, 3: 158-163.
    [33] Wu H, Huang B, Zare R N. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding[J]. Lab Chip, 2005, 5: 1393-1398.
    [34] Lee K B, Lin L. Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications[J]. Sensors and Actuators A, 2004, 111: 44-50.
    [35] Shen X J, Pan L W, Lin L. Microplastic embossing process: experimental and theoretical characterizations[J]. Sensors and Actuators A, 2002, 97-98: 428-433.
    [36] Xu J, Locascio L, Gaitan M, et al. Room-temperature imprinting method for plastic microchannel fabrication[J]. Anal. Chem., 2000, 72: 1930-1933.
    [37] Shadpour H, Hupert M L, Patterson D, et al. Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array[J]. Anal. Chem., 2007, 79: 870-878.
    [38] Qi S, Liu X, Ford S, et al. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection[J]. Lab Chip, 2002, 2: 88-95.
    [39] Flachsbart B R, Wong K, Iannacone J M, et al. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing[J]. Lab Chip, 2006, 6: 667-674.
    [40] Paul D, Pallandre A, Miserere S, et al. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates[J]. Electrophoresis, 2007, 28: 1115-1122.
    [41] Nagarajan P, Yao D. Cold forging behavior of semicrystalline polymers[J]. Journal of Applied Polymer Science, 2005, 96: 764-771.
    [42] Chiem N, Shultz L L, Andersson P, et al. Room temperature bonding of micromachined glass devices for capillary electrophoresis[J]. Sensors and Actuators B, 2000, 63:147-152.
    [43] Szekely L, Freitag R. Fabrication of a versatile microanalytical system withoutneed for clean room conditions[J]. Analytica Chimica Acta, 2004, 512: 39-47.
    [44] Metz S, Holzer R, Renaud P. polyimide-based microfluidic devices[J]. Lab Chip, 2001, 1: 29-34.
    [45] Tuomikoski S, Virkkala N, Rovio S, et al. Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchip[J]. Journal of Chromatography A, 2006, 1111: 258-266.
    [46] Mecomber J S, Hurd D, Limbach P A. Enhanced machining of micron-scale features in microchip molding masters by CNC milling[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1542-1550.
    [47] Guijt R M, Baltusen E, Steen G V D, et al. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection[J]. Electrophoresis, 2001, 22: 235-241.
    [48] Scheer H C, Schulz H. A contribution to the flow behaviour of thin polymer films during hot embossing lithography[J]. Microelectronic Engineering, 2001, 56: 311-332.
    [49] Jensen M F, McCormack J E, Helbo B, et al. Rapid prototyping of polymer Microsystems via excimer laser ablation of polymeric moulds[J]. Lab Chip, 2004, 4: 391-395.
    [50] Székely L, Guttman A. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world[J]. Journal of Chromatography B, 2006, 841: 123-128.
    [51] Ko J S, Yoon H C, Yang H, et al. A polymer-based microfluidic device for immunosensing biochips[J]. Lab Chip, 2003, 3: 106-113.
    [52] Haubert K, Drier T, Beebe D. PDMS bonding by means of a portable, low-cost corona system[J]. Lab Chip,2006, 6: 1548-1549.
    [53] Jacobson S C, Culbertson C T, Daler J E, et al. Microchip structures for submillisecond electrophoresis[J]. Anal. Chem. 1998, 70: 3476-3480.
    [54] Culbertson C T, Jacobson S C, Ramsey J M. Microchip devices for high-efficiency separations[J]. Anal. Chem., 2000, 72: 5814-5819.
    [55] Dauksher W J, Le N V, Ainley E S, et al. Nano-imprint lithography: Templates, imprinting and wafer pattern transfer[J]. Microelectronic Engineering, 2006, 83: 929-932.
    [56] Liu Y, Ganser D, Schneider A, et al. Microfabricated polycarbonate CE devices for DNA analysis[J]. Anal. Chem., 2001, 73: 4196-4201.
    [57] 谭思明. 基于专利地图技术的中、美微流控专利竞争情报研究[J]. 情报杂志,2005,5:33-35.
    [58] 吴建刚,岳瑞峰,曾雪锋等. 微流控光学器件与系统的研究进展[J]. 光学技术,2006,32(1):71-74.
    [59] 汤扬华,周兆英,叶雄英等. 毛细管电泳芯片的制造[J]. 微细加工技术,2001,1(1):62-66.
    [60] 金亚,罗国安,王如骥. 集成毛细管电泳芯片研究进展[J]. 色谱,2000,18(4):313-317.
    [61] 金亚,罗国安. 微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用[J]. 高等学校化学学报,2003,24(7):1180-1184.
    [62] 刘科辉,梁宁,姚波等. 微流控芯片-激光诱导荧光检测器的研制及核酸片段分离检测中应用[J]. 分析化学,2005,33(9):1350-1353.
    [63] Ye M Y, Yin X F, Fang Z L. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips[J]. Anal Bioanal Chem, 2005, 381: 820-827.
    [64] 李舟,徐光明,方群. 微流控芯片毛细管电泳中电动进样和分离对分离效率的影响[J].浙江大学学报,2004,31(6):657-660.
    [65] 叶美英,方群,殷学锋等. 聚二甲基硅氧烷基质微流控芯片封接技术的研究[J]. 高等学校化学学报,2002,23(12):2243-2246.
    [66] 孟斐,陈恒武,方群等. 聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究[J]. 高等学校化学学报,2002,23(7):1264-1268.
    [67] 傅建中,相恒富,陈子辰. 聚合物微流控芯片激光加工及建模研究[J]. 中国机械工程,2004,15(17):1505-1508.
    [68] 贺永,傅建中,陈子辰. 聚合物微流控芯片热压成型的建模研究[J]. 浙江大学学报,2005,39(12):1911-1914.
    [69] 杜晓光,关艳霞,王福仁等. 聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法[J].高等学校化学学报,2003,11:1962-1966.
    [70] 王世立,方肇伦. 微流控光谱分析进展[J]. 光谱学与光谱分析,2000,20(2):143-148.
    [71] 徐章润,王世立,樊晓峰等. 小型可连续进样微流控芯片分析仪的研制[J]. 分析化学,2003,31(12):1527-1530.
    [72] 于建群,王立鼎,刘军山等. 塑料电泳芯片微结构模压的试验研究[J]. 机械工程学报,2004,40(11):93-97.
    [73] 石晶,于建群. 基于 MEMS 技术的毛细管电泳芯片[J]. 中国生物工程杂志,2003,23(10):89-92.
    [74] 印燕,陆士强,吴冲若. 单片集成毛细管区带电泳分析器[J]. 东南大学学报,1999,29(1):116-118.
    [75] Zhou X M, Dai Z P, Liu X, et al. Modification of a poly(methyl methacrylate) injection-molded microchip and its use for high performance analysis of DNA[J]. J.Sep.Sci. 2005, 28: 225-233.
    [76] 周小棉,戴忠鹏,罗勇等. 注塑型聚甲基丙烯酸甲酯多通道微流控芯片的研制及其性能考察[J]. 高等学校化学学报,2005,26(1):52-54.
    [77] 林炳承. 微流控芯片实验室及其功能化[J]. 中国药科大学学报,2003,34(1):1-6.
    [78] 陈国防,袁湘林,李彤等. 集成毛细管电泳芯片技术及其在生化研究方面的应用[J]. 分析科学学报,2001,17(3):251-256.
    [79] 王辉,毛秀丽,盖宏伟等. 芯片毛细管电泳中组分的迁移行为及其特征[J]. 高等学校化学学报,2002,23(6):1030-1034.
    [80] 王辉,黄淮表,戴忠鹏等. 自制玻璃微流控芯片及其基本性能考察[J]. 高等学校化学学报,2005,26(11):2037-2039.
    [81] 苏波,崔大付,耿照新. PDMS 微流控电泳芯片的快速制备[J]. 功能材料与器件学报,2006,12(4):285-288.
    [82] 崔大付. 微全分析系统中的 MEMS 技术[J].现代科学仪器,2001,4:29-33.
    [83] 尉元杰,刘冲,李经民等. 微流控芯片微通道热压成形中塑料流动的仿真[J]. 传感技术学报,2006,19(5):2008-2010.
    [84] 王晓东,刘冲,马骊群等. 塑料微流控芯片的制作及其自动化[J]. 高技术通讯,2004,7:45-48.
    [85] 韩建超,王晓东,刘冲等. 塑料微流控芯片热压成型温度控制装置[J]. 机械与电子,2004,5:49-53.
    [86] 王晓东,罗怡,刘冲等. 塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [87] 罗怡,王晓东,刘冲等. 微流控芯片制作及电特性研究[J]. 高技术通讯,2005,15(5):31-34.
    [88] 刘菁,庄贵生,贾春平等. 微流控芯片上同工酶的孵育及活性检测[J]. 高等学校化学学报,2006,7:1223-1226.
    [89] 金庆辉,庄贵生,刘菁等. 微流控分析芯片在线尿中蛋白及 LDH 同工酶检测[J]. 光学 精密工程,2005,13(2):151-157.
    [90] 邹志表,周天,赵建龙等. 芯片实验室的制备技术[J]. 功能材料与器件学报,2003,9(4):493-498.
    [91] 田丽,刘晓为,王喜莲等. 毛细管电泳芯片的模拟设计与实验研究[J]. 微纳电子技术,2003,7-8:340-343.
    [92] 金鹏,谭久彬,刘岩. PDMS 微小流路微加工技术的研究[J]. 微细加工技术,2001,3:31-34.
    [93] Qu S, Chen X, Chen D, et al. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations[J]. Electrophoresis, 2006, 27: 4910-4918.
    [94] 李建华,陈迪,刘景全等. 微流控芯片金属模具制备工艺研究[J]. 微细加工技术,2005,(4):56-58.
    [95] 徐溢. 液流式微型全化学分析系统[J]. 重庆大学学报,2002,25(1):150-153.
    [96] 朱睿,肖松山,范世福. 微流控芯片检测技术进展[J]. 纳米技术与精密工程,2005,3(1):74-79.
    [97] 余海燕,肖松山,陈禾等. 速度流型对微混合器混合效果的影响[J]. 纳米技术与精密工程,2005,3(4):290-294.
    [98] Qu S, Chen X, Chen D, et al. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations[J]. Electrophoresis, 2006, 27: 4910-4918.
    [99] 水雯箐,苏佳,黄珍玉等. 微流控芯片与生物质谱联用技术的发展与展望[J]. 质谱学报,2002,23(2):100-111.
    [100] 曾勇,陈洪,庞代文等. 集成毛细管电泳电化学检测系统[J]. 分析科学学报,2002,18(2):89-93.
    [101] 陈洪,曾勇,刘毛锋等. 芯片毛细管电泳-激光诱导荧光-电荷耦合器件检测系统[J].分析科学学报,2001,17(2):93-96.
    [102] Bao N, Zhang Q, Xu J, et al. Fabrication of poly(dimethylsiloxane) microfluidicsystem based on masters directly printed with an office laser printer[J]. Journal of Chromatography A, 2005, 1089: 270-275.
    [103] 鲍宁,窦跃华,屠晓燕等. 芯片毛细管电泳程控电源的研制[J]. 分析化学,2003,31(9):1139-1142.
    [104] 范军,梁恒,石晓强. 微流控电泳芯片中化学发光信号的分段门限小波降噪[J]. 高等学校化学学报,2005,11:2010-2014.
    [105] 石晓强,梁恒,范军. 微流控芯片二维电泳研究进展[J]. 分析化学,2005,33(5):735-739.
    [106] 祁恒,陈涛. 高聚物生物芯片材料激光加工性能分析[J]. 激光技术,2005,29(2):138-141.
    [107] 祁恒,姚李英,王桐等. PMMA 基 PCR 微流控生物芯片准分子激光加工[J]. 微细加工技术,2006,1:16-19.
    [108] 姚李英,祁恒,陈涛等. 聚合酶链式反应微流控芯片的准分子激光制备和应用研究[J].高等学校化学学报,2006,27(3):428-431.
    [109] 伊福廷,姜雄平,彭良强等. 微流路生物芯片的研制[J]. 微纳电子技术,2003,7-8:356-361.
    [110] 方肇伦. 微流控分析芯片的制作及应用[M]. 北京:化学工业出版社,2005.
    [111] 于建群. 集成毛细管电泳芯片的结构设计与制作工艺研究. 大连理工大学博士后研究工作报告[R]. 大连,2002.10.
    [112] 刘军山. PMMA 集成毛细管电泳芯片制作工艺研究[D]. 大连理工大学博士学位论文. 大连,2005.1.
    [113] Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration[J]. Science, 2002, 298: 580-584.
    [114] Shi Y, Simpson P C, Scherer J R, et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis[J]. Anal. Chem., 1999, 71(23): 5354-5361.
    [115] Emrich C A, Tian H, Medintz L L, et al. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis[J]. Anal. Chem., 2002, 74(19): 5076-5083.
    [116] 温敏. 塑料微流控芯片微通道热压成形及键合工艺研究[D]. 大连理工大学硕士学位论文. 大连,2005.3.
    [117] 林炳承,秦建华. 微流控芯片实验室[M] 北京:科学出版社,2006.
    [118] Tae W L, Sang H P, Dong-Yol Y, et al. Fabrication of three-dimensional SiC-based ceramic micropatterns using a sequential micromolding-and-pyrolysis process[J]. Microelectronic Engineering, 2006, 83: 2475-2481.
    [119] 殷学锋,方群,凌云扬. 微流控分析芯片的加工技术[J]. 现代科学仪器,2001,4:10-14.
    [120] Roberts M A, Rossier J S, Bercier P, et al. UV laser machined polymer sub-strates for the development of microdiagnostic systems[J]. Anal. Chem., 1997, 69(11): 2035-2042.
    [121] Xia Y N, Whitesides G M. Soft lithography[J]. Annu. Rev. Mater. Res. , 1998, 28: 84-153.
    [122] Solignac D, Sayah A, Constantin S, et al. Powder blasting for the realization of microchips for bio-analytic applications[J]. Sensors and Actuators A, 2001, 92: 388-393.
    [123] Martynova L, Locascio L E, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods[J]. Anal. Chem., 1997, 69(23): 4783-4789.
    [124] McCormick R M, Nelson R J, Alonso A M G, et al. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates[J]. Anal. Chem., 1997, 69(14): 2626-2630.
    [125] Tatsuhiro F, Takatoki Y, Takeshi N, et al. Microfabricated flow-through device for DNA amplification-towards in situ gene analysis[J]. Chem. Eng. J., 2004, 101(1-3): 151-156.
    [126] 伊福延,吴坚武,洗鼎昌. 微细加工新技术-LIGA 技术[J]. 微细加工技术,1993,4:1-7.
    [127] Ulrich P, Markus B, Andreas F, et al. Comparison of multilayer stamp concepts in UV-NIL[J]. Microelectronic Engineering, 2006, 83: 944-947.
    [128] Mateusz L H, Guy W J, Shawn D L, et al. Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices[J]. Microfluid Nanofluid, 2007, 3: 1-11.
    [129] Koerner T,Brown L,Xie R,et al. Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels[J]. Sensors and Actuators B, 2005, 107: 632-639.
    [130] Qu S, Chen X, Chen D, et al. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations[J]. Electrophoresis, 2006, 27: 4910-4918.
    [131] Choi W M, Song M Y, Park O O. Compressed-carbon dioxide(CO2) assisted nanoimprint lithography using polymeric mold[J]. Microelectronic Engineering, 2006, 83: 1957-1960.
    [132] Liu J S, Liu C, Guo J H, et al. Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication[J]. Journal of Materials Processing Technology, 2006, 178: 278-282.
    [133] Daly J H, Hayward D, Liggat J J. Epoxy masters for embossing nanotopographies[J]. Journal of Materials Science, 2005, 40: 2649-2654.
    [134] Holger B, Ulf H. Hot embossing as a method for the fabrication of polymer high aspect ratio structures[J]. Sensors and Actuators A, 2000, 83: 130-135.
    [135] Heckele M, Bacher W, Muller K D. Hot embossing-the molding technique for plastic microstructures[J]. Microsystem Technologies, 1998, 4: 122-124.
    [136] Lee L J, Marc J M, Kurt W K, et al. Design and fabrication of CD-like microfluidic platform for diagnostic: polymer-based microfabrication[J]. Biomedical Micro devices, 2001, 3-4: 339-351.
    [137] Jaszewski R W, Schift H, Gobrecht J, et al. Hot embossing in polymers as a direct way to pattern resist[J]. Microelectronic Engineering, 1998, 41-42: 575-578.
    [138] Juang Y J, Lee L J, Koelling K W. Hot embossing in microfabrication. part I: experimental[J]. Polymer Engineering And Science, 2002, 42(3): 539-550.
    [139] Joseph L C, Marcus T E, Andrés J G. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates[J]. Biomaterials, 2006, 27: 2487-2494.
    [140] Lee G B, Chen S H, Huang G R, et al. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection[J]. Sensors and Actuators B, 2001, 75: 142-148.
    [141] Larry J K, Paolo F, Nicholas J P, et al. Fabrication of plastic microchips by hot embossing[J]. Lab Chip, 2002, 2: 1-4.
    [142] Bogdanski N, Schulz H, Wissen M. 3D-Hot embossing of undercut structures – an approach to micro-zippers[J]. Microelectronic Engineering, 2004, 73-74: 190-195.
    [143] Lei K F, Li W J, Yan Y. Effects of contact-stress on hot-embossed PMMA microchannel wall profile[J]. Microsystem Technologies, 2005, 11: 353-357.
    [144] Liu J S, Wang L D, Liu C, et al. Hot embossing methods for plastic microchannel fabrication[J]. Chiness Journal of Mechanical Engineering, 2006, 19(2): 223-225.
    [145] Gadegaard N, Martines E, Riehle M O, et al. Applications of nano-patterning to tissue engineering[J]. Microelectronic Engineering, 2006, 83: 1577-1581.
    [146] Heon L, Sunghoon H, Kiyeon Y, et al. Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography[J]. Microelectronic Engineering, 2006, 83: 323-327.
    [147] Schift H, Heyderman L J, Padeste C, et al. Chemical nano-patterning using hot embossing lithography[J]. Microelectronic Engineering, 2002, 61–62: 423–428.
    [148] Yongjun Z, Tianhong C. Polymer-based electrostatic comb drives using the hot embossing technique[J]. J. Micromech. Microeng., 2003, 13: 430-435.
    [149] Perry J L, Kandlikar S G. Review of fabrication of nanochannels for single phase liquid flow[J]. Microfluid Nanofluid, 2006, 2: 185-193.
    [150] 张海峰,傅建中,陈子辰. PLC 控制的聚合物微流控芯片压印机设计[J]. 机床与液压, 2006,2:69-71.
    [151] Chang J H, Yang S Y. Development of fluid-based heating and pressing systems for micro hot embossing[J]. Microsystem Technologies, 2005, 11: 396-403.
    [152] 王晓东,刘冲,王立鼎. 面向聚合物微结构制作的热压成形设备的研制[J]. 中国机械工程,2005,16(14):1229-1232.
    [153] Tallal J, Gordon M, Berton K, et al. AFM characterization of anti-sticking layers used in nanoimprint[J]. Microelectronic Engineering, 2006, 83: 851-854.
    [154] Cross G L W, Connell B S O’, Pethica J B, et al. Instrumented indentation testing for local characterization of polymer properties after nanoimprint[J]. Microelectronic Engineering, 2005, 78-79: 618-624.
    [155] Laurence R, Christel M, Jean P P. Atomic force microscopy study of micrometric pattern replica by hot embossing lithography[J]. Microelectronic Engineering, 2004, 71: 272-276.
    [156] Lin L, Cheng Y T, Chiu C J. Comparative study of hot embossed micro tructures fabricated by laboratory and commercial environments[J]. Microsystem Technologies, 1998, 4: 113-116.
    [157] Ong N S, Koh Y H, Fu Y Q. Microlens array produced using hot embossing process[J]. Microelectronic Engineering, 2002, 60: 365-379.
    [158] Michael T G, Christiane G, Samuel O, et al. Replication technology for optical Microsystems[J] Optics and Lasers in Engineering, 2005, 43: 373-386.
    [159] Chang C Y, Yang S Y, Huang L S, et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics&Technology, 2006, 48: 163-173.
    [160] Chou M C, Pan C T, Shen S C, et al. A novel method to fabricate gapless hexagonal micro-lens array[J]. Sensors and Actuators A, 2005, 118: 298-306.
    [161] Seddon A B, Pan W J, Furniss D, et al. Fine embossing of chalcogenide glasses-a new fabrication route for photonic integrated circuits[J]. Journal of Non-Crystalline Solids 2006, 352: 2515-2520.
    [162]Choi C H, Lee M W, O B H, et al. Fabrication of micro-photonic devices using embossing technique[J]. Microelectronic Engineering, 2006, 83: 1336-1338.
    [163] Shan X C, Ikehara T, Murakoshi Y, et al. Applications of micro hot embossing for optical switch formation[J]. Sensors and Actuators A, 2005, 119: 433-440.
    [164] Heckele M, Bacher W, Müller K D. Hot embossing-the molding technique for plastic microstructures[J]. Microsystem Technologies, 1998, 4: 122-124.
    [165] Heyderman L J, Schift H, David C, et al. Flow behaviour of thin polymer films used for hot embossing lithography[J]. Microelectronic Engineering, 2000, 54: 229-245.
    [166] Donggang Y, Vinayshankar L V. Study on squeezing flow during nonisothermal embossing of polymer microstructures[J]. Polymer Engineering And Science, 2005: 652-660.
    [167] 徐敏,罗怡,王晓东等. 聚合物微结构热压成形温度有限元分析[J]. 传感技术学报,2006,19(5):2015-2017.
    [168] Juang Y J, Lee L J, Koelling K W. Hot embossing in microfabrication. part II: rheological characterization and process analysis[J]. Polymer Engineering And Science, 2002, 42(3): 551-566.
    [169]Lin C R,Chen R H,Hung C. The characterisation and finite-element analysis of a polymer under hot pressing[J]. Int J Adv Manuf Technol, 2002, 20: 230-235.
    [170] Lin C R, Chen R H, Hung C. Preventing non-uniform shrinkage in open-die hot embossing of PMMA microstructures[J]. Journal of Materials Processing Technology, 2003, 140: 173-178.
    [171] Wen-Bin Y. Analysis of the nanoimprint lithography with a viscous model[J]. Microelectronic Engineering, 2005, 77: 405-411.
    [172] Yao D,Nagarajan P. Cold forging method for polymer microfabrication[J]. Polymer Engineering And Science, 2004, 44(10): 1998-2004.
    [173] Worgull M, Heckele M. New aspects of simulation in hot embossing[J]. Microsystem Technologies, 2004, 10: 432-437.
    [174] Worgull M, Heckele M, Schomburg W K. Large-scale hot embossing[J]. Microsyst Technol, 2005, 12: 110-115.
    [175] Guo Y, Liu G, Zhu X, et al. Analysis of the demolding forces during hot embossing[J]. Microsyst Technol, 2007, 13: 411-415.
    [176] Wang H.Y, Foote R S, Jacobson S C, et al. Low temperature bonding for microfabrication of chemical analysis devices[J]. Sensors and Actuators B, 1997, 45: 199-207.
    [177] Babak Z, Antonio B, Ming L, et al. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery[J]. Adv. Drug Delivery. Rev., 2004, 56(2): 145-172.
    [178] Jaszewski R W, Schift H, Gobrecht J, et al. Hot embossing in polymers as a direct way to pattern resist[J]. Microelectronic Engineering, 1998, 41-42: 575-578.
    [179] 于建群,刘军山,王立鼎等. 塑料电泳芯片热键合的试验研究[J]. 机械工程学报,2005,41(3):185-188.
    [180] Unger M A, Chou H P, Thorsen T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography[J]. Science, 2000, 288(5463): 113-116.
    [181] Effenhauser C S, Bruin G J M, Paulus A, et al. Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragrments and detection of single DNA molecules on microchips[J]. Anal. Chem, 1997, 69: 3451-3457.
    [182] 叶美英,方群,殷学锋等. 聚二甲基硅氧烷基质微流控芯片封接技术的研究[J]. 高等学校化学学报,2002,23(12):2243-2246.
    [183] Laurie B, Terry K, Horton J H, et al. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents[J]. Lab Chip, 2006, 6: 66-73.
    [184] McCreedy T. Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems[J]. trends in analytical chemistry, 2000, 19(6): 396-401.
    [185] Jayna J S, Jon G, Laurie E L, et al. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices[J]. Anal. Chem., 2006, 78: 3348-3353.
    [186] Wu Z, Xanthopoulos N, Reymond F, et al. Polymer microchips bonded by O2-plasma activation[J]. Electrophoresis, 2002, 23: 782-790.
    [187] 孟斐,陈恒武,方群等. 聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究[J]. 高等学校化学学报,2002,23(7):1264-1268.
    [188] Berre M L, Crozatier C, Velve C G, et al. Reversible assembling of microfluidic devices by aspiration[J]. Microelectronic Engineering, 2006, 83: 1284-1287.
    [189] Jia Z J, Fang Q, Fang Z L. Bonding of glass microfluidic chips at room temperatures[J]. Anal. Chem., 2004, 76: 5597-5602.
    [190] Alexander I, Akio O, Nicole P. Bonding of soda-lime glass microchips at low temperature[J]. Microfluid Nanofluid, 2007, 3: 119-122.
    [191] Zhuang G, Jin Q, Liu J, et al. A low temperature bonding of quartz microfluidic chip for serum lipoproteins analysis[J]. Biomed Microdevices, 2006, 8: 255-261.
    [192] 殷学锋,沈宏,方肇伦. 制造玻璃微流控芯片的简易加工技术[J]. 分析化学,2003,31:116-119.
    [193] Zhu X, Liu G, Guo Y, et al. Study of PMMA thermal bonding[J]. Microsyst Technol, 2007, 13: 403-407.
    [194] Zhifeng C, Yunhua G, Jinming L, et al. Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template[J]. Journal of Chromatography A, 2004, 1038: 239-245.
    [195]Truckenmüller R, Henzi P, Herrmann D, et al. Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures[J]. Microsystem Technologies, 2004, 10: 372-374.
    [196] 朱学林,刘刚,田扬超. 一种 PMMA 表面改性的热压键合方法研究[J]. 微细加工技术,2005,(4):52-55.
    [197] Tsao C W, Hromada L, Liu J, et al. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment[J]. Lab Chip, 2007, 7: 499-505.
    [198] Khan C, Malek, Thuillier G, et al. Hybrid replication development for construction of polymeric devices[J]. Microsystem Technologies, 2004, 10: 711-715.
    [199] Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis Device[J]. Science, 1998, 282: 484-487.
    [200] Lin C H, Hsiang C, Lan C W. Low azeotropic solvent for bonding of PMMA microfluidic devices[J]. Sensors and Actuators B, 2007, 121: 698-705.
    [201] Kelly R T, Pan T, Woolley A T. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips[J]. Anal. Chem, 2005, 77(11): 3536-3541.
    [202] Shah J J, Geist J, Locascio L E, et al. Capillarity induced solvent-actuatedbonding of polymeric microfluidic devices[J]. Anal. Chem., 2006, 78: 3348-3353.
    [203] Hongkai W, Huang B, Richard N Z. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding[J]. Lab Chip, 2005, 5: 1393-1398.
    [204] Winnie W Y C, Kin F L, Guangyi S, et al. Microfluidic channel fabrication by PDMS-interface bonding[J]. Smart Mater. Struct., 2006, 15: S112–S116.
    [205] Soper S A, Ford S M, Oi S, et al. Polymeric microelectromechanical systems[J]. Anal. Chem., 2000, 72(19): 643-65.
    [206] Yussuf A A, Sbarski I, J P Hayes, et al. Microwave welding of polymeric-microfluidic devices[J]. J Micromech. Microeng., 2005, 15: 1692-1699.
    [207] 韦鹤,王晓东,刘冲等. 塑料微流控芯片的超声波焊接键合的仿真[J]. 中国机械工程,2005,16(增):82-85.
    [208] Roy X L, Sreeparna S, Huacheng K. An experimental and numericalinvestigation of adhesive bonding strengths of polymer materials[J]. International Journal of Adhesion & Adhesives, 2004, 24: 455-460.
    [209] Huang D Y, Chen R S. Bonding strength at Solid-Melt Interface for Polystyrene in a Sequential Two-Staged Injection Molding Process[J]. Polymer engineering and science, 1999, 39(11): 2159-2171.
    [210] Villanueva G, Plaza J A, González E, et al. Transfer of small structures by bonding[J]. Microsyst Technol, 2006, 12: 455-461.
    [211] 王晓东,常城,宁洪侠. 用于微观几何形状测量的扫描探针显微技术[J]. 传感器技术,2003,22(9):8-11.
    [212] 李智,王向军. MEMS 中几何量的测试方法[J]. 微细加工技术,2003,(1):51-56.
    [213] Xiang Z, Fred E R. Analysis of channel-geometry effects on separation efficiency in rectangular-capillary electrochromatography columns[J]. Journal of Chromatography A, 2000(869): 319-328.
    [214] Lung M F, Ruey J Y, Gwo B L. Analysis of geometry effects on band spreading of microchip electrophoresis[J]. Electrophoresis, 2002(23): 602-612.
    [215] Maynes D, Webb B W. Fully developed electro-osmotic heat transfer in microchannels[J]. International Journal of Heat and Mass Transfer, 2003(46): 1359-1369.
    [216] Wu H Y, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J]. International Journal of Heat and Mass Transfer,2003(46): 2519-2525.
    [217] Anderson J R,Chiu D T, Jackman R J, et al. Fabrication of topologically complex three dimensional microfluidic systems in PDMS by rapid prototyping[J]. Anal. Chem., 2000, 72: 3158-3164.
    [218] Weiller B H, Ceriotti L, Shibata T, et al. Analysis of lipoproteins by capillary zone electrophoresis in microfluidic devices: assay development and surface roughness measurements[J]. Anal. Chem., 2002, 74: 1702-1711.
    [219] Becker H, Gartner C. Polymer microfabrication methods for microfluidic analytical applications[J]. Electrophoresis, 2000, 21: 12-26.
    [220] 李佳列,丁国清,颜国正等. 采用 CCD 的非接触测量中提高精度的一种方法[J]. 光学 精密工程,2002,10(3):281-284.
    [221] 张少军,苟中魁,李庆利等. 利用数字图像处理技术测量直齿圆柱齿轮几何尺寸[J]. 光学 精密工程,2004,12(6):619-625.
    [222] 陈岳林,汪杰君,许廷丽. 金相组织数字化数据采集系统[J]. 光学 精密工程,2005,13(增):183-186.
    [223] 张泰石,李刚,郑羽等. 用线性补偿算法和 CCD 响应补偿来提高频谱 OCT图像质量[J]. 光学 精密工程,2006,14(5):929-933.
    [224] 赵渊博,赵慧洁. 挠性接头薄筋厚度在线测量图像分割方法研究[J]. 光学 精密工程,2005,13(增):153-157.
    [225] Dai J, Guan Y X, Wang S L, et al. Feature characterization of microfabricated microfluidic chips by PDMS replication and CCD imaging[J]. Anal Bioanal Chem, 2005, 381: 839-843.
    [226] 张帆,薛利军,李自田等. 基于 CCD 的生物芯片扫描分析系统的设计[J]. 光子学报,2006,35(4):565-568.
    [227] Santiago J G, Wereley S T, Meinhart C D, et al. A particle image velocimetry system for microfluidics[J], Experiments in Fluids, 1998, 25: 316-319.
    [228] Meinhart C D, Wereley S T, Santiago J G. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27: 414-419.
    [229] 朱铮涛,黎绍发. 镜头畸变及其校正技术[J]. 光学技术,2005,31(1):136-141.
    [230] Lyvers E P, Mitchell O R. Subpixel measurements using a moment based edge operator[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11(12): 1293-1309.
    [231] 薛向东,吴黎明,邓耀华等. IC 晶片关键尺寸标定的新方法研究[J]. 半导体技术,2005,30(12):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700