胺亚胺金属配合物的合成、表征及催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首次合成了四个系列二十七个未见文献报道的胺亚胺金属配合物,并通过元素分析、核磁共振谱和X-射线单晶衍射等测试手段对所合成的化合物进行了结构表征。对其中铝、锌十二个金属配合物进行了催化己内酯开环聚合的性质的测定,研究了它们的聚合条件及机理,初步研究了三个镍配合物催化环氧丙烷与二氧化碳偶联反应的性能,并研究了四价铬化合物的生成机理及催化乙烯聚合的条件。
     利用乙二胺和邻氟苯甲醛反应生成西佛碱,再与取代的胺锂盐反应得到两个乙基桥联的胺亚胺配体,[ortho-C_6H_4(NHAr)CH=N]_2CH_2CH_2 (Ar = 2,6-Me_2C_6H_3, LA1H_2; Ar = 2,6-iPr2C_6H_3, LA_2H_2)。利用上述两种配体分别与AlMe_3,ZnEt_2在甲苯中反应合成了一系列单核铝,异核铝锌,同核铝,同核锌金属配合物,并对配体和配合物进行元素分析和核磁表征。得到五个单晶,并测得了它们的晶体结构。利用以上配合物作为催化剂在苄醇存在下催化己内酯开环聚合,反应活性很高,具有活性聚合的特点。
     根据文献方法合成了一系列胺亚胺配体,ortho-C_6H_4(CH=NAr1)(NHAr~2) [Ar~1 = C_6H_5, Ar~2 = C_6H_5 (LB1H); Ar~1 = 2,6-Me_2C_6H_3, Ar~2 = 2,6-Me_2C_6H_3 (LB2H); Ar~1 = 2,6-Et+2C_6H_3, Ar~2= 2,6-Et_2C_6H_3 (LB3H); Ar~1 = 2,6-iPr2C_6H_3, Ar~2 = 2,6- Me_2C_6H_3 (LB4H); Ar1 = 2,6-iPr_2C_6H_3, Ar~2= 2,6-Et_2C_6H_3 (LB5H); Ar_1 = 2,6-iPr_2- C_6H_3, Ar~2=2,6-iPr_2C_6H_3 (LB_6H)]。利用上述配体与AlMe_3在己烷中反应合成了一系列单核铝的配合物,并对配体和配合物进行元素分析和核磁表征。利用以上配合物作为催化剂在苄醇存在下催化己内酯开环聚合,反应活性较高,具有活性聚合的特点。
     利用手性二胺和邻氟苯甲醛反应生成西佛碱,再与取代的胺锂盐反应得到三个手性胺亚胺配体,[ortho-C_6H_4(NHAr)CH=N]2C_6H_(10) [(1R,2R)-L_(C1)H_2 (Ar = 2,6-Me_2C_6H_3), (1R,2R)-LC_2H_2 (Ar = 2-MeC_6H_4), (1R,2R)-LC_3H_2 (Ar = 4-Me- C_6H_4)]。利用上述手性配体先后与丁基锂,金属氯化物反应得到相应的金属配合物,我们先后合成了Zr,Cr,Co,Ni,Cu五种金属配合物,并对配体和配合物进行元素分析和核磁表征。得到六个单晶,并测得了它们的晶体结构。利用镍配合物作为催化剂在季铵盐存在下催化环氧丙烷与二氧化碳偶联反应,反应活性较高。
     利用2,6-二异丙基苯胺和邻氟苯甲醛反应生成西佛碱,再与邻苯二胺的双胺锂盐反应得到一个四齿胺亚胺配体, [ortho-C_6H_4- (CH=NC_6H_3~iPr_2-2,6)NH]2C_6H_4 (LDH_2)。利用上述配体先后与丁基锂,氯化亚铬反应得到一个非常新颖的四价铬的配合物,对配体和配合物进行元素分析和核磁表征,得到了这个四价铬的单晶,并测得了它的晶体结构。利用这个四价铬的配合物作为催化剂在Al~iBu_3/Ph_3CB(C_6F_5)_3活化下催化乙烯聚合,反应活性中等,聚合物的分子量超过100万。
Salen ligands and their transition metal complexes have been extensively explored as catalysts in the last few decades. Many of these complexes have been found to be excellent catalysts for a number of reactions. A catalyst with proper ligand and proper metal center can catalyze a proper reaction. From structural point of view, there are two substituents at the ortho-position of the coordinating O atoms in the salen ligand. The steric effect of the substituents on the coordinating atoms in the ligands should be larger than those in the salen ligands. With such a consideration in mind, we have designed three classes of tetra-azane chelating ligands and their transition metal complexes in which there are two substituents on the coordinating N atoms. The steric and electronic effect of the two substituents in the new ligands should be better than those in the salen ligands and the PPNN ligands that modified the catalytic activity and selectivity.
     Ligands [ortho-C_6H_4(NHAr)CH=N]_2CH_2CH_2 (Ar = 2,6-Me_2-C_6H_3, L_(A1)H_2; Ar = 2,6-~iPr_2C_6H_3, LA_2H_2) were prepared by condensation between ethylenediamine with two equivalents of 2- fluorobenzaldehyde in methanol, followed by reaction with two equivalents of lithium salt of substituted aniline in THF. Treatment of L_(A1)H_2 with one equiv of AlMe_3 gives the tetracoordinated monometallic complex L_(A1)HAlMe_2. The hetrobimetallic complex L_(A1)ZnEtAlMe_2 was prepared by reaction of one equiv of ZnEt_2 with the complex L_(A1)HAlMe_2 in toluene. Treatment of the ligand L_(A1)H_2 or L_(A2)H_2 with two equiv of AlMe_3 gives the bimetallic complex L_(A1)(AlMe_2)_2 or L_(A2)(AlMe_2)_2, and reaction of L_(A1)H_2 or L_(A2)H_2 with two equiv of ZnEt2 leads to the formation of bimetallic complex L_(A1)(ZnEt)_2 or L_(A2)(ZnEt)_2 , respectively. The complexes were all characterized by elemental analyses and 1H and 13C NMR spectroscopy. Crystal structures of complexes L_(A1)HAlMe2, L_(A1)ZnEtAlMe2, L_(A1)(AlMe2)2, L_(A2)(AlMe2)2, and L_(A1)(ZnEt)2 were determined by single-crystal X-ray diffraction. All of the complexes are efficient catalysts for ring-opening polymerization ofε-caprolactone in the presence of benzyl alcohol and catalyze the polymerization ofε-caprolactone in living fashion yielding polymers with a narrow polydispersity index.
     Anilido-imine ligands ortho-C_6H_4(CH=NAr1)(NHAr~2) [Ar1 = C_6H_5, Ar~2 = C_6H_5 (LB1H); Ar1 = 2,6-Me2C_6H_3, Ar~2 = 2,6-Me2C_6H_3 (LB2H); Ar1 = 2,6-Et2C_6H_3, Ar~2= 2,6-Et2C_6H_3 (LB3H); Ar1 = 2,6-iPr2C_6H_3, Ar~2 = 2,6-Me2C_6H_3 (LB4H); Ar1 = 2,6-iPr2C_6H_3, Ar~2= 2,6-Et2C_6H_3 (LB5H); Ar1 = 2,6-iPr_2C_6H_3, Ar~2=2,6-iPr2C_6H_3 (LB_6H)] were synthesized according to the literature procedure. Treatment of the ligands with AlMe_3 in hexane gives the desired anilido-imine Al complexes. The anilido-imine Al complexes were all characterized by elemental analyses and 1H NMR spectroscopy. All of these anilido-imine Al complexes are efficient catalysts for ring-opening polymerization ofε-caprolactone in the presence of benzyl alcohol and catalyze the polymerization ofε-caprolactone in living fashion.
     Ligands [ortho-C_6H_4(NHAr)CH=N]_2C_6H_(10_ [(1R,2R)-L_(C1)H_2 (Ar = 2,6-Me_2C_6H_3), (1R,2R)-LC_2H_2 (Ar = 2-MeC_6H_4), (1R,2R)-L_(C3)H_2 (Ar = 4-MeC_6H_4)]were prepared by condensation between chiral cylclohexane diamine with two equivalents of 2- fluorobenzaldehyde in methanol, followed by reaction with two equivalents of lithium salt of substituted aniline in THF. The transition metal complexes [L_(C1)ZrCl_2, L_(C2)ZrCl_2, L_(C3)ZrCl_2, L_(C1)CrCl, L_(C2)CrCl, L_(C3)CrCl, L_(C1)Co, L_(C2)Co, L_(C3)Co, L_(C1)Ni, L_(C2)Ni, L_(C3)Ni, L_(C1)Cu, L_(C2)Cu, L_(C3)Cu] were synthesized in good yields via metathesis of MCl_2 (M=ZrCl_2(THF)2, Co, Ni(DME), Cu) with the lithium salt of the corresponding ligands, respectively. Molecular structure of (1R,2R)-L~1H_2, L_(C1)ZrCl_2, L_(C1)CrCl, L_(C1)Co, L_(C1)Ni, L_(C3)Ni and L_(C1)Cu were determined by X-ray crystallography. All of the Ni complexes are efficient catalysts for the coupling reaction of propylene oxide with CO2 in the presence of a quaternary ammonium salt.
     The new ligand [ortho-C_6H_4(CH=NC_6H_3iPr2-2,6)NH]2C_6H_4 (LDH_2) was synthesized via a nucleophilic displacement of fluorine in ortho-C_6H_4F- (CH=NC_6H_3iPr2-2,6) by dilithium salt of 1,2-benzendiamine in THF. Reaction of the dilithium salt of LDH_2 with CrCl_2(THF) in THF gives the six-coordinated Cr(IV) complex. Molecular structure of the Cr(IV) complex was determined by X-ray crystallography. Upon activation with AliBu3 and Ph_3CB(C_6F_5)_4 as cocatalysts, the Cr(IV)complex was found to be active towards ethylene polymerization to give solid polyethylenes. The activity is moderate in room temperature though the molecular weight of the polyethylene is very high (Mv: 1650000).
引文
[1] (a) B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman. Polymerization of lactide and related cyclic ester by discrete metal complexes. J. Chem. Soc., Dalton Trans., 2001, 2215; (b) J. Wu, T. L. Yu, C. T. Chen and C. C. Lin. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev., 2006, 250, 602.
    [2] (a) D. J. Darensbourg. Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 2007, 107, 2388; (b) G. Musie, M. Wei, B. Subramaniam and D. H. Busch. Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord. Chem. Rev. 2001, 219-221, 789.
    [3] (a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow and E. N. Jacobsen. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)CoIII Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. J. Am. Chem. Soc. 2002, 124, 1307; (b) L. S. Zhao, B. Han, Z. L. Huang, M. Miller, H. J. Huang, D. S. Malashock, Z. L. Zhu, A. Milan, D. E. Robertson, D. P. Weiner and M. J. Burk. Epoxide Hydrolase-Catalyzed Enantioselective Synthesis of Chiral 1,2-Diols via Desymmetrization of meso-Epoxides. J.Am. Chem. Soc. 2004, 126, 11156; (c) L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond and E. N. Jacobsen. Mechanistic Investigation Leads to a Synthetic Improvement in the Hydrolytic Kinetic Resolution of Terminal Epoxides. J. Am. Chem. Soc. 2004, 126, 1360; (d) J. M. Ready and E. N. Jacobsen. Highly Active Oligomeric (salen)Co Catalysts for Asymmetric Epoxide Ring-Opening Reactions. J. Am. Chem. Soc. 2001, 123, 2687; (e) M. H. Yang, C. J. Zhu, F. Yuan, Y. J. Huang and Y. Pan. Enantioselective Ring-Opening Reaction of meso-Epoxides with ArSeH Catalyzed by Heterometallic Ti-Ga-Salen System. Org. Lett. 2005, 7, 1927; (f) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, M. Massaccesi, P. Melchiorre and L. Sambri. Asymmetric Aminolysis of Aromatic Epoxides: A Facile Catalytic Enantioselective Synthesis of anti-β-Amino Alcohols. Org. Lett. 2004, 6, 2173.
    [4] (a) E. M. McGarrigle and D. G. Gilheany. Chromium- and Manganese-salen Promoted Epoxidation of Alkenes. Chem. Rev. 2005, 105, 1563; (b) T. Katsuki. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 1995, 140, 189.
    [5] (a) T. M. Ovitt and G. W. Coates. Stereochemistry of lactide polymerization with chiralcatalysts: New opportunities for stereocontrol using polymer exchange mechanisms. J. Am. Chem. Soc. 2002, 124, 1316; (b) H. Teujit and Y. Ikada. Stereocomplex formation between enantiomeric poly(1actic acid)s. 6. binary blends from copolymers. Macromolecules 1992, 25, 5719; (c) S. A. Krouse, R. R. Schrock and R. E. Cohen. Stereocomplex formation between enantiomeric poly( lactides). Macromolecules, 1987, 20, 904.
    [6] A. Belbella, C. Vauthier, H. Fessi, J. P. Devissaguet and F. Puisieux. In vitro degradation of nanospheres from poly(D,L-lactides) of different molecular weights and polydispersities. Int. J. Pharm., 1996, 129, 95.
    [7] (a) G. Montaudo, M. S. Montaudo, C. Puglisi, F. Samperi, N. Spassky, A. LeBorgne and M. Wisniewski. Evidence for ester-exchange reactions and cyclic oligomer formation in thering-opening polymerization of lactide with aluminum complex initiators. Macromolecules 1996, 29, 6461; (b) M. Wisniewski, A. LeBorgne and N. Spassky. Synthesis and properties of (D)- and (L)-lactide stereocopolymers using the system achiral Schiff's base aluminium methoxide as initiator. Macromol. Chem. Phys. 1997, 198, 1227; (c) P. A. Cameron, D. Jhurry, V. C. Gibson, A. J. P. White, D. J. Williams and S. Williams. Controlled polymerization of lactides at ambient temperature using [5-Cl-salen]AlOMe. Macromol. Rapid Commun. 1999, 20, 616; (d) A. Bhaw-Luximon, D. Jhurry and N. Spassky, Controlled polymerization of DL-lactide using a Schiff's base al-alkoxide initiator derived from 2-hydroxyaceto- phenone. Polym. Bull. 2000, 44, 31; (e) D. Jhurry, A. Bhaw-Luximon and N. Spassky. Synthesis of polylactides by new aluminium schoff's base complexes. Macromol. Symp. 2001, 175, 67.
    [8] N. Nomura, R. Ishii, M. Akakura and K. Aoi. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: Exploration of a chain-end control mechanism. J. Am. Chem. Soc. 2002, 124, 5938.
    [9] P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White and D. J. Williams. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J. Am. Chem. Soc. 2004, 126, 2688.
    [10] N. Spassky, M. Wisniewski, C. Pluta and A. LeBorgne. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff's base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197, 2627.
    [11] (a) T. M. Ovitt and G. W. Coates. Stereoselective ring-opening polymerization of meso- lactide: Synthesis of syndiotactic poly(lactic acid). J. Am. Chem. Soc. 1999, 121, 4072; (b) T. M. Ovitt and G. W. Coates. Stereoselective ring-opening polymerization of rac-lactide with a single-site, racemic aluminum alkoxide catalyst: Synthesis of stereoblock poly(lactic acid). J. Polym. Sci. Pol. Chem. 2000, 38, 4686.
    [12] (a) Z. Y. Zhong, P. J. Dijkstra and J. Feijen. (salen)Al -mediated, controlled andstereoselective ring-opening polymerization of lactide in solution and without solvent: Synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide. Angew. Chem.-Int. Edit. 2002, 41, 4510; (b) Z. Y. Zhong, P. J. Dijkstra and J. Feijen, Controlled and stereoselective polymerization of lactide: Kinetics, selectivity, and microstructures. J. Am. Chem. Soc. 2003, 125, 11291.
    [13] (a) Z. H. Tang, X. S. Chen, X. Pang, Y. K. Yang, X. F. Zhang and X. B. Jing. Stereoselective polymerization of rac-lactide using monoethylaluminum Schiff-base complex. Biomacromolecules 2004, 5, 965; (b).Z. H.Tang, X. S. Chen, Y. K. Yang, X. Pang, J. R. Sun, X. F. Zhang and X. B. Jing. Stereoselective polymerization of rac-lactide using bulky Al-Schiff base complex. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42, 5974.
    [14] G. W. Coates and D. R. Moore. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. Angew. Chem. Int. Edit. 2004, 43, 6618.
    [15] (a) X. B. Lu, X. J. Feng and R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A. 2002, 234, 25; (b) X. B. Lu, R. He and C. X. Bai. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. J. Mol. Catal. A. 2002, 186, 1.
    [16] E. N. Jacobsen, M. Tokunaga and J. F. Larrow. PCT Int. Appl.WO00/09463, 2000.
    [17] R. L. Paddock and S. T. Nguyen.Chemical CO2 Fixation: SalenCr Complexes as Highly Efficient catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc. 2001, 123, 11498.
    [18] A. B. Holmes, S. A. Mang, Brit. UKPat.Appl.2352449, 2001.
    [19] D. J. Darensbourg and J. C. Yarbrough. Mechanistic Aspects of the Copolymerization Reaction of Carbon Dioxide and Epoxides, Using a Chiral Salen Chromium Chloride Catalyst. J. Am. Chem. Soc. 2002, 124, 6335.
    [20] R. Eberhardt, M. Allmendinger, B. Rieger. DMAP/Cr(III) Catalyst Ratio: The Decisive Factor for Poly(propylene carbonate) Formation in the Coupling of CO2 and Propylene Oxide. Macromol. Rapid. Commun. 2003, 24, 194 .
    [21] Y. M. Shen, W. L. Duan, M. Shi. Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes. J. Org. Chem. 2003, 68, 1559.
    [22] Z. Q. Qin, C. M. Thomas, S. Lee and G. W. Coates. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2: Active and Selective Catalysts for Polycarbonate Synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484.
    [23] X. B. Lu and Y. Wang. Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions. Angew. Chem. Int. Ed. 2004, 43, 3574.
    [24] D. J. Darensbourg, J. L. Rodgers, C. C. Fang, D. R. Billodeaux and J. H. Reibenspies. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(III) Salen Complexes and N-Methylimidazole: effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem. 2004, 43, 6024.
    [25] X. B. Lu, B. Liang, Y. J. Zhang, Y. Z. Tian, Y. M. Wang, C. X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2: Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc. 2004, 126, 3732.
    [26] K. Srinivasan, P. M ichaud, J. K. Kochi. Epoxidation of olefins with cationic (salen) manganese(III) complexes. The modulation of catalytic activity by substituents. J. Am. Chem. Soc.1986, 108, 2309.
    [27] K. Nakajima, M. Kojima and J. Fujita. Asymmetric Oxidation of Sulfides to Sulfoxides by Organic Hydroperoxides with Optically-active Schiff-base Oxovanadium(IV) Catalysts.Chem. Lett. 1986, 1483.
    [28] W. Zhang, J. L. Loebach, S. R. Wilson and E. N. Jacobsen. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes J. Am. Chem. Soc. 1990, 112, 2801.
    [29] R. Irie, K. Noda, Y. Ito, N. Matsumoto and T. Katsuki. Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett. 1990, 31, 7345.
    [30] E. N. Jacobsen, W. Zhang, L. C. Muci, J. R. Ecker, L. Deng. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J. Am. Chem. Soc. 1991, 113, 7063.
    [31] R. L. Halterman and S. Jan. Catalytic asymmetric epoxidation of unfunctionalized alkenes using the first D4-symmetric metallotetraphenylporphyrin. J .Org. Chem. 1991, 56, 5253.
    [32] M. Palucki, G. J. Mecormick, E. N. Jacobsen. Low temperature asymmetric epoxidation of unfunctionalized olefins catalyzed by (salen)Mn(III) complexes. Tetrahedron.Lett. 1995, 36, 5457.
    [33] N. Hosoya, A. Hatayama, R. Irie, H. Saski and T. Katsuki. Rational design of Mn-Salen epoxidation catalysts: Preliminary results. Tetrahedron, 1994, 50, 4311.
    [34] H. Sasaki, R. Irie, T. Hamada, K. Suzuki and T. Katsuki. Rational design of Mn-salen catalyst (2): Highly enantioselective epoxidation of conjugated cis olefins. Tetrahedron, 1994, 50, 11827.
    [35] Y. N. Ito and T. Katsuki. What is the origin of highly asymmetric induction by a chiral (salen)manganese(III) complex? Design of a conformationally fixed complex and its application to asymmetric epoxidation of 2, 2-dimethylchromenes. Tetrahedron Lett. 1998, 39, 4325.
    [36] P. Pietiinen. Catalytic and asymmetric epoxidation of unfunctionalized alkenes with hydrogen peroxide and (Salen)Mn(III) complexes. Tetrahedron Lett. 1994, 35, 941.
    [37] K. Imagaya, T. Nagata, T. Yamada, T. Mukaiyama. Chem. Lett. 1994, 527.
    [38] N. Hosoya, R. Irie and T. Katsuki. Construction of new Optically-active (Salen) Manganese(III) Complexes and their Application to Asymmetric Epoxidation of Styrene Derivations. Synlett. 1993, 261.
    [39] N. H. Lee and E. N. Jacobsen. Enantioselective epoxidation of conjugated dienes and enynes. Trans-epoxides from cis-olefins. Tetrahedron Lett. 1991, 32, 6533.
    [40] T. Hamada, T. Fukuda, H. Imanishi, T. Katsuki. Mechanism of one oxygen atom transfer from oxo (salen) manganese(V) complex to olefins. Tetrahedron. 1996, 52, 515.
    [41] Z. Li, K. R. Conser and E. N. Jacobsen. Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J Am Chem Soc, 1993, 115, 5326.
    [42] J. A. Miller, E. J. Hennessy, W. J. Marshall, M. A. Scialdone, S. T. Nguyen. trans-Cyclop ropyl β-Amino Acid Derivatives via Asymmetric Cyclop ropanation Using a ( Salen) Ru ( II) Catalyst. J org Chem, 2003, 68, 7884.
    [43] H. L. Nam, S. B. Jong and B. H. Sung. ( Salen)Mn-Catalyzed Oxygenation of Vinyl Arenes to the Corresponding Alcohols in the Presence of Sodium Borohydride. Bull Korean Chem Soc, 1999, 20, 867.
    [44] T. Makoto, F. L. Jay, K. Fumitoshi and E. N. Jacobson. Asymmetric Catalysiswith Water: Efficient Kinetic Resolution of Terminal Epoxides by Means of Catalytic Hydrolysis. Science, 1997, 277, 936.
    [45] L. Sidney and R. B. Xiu. Tertiary Pentyl Groups Enhance Salen Titanium Catalyst for Highly Enantioselective Trimethylsilylcyanation of Al-dehydes. J. Org. Chem, 2002, 67, 2702.
    [46] Y. C. Shen, X. M. Feng andY. Z. Jiang. Asymmetric Reactions Catalyzed by Chiral Titanium Complexes. Chin. J. Org. Chem, 2001, 21, 944.
    [47](a) J. K. Myers and E. N. Jacobsen Asymmetric Synthesis of β-Amino Acid Derivatives via Catalytic Conjugate Addition of Hydrazoic Acid to Unsaturated Imides. J Am Chem Soc, 1999, 121, 8959; (b) K. Norbert and H. R. Anja. Recent Advances in Catalytic EnantioselectiveMichael Additions. Synthesis, 2001, 2, 171.
    [1] 王葆仁 有机合成反应 科学出版社 1982 年。
    [2] W. S. Sheldrick, R. Knorr and H. Polzer. Acta Crystalogr. B 1979, 35, 739.
    [3] A. C. T. North, D. C. Phillips and F. S. Mathews. Acta Crystallogr., 1968, Sect. A, 24. p 351.
    [4] G. M. Sheldrick. Program for crystal structure solution, University of Góttingen., 1997.
    [1] M. Okada. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci., 2002, 27, 87.
    [2] (a) A. C. Albertsson and I. K. Varma. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules, 2003, 4, 1466; (b) B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman. Polymerization of lactide and related cyclic ester by discrete metal complexes. J. Chem. Soc., Dalton Trans., 2001, 2215; (c) J. Wu, T. L. Yu, C. T. Chen and C. C. Lin. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev., 2006, 250, 602.
    [3] Recent studies of Mg: (a) M. H. Chisholm, J. C. Huffman and K. Phomphrai. Monomeric metal alkoxides and trialkyl siloxides: (BDI)Mg(OtBu)(THF) and (BDI)Zn(OSiPh3)(THF). Commentson single site catalysts for ring-opening polymerization oflactides. J. Chem. Soc., Dalton Trans., 2001, 222;
    (b) M. L. Shueh, Y. S. Wang, B. H. Huang, C. Y. Kuo and C. C. Lin. Reactions of 2,2’-Methylenebis(4-chloro-6-isopropyl-3-methylphenol) and 2,2’-Ethyli- denebis-(4,6-di-tert-butylphenol) with MgnBu2: Efficient Catalysts for Ring-Opening Polymerization of ε-Caprolactone and L-Lactide. Macromolecules, 2004, 37, 5155;
    (c) L. F. Sánchez-Barba, D. L. Hughes, S. M. Humphrey and M. Bochmann. Ligand Transfer Reactions of Mixed-Metal Lanthanide/Magnesium Allyl Complexes with β-Diketimines: Synthesis, Structures, and Ring-Opening Polymerization Catalysis. Organometallics, 2006, 25, 1012;
    (d) L. E. Breyfogle, C. K. Williams, V. G. Young, M. A. Hillmyer and W. B. Tolman. Comparison of structurally analogous Zn2, Co2, and Mg2 catalysts for the polymerization of cyclic esters. Dalton Trans., 2006, 928;
    (e) Y. Sarazin, R. H. Howard, D. L. Hughes, S. M. Humphrey and M. Bochmann. Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: syntheses, characterisation and activity in cyclic ester polymerization. Dalton Trans., 2006, 340.
    [4] Recent studies of Ca: (a) Z. Y. Zhong, P. J. Dijkstra, C. Birg, M. Westerhausen and J. Feijen. A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules, 2001, 34, 3863;
    (b) Z. Y. Zhong, M. J. K. Ankoné, P. J. Dijkstra, C. Birg, M. Westerhausen and J. Feijen. Calcium methoxide initiated ring-opening polymerization of epsilon-caprolactone and L-lactide. Polym. Bull., (Berlin) 2001, 46, 51;
     (c) Z. Y. Zhong, S. Schneiderbauer, P. J. Dijkstra and J. Feijen. Single-site calcium initiators for the controlled ring-opening polymerization of lactides and lactones. Polym. Bull., (Berlin) 2003, 51, 175.
    [5] Recent studies of Al: (a) H.P. Zhu and E. Y.-X. Chen. Group 13 and Lanthanide Complexes Supported by Tridentate Tripodal Triamine Ligands: Structural Diversity and Polymerization Catalysis. Organometallics, 2007, 26, 5395;
    (b) M. H. Chisholm, D. Navarro-Llobet and W. J. Jr. Simonsick. A Comparative Study in the Ring-Opening Polymerization of Lactides and Propylene Oxide. Macromolecules, 2001, 34, 8851;
    (c) B. Antelmann, M. H. Chisholm, S. S. Iyer, J. C. Huffman, D. Navarro-Llobet, W. J. Simonsick and W. Zhong. Molecular Design of Single Site Catalyst Precursors for the Ring-Opening Polymerization of Cyclic Ethers and Esters. 2.1 Can Ring-Opening Polymerization of Propylene Oxide Occur by a Cis-Migratory Mechanism?. Macromolecules, 2001, 34, 3159;
    (d) D. Chakradorty and E. Y. X. Chen. Neutral Olefin Polymerization Activators as Highly Active Catalysts for ROP of Heterocyclic Monomers and for Polymerization of Styrene. Macromolecules, 2002, 35, 13;
    (e) R. C. Yu, C. H. Hung, J. H. Huang, H. Y. Lee and J. T. Chen. Four- and Five-Coordinate Aluminum Ketiminate Complexes: Synthesis, Characterization, and Ring-Opening Polymerization. Inorg. Chem., 2002, 41, 6450;
    (f) S. Dagorne, L. Lavanant, R. Welter, C.; Haquette, P Chassenieux and G. Jaouen. Synthesis and Structural Characterization of Neutral and Cationic Alkylaluminum Complexes Based on Bidentate Aminophenolate Ligands. Organometallics, 2003, 22, 3732;
    (g) C. H. Huang, F. C. Wang, B. T. Ko, T. L. Yu and C. C. Lin. Ring-Opening Polymerization of ε-Caprolactone and L-Lactide Using Aluminum Thiolates as Initiator. Macromolecules, 2001, 34, 356;
    (h) G. Zheng and H. D. H. Stover. Grafting of Poly(ε-caprolactone) and Poly(ε-caprolactone-block- (dimethylamino)ethyl methacrylate) from Polymer Microspheres by Ring-Opening Polymerization and ATRP. Macromolecules, 2003, 36, 7439;
    (i) C. T. Chen, C. A. Huang and B. H. Huang. Aluminum Complexes Supported by Tridentate Aminophenoxide Ligand as Efficient Catalysts for Ring-Opening Polymerization of ε-Caprolactone. Macromolecules, 2004, 37, 7968;
    (i) L. M. Alcazar-Roman, B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman. Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts. Dalton Trans., 2003, 3082;
    (j) M. L. Hsueh, B. H. Huang and C. C. Lin. Reactions of 2,2’-(2-Methoxybenzylidene)bis(4-methyl-6-tert- butylphenol) with Trimethylaluminum: Novel Efficient Catalysts for “Living” and “Immortal” Polymerization of ε-Caprolactone. Macromolecules, 2002, 35, 5763;
    (k) C. T. Chen, C. A. Hung and B. H. Huang. Aluminium metal complexes supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization of ε-caprolactone. Dalton Trans., 2003, 3799;
    (l) H. L. Chen, B. T. Ko, B. H. Huang and C. C. Lin. Reactions of 2,2’-Methylenebis(4-chloro-6-isopropyl-3-methylphenol) with Trimethylaluminum: Highly Efficient Catalysts for the Ring-Opening Polymerization of Lactones. Organometallics, 2001, 20, 5076;
    (n) N. Nomura, T. Aoyama, R. Ishii and T. Kondo. Salicylaldimine- Aluminum Complexes for the Facile and Efficient Ring-Opening Polymerization of ε-Caprolactone. Macromolecules, 2005, 38, 5363;
    (o) D. Chakradorty and E. Y. X. Chen. Neutral, Three- Coordinate, Chelating Diamide Aluminum Complexes: Catalysts/Initiators for Synthesis of Telechelic Oligomers and High Polymers. Organometallics, 2002, 21, 1438;
    (p) S. Milione, F. Grisi, R. Centore and A. Tuzi. Neutral and Cationic Heteroscorpionate Aluminum Complexes: Synthesis, Structure, and Ring- Opening Polymerization of ε-Caprolactone. Organometallics, 2006, 25, 266;
    (q) A. Amgoune, L. Lavanant, C.M. Thomas, Y. Chi, R. Welter, S. Dagorne and J. F. Carpentier. An Aluminum Complex Supported by a Fluorous Diamino- Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of ε-Caprolactone. Organometallics, 2005, 24, 6279;
    (r) D. Chakraborty and E. Y. X. Chen. Chiral Amido Aluminum and Zinc Alkyls: A Synthetic, Structural, and Polymerization Study. Organometallics, 2003, 22, 769;
    (s) J. Lewiński, P. Wójcik, K. Horeglad and I. Justyniak. Chelation Effect in Polymerization of Cyclic Esters by Metal Alkoxides: Structure Characterization of the Intermediate Formed by Primary Insertion of Lactide into the Al-OR Bond of an Organometallic Initiator. Organometallics, 2005, 24, 4588;
    (t) S. Dagorne, F. L. Bideau, R. Welter, S. Bellemin-Laponnaz and A. Maisse-Fran?ois. Well-Defined Cationic Alkyl– and Alkoxide–Aluminum Complexes and Their Reactivity with ε-Caprolactone and Lactides. Chem. Eur. J., 2007, 13, 3202;
    (u) J. Lewiński, P. Horeglad, M. Dranka and I. Justyniak. Chelation Effect in Polymerization of Cyclic Esters by Metal Alkoxides: Structure Characterization of the Intermediate Formed by Primary Insertion of Lactide into the Al-OR Bond of an Organometallic Initiator. Inorg. Chem,. 2004, 43, 5789.
    [6] Recent studies of Ti: (a) D. Takeuchi, T. Nakamura and T. Aida. Bulky Titanium Bis- (phenolate) Complexes as Novel Initiators for Living Anionic Polymerization of ε-Caprolactone. Macromolecules, 2002, 33, 725;
    (b) V. V. Burlakov, A. V. Letov, P. Arndt, W. Baumann, A. Spannenberg, C. Fischer, L. I. Strunkina, M. K. Minacheva, Y. S. Vygodskii, U. Rosenthal and V. B. Shur. Zwitterionic titanoxanes {Cp[η5-C5H4B(C6F5)3]Ti}2O and {(η5-iPrC5H4)[η5-1,3- iPrC5H3B(C6F5)3]Ti}2O as catalysts for cationic ring-opening polymerization. J. Mol. Catal. A: Chem., 2003, 46, 63;
    (c) Y. Takashima, Y. Nakayama, T. Hirao, H. Yasuda and A. Harada. Bis(amido)titanium complexes having chelating diaryloxo ligands bridged by sulfur or methylene and their catalytic behaviors for ring-opening polymerization of cyclic esters. J. Organomet. Chem., 2004, 689, 612;
    (d) J. Cayuela, V. Bounor-Legaté, P. Cassagnau and A. Michel. Ring-Opening Polymerization of ε-Caprolactone Initiated with Titanium n-Propoxide or Titanium Phenoxide. Macromolecules, 2006, 39, 1338;
    (e) M. Davidson, M. D. Jones, M. D. Lunn and M. F. Mahon. Synthesis and X-ray Structures of New Titanium(IV) Aryloxides and Their Exploitation for the Ring Opening Polymerization of ε-Caprolactone. Inorg. Chem., 2006, 45, 2282;
    (f) A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P. Khunkamchoo, S. L. Roberts and S. S. F. Wong. Group 4 Complexes with Aminebisphenolate Ligands and Their Application for the Ring Opening Polymerization of Cyclic Esters. Macromolecules, 2006, 39, 7250;
    (g) H. Wang, H. S. Chan, J. Okuda and Z. W. Xie. Synthesis, Structural Characterization, and Catalytic Properties of Group 4 Metal Complexes Incorporating a Phosphorus-Bridged Indenyl-Carboranyl Constrained-Geometry Ligand. Organometallics, 2005, 24, 3118;
    (h) F. Gornshtein, M. Kapon, M. Botoshansky and M. S. Eisen. Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters. Organometallics, 2007, 26, 497;
    (i) L. I. Strunkina, M. K. Minacheva, K. A. Lyssenko, V. V. Burlakov, W. Baumann, P. Atndt, B. N. Strunin and V. B. Shur. Interaction of titanium(III) zwitterionic complex Cp[η5-C5H4B(C6F5)3]Ti with organic halides: Synthesis and X-ray crystal structure determination of zwitterionic titanocene monohalides Cp[η5-C5H4B- (C6F5)3]TiX (X = Cl, Br) and their catalytic activity in the ring-opening polymerization of ε-caprolactone. J. Organomet. Chem., 2006, 691, 557;
    (j) A. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn and M. F. Mahon. Group 4 complexes of amine bis(phenolate)s and their application for the ring opening polymerisation of cyclic esters. Dalton Trans., 2006, 887.
    [7] Recent study of Fe: (a) B. J. O’Keefe, L. E. Breyfogle, M. A. Hillmyer and W. B. Tolman. Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)-Alkoxide Complexes: Single vs Multiple Site Catalysis. J. Am. Chem. Soc., 2002, 124, 4384;
    (b) M. Z. Chen, H. M. Sun, W. F. Li, Z. G. Wang, Q. Shen and Y. Zhang. Synthesis, structure of functionalized N-heterocyclic carbine complexes of Fe (II) and their catalytic activity for ring-opening polymerization of ε-caprolactone. J. Organomet. Chem., 2006, 691, 2489.
    [8] Recent studies of Zn: (a) D. A. Walker, T. J. Woodman, M. Schormann, D. L. Hughes and M. Bochmann. Synthesis, Structures, and Ring-Opening Polymerization Reactions of Substituted Cyclopentadienyl Complexes of Zinc. Organometallics, 2003, 22, 797;
    (b) H. Y. Chen, B. H. Huang and C. C. Lin. A Highly Efficient Initiator for the Ring-Opening Polymerization of Lactides and ε-Caprolactone: A Kinetic Study. Macromolecules, 2005, 38, 5400;
    (c) Y. Sarazin, M. Schormann and M. Bochmann. Novel Zinc and Magnesium Alkyl and Amido Cations for Ring-Opening Polymerization Reactions. Organometallics, 2004, 23, 3296;
    (e) Z. X. Wang and C. Y. Qi. Lithium, Magnesium, and Zinc Iminophosphorano(8- quinolyl)methanide Complexes: Syntheses, Characterization, and Activity in ε-Caprolactone Polymerization. Organometallics, 2007, 26, 2243;
    (f) B. H. Huang, C. N. Lin, M. L. Hsueh, T. Athar and C. C. Lin. Well-defined sterically hindered zinc aryloxides: Excellent catalysts for ring-opening polymerization of ε-caprolactone and L-lactide. Polymer, 2006, 47, 6622;
    (g) Y. D. M. Champouret, W. J. Nodes, J. A. Scrimshire, K. Singh, G. A. Solan and I. Young. Sterically variable dizinc complexes bearing bis(iminopyridyl)phenolate ligands: synthesis, structures and reactivity studies. Dalton Trans., 2007, 4565;
    (h) C. M. Silvernail, L. J. Yao, L. M. R. Hill, M. A. Hillmyer and W. B. Tolman. Structural and Mechanistic Studies of Bis(phenolato)amine Zinc(II) Catalysts for the Polymerization of ε-Caprolactone. Inorg. Chem., 2007, 46, 6565.
    [9] Recent studies of Sn: (a) G. Deshayes, F. A. G. Mercier, P. Degée, I. Verbruggen, M. Biesemans, R. Willem and P. Dubois. Mechanistic Study of Bu2SnCl2-Mediated Ring-Opening Polymerization of ε-Caprolactone by Multinuclear NMR Spectroscopy Chem. Eur. J., 2003, 9, 4346;
    (b) A. Kowalski, A. Duda and S. Penczek. Mechanism of Cyclic Ester Polymerization Initiated with Tin(II) Octoate. 2. Macromolecules Fitted with Tin(II) Alkoxide Species Observed Directly in MALDI-TOF Spectra. Macromolecules, 2000, 33, 689.
    [10] Recent studies of rare earth metal: (a) E. E. Delbridge, D. T. Dugah, C. R. Nelson, B. W. Skelton and A. H. White. Synthesis, structure and oxidation of new ytterbium(II) bis- (phenolate) compounds and their catalytic activity towards ε-caprolactone. Dalton Trans., 2007, 143;
    (b) H. T. Sheng, F. Xu, Y. M. Yao, Y. Zhang and Q. Shen. Novel Mixed-Metal Alkoxide Clusters of Lanthanide and Sodium: Synthesis and Extremely Active Catalysts for the Polymerization of ε-Caprolactone and Trimethylene Carbonate. Inorg. Chem., 2007, 46, 7722;
    (c) S. W. Wang, S. Y. Wang, S. L. Zhou, G. S. Yang, W. Luo, N. Hu, Z. H. Zhou and H. B. Song. Synthesis, characterization, and catalytic activity of divalent organolanthanide complexes with new tetrahydro-2H-pyranyl-functionlized indenyl ligands. J. Organomet. Chem., 2007, 692, 2099;
    (d) P. C. Kuo, J. C. Chang, W. Y. Lee, H. M. Lee and J. H. Huang. Synthesis and characterization of lithium and yttrium complexes containing tridentate pyrrolyl ligands. Single-crystal X-ray structures of {Li[C4H2N(CH2NMe2)2-2,5]}2 (1) and {[C4H2N(CH2NMe2)2-2,5]YCl2(μ-Cl)Li- (OEt2)2}2 (2) and ring-opening polymerization of ε-caprolactone. J. Organomet. Chem., 2005, 690, 4168;
    (e) Y. Y. Wu, S. W. Wang, C. T. Qian, E. H. Sheng, M. H. Xie, G. S. Yang, Q. Q. Feng, L. J. Zhang, and X. L. Tang. Homolysis of the Ln–N bond: Synthesis, characterization and catalytic activity of organolanthanide(II) complexes with furfuryl- and tetrahydrofurfuryl- functionalized indenyl ligands. J. Organomet. Chem., 2005, 690, 4139;
    (f) S. L. Zhou, S. W. Wang, G. S. Yang, Q. H. Li, L. J. Zhang, Z. J. Yao, Z. K. Zhou and H. B. Song. Synthesis, Structure, and Diverse Catalytic Activities of [Ethylenebis(indenyl)]lanthanide(III) Amides on N-H and C-H Addition to Carbodiimides and ε-Caprolactone Polymerization. Organometallics, 2007, 26, 3755.
    (g) S. W. Wang, X. L. Tang, A. Vega, J. Y. Saillard, S. L. Zhou, G. S. Yang, W. Yao and Y. Wei. Coordination and Reactivity Diversity of N-Piperidineethyl-Functionalized Indenyl Ligands: Synthesis, Structure, Theoretical Calculation, and Catalytic Activity of Organolanthanide Complexes with the Ligands. Organometallics, 2007, 26, 1512;
    (h) X. P. Xu, Z. J. Zhang, Y. M. Yao, Y. Zhang and Q. Shen, Inorg. Chem., 2007, 46, 9379;
    (i) H. Zhou, H, D. Guo, Y. M. Yao, L. Y. Zhou, H. M. Sun, H. T. Sheng,Y. Zhang and Q. Shen. Ytterbium(II) Complex Bearing a Diaminobis(phenolate) Ligand: Synthesis, Structure, and One-Electron- Transfer and ε-Caprolactone Polymerization Reactions. Inorg. Chem., 2007, 46, 958.
    [11] X. M. Liu, W. Gao, Y. Mu, G. H. Li, L. Ye, H. Xia, Y. Ren and S. H. Feng. Dialkyl- aluminum Complexes with Chelating Anilido-Imine Ligands: Synthesis, Structures, and Luminescent Properties. Organometallics, 2005, 24, 1614.
    [12] D. J. Doyle, V. C. Gibson and A. J. P. White. Synthesis and structures of bimetallic and polymeric zinc coordination compounds supported by salicylaldiminato and anilido–aldimine ligands. Dalton Trans., 2007, 358.
    [13] J. A. Dean, “Lange’s Handbook of Chemistry”, 15th ed. McGraw-Hill, New York 1999, p.4.41-4.53.
    [14] (a) E. Martin, P. Dubois and R. Jér?me. Controlled Ring-Opening Polymerization of ε-Caprolactone Promoted by “in Situ” Formed Yttrium Alkoxides. Macromolecules, 2000, 33, 1530;
    (b) E. Martin, P. Dubois and R. Jér?me. “In Situ” Formation of Yttrium Alkoxides: A Versatile and Efficient Catalyst for the ROP of ε-Caprolactone. Macromolecules, 2003, 36, 5934.
    [1] (a) P. G. Hayes, G. C. Welch, D. J. H. Emslie, C. L. Noack, W. E. Piers and M. Parvez. A new chelating anilido-imine donor related to beta-diketiminato ligands for stabilization of organoyttrium cations. Organometallics 2003, 22, 1577;
    (b) E. C. Brown, I. Bar-Nahum, J. T, York, N. W. Aboelella and W. B. Tolman. Ligand structural effects on Cu2S2 bonding and reactivity in side-on disulfido-bridged dicopper complexes. Inorg Chem 2007, 46, 486;
    (c) X. M. Liu, W. Gao, Y. Mu, G. H. Li, L. Ye, H. Xia, Y. Ren and S. H. Feng. Dialkylaluminum complexes with chelating anilido-imine ligands: Synthesis, structures, and luminescent properties. Organometallics 2005, 24, 1614;
    (d) D. J. Doyle, V. C. Gibson and A. J. P. White. Synthesis and structures of bimetallic and polymeric zinc coordination compounds supported by salicylaldiminato and anilido-aldimine ligands Dalton Trans 2007, 358;
    (e) T. Bok, H. Yun and B. Y. Lee. Bimetallic fluorine-substituted anilido-aldimine zinc complexes for CO2/(cyclohexene oxide) copolymerization. Inorg Chem 2006, 45, 4228;
     (f) B. Y. Lee, H. Y. Kwon, S. Y. Lee, S. J. Na, S. I. Han, H. S. Yun, H. Lee and Y. W. Park. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization. J Am Chem Soc 2005, 127, 3031;
    (g) Q. Su, W. Gao, Q. L. Wu, L. Ye, G. H. Li and Y. Mu. Syntheses, characterization, and luminescent properties of monoethylzinc complexes with anilido-imine ligands. Eur J Inorg Chem 2007, 4168;
    (h) Y. Ren, X. M. Liu, H. Xia, L. Ye and Y. Mu. Boron complexes with Chelating anilido-imine ligands: Synthesis, structures and luminescent properties. Eur J Inorg Chem 2007, 1808;
    (i) H. Y. Wang, X. Meng and G. X. Jin. Synthesis, molecular structure and norbornene polymerization behavior of three-coordinate nickel(I) complexes with chelating anilido-imine ligands. Dalton Trans 2006, 2579;
    (j) X. M. Liu, H. Xia, W. Gao, L. Ye, Y. Mu, Q. Su and Y. Ren. Synthesis, structures, and luminescent properties of aluminum complexes with chelating anilido-imine ligands. Eur J Inorg Chem 2006, 1216;
    (k) E. C. Brown, N. W. Aboelella, A. M. Reynolds, G. Aullón, S. Alvarez and W. B. Tolman. A New Class of (μ-η2:η2-Disulfido)dicopper Complexes: Synthesis, Characterization, and Disulfido Exchange. Inorg Chem 2004, 43, 3335;
    (l) A. M. Reynolds, B. F. Gherman, C. J. Cramer and W. B. Tolman. Characterization of a 1:1 Cu-O-2 adduct supported by an anilido imine ligand. Inorg Chem 2005, 44, 6989;
    (m) H.Y. Gao, W. J. Guo, F. Bao, G. Q. Gui, J. K. Zhang, F. M. Zhu and Q. Wu. Synthesis, molecular structure, and solution-dependent behavior of nickel complexes chelating anilido-imine donors and their catalytic activity toward olefin polymerization. Organometallics 2004, 23, 6273.
    [2] N. Nomura, T. Aoyama, R. Ishii and T. Kondo. Salicylaldimine-Aluminum Complexes for the Facile and Efficient Ring-Opening Polymerization of ε-Caprolactone. Macromolecules, 2005, 38, 5363.
    [3] (a) E. Martin, P. Dubois and R. Jér?me. Controlled Ring-Opening Polymerization of ε-Caprolactone Promoted by “in Situ” Formed Yttrium Alkoxides. Macromolecules, 2000, 33, 1530;
    (b) E. Martin, P. Dubois and R. Jér?me. “In Situ” Formation of Yttrium Alkoxides: A Versatile and Efficient Catalyst for the ROP of ε-Caprolactone. Macromolecules, 2003, 36, 5934;
    (c) M. L. Hsueh, B. H. Huang and C. C. Lin. Reactions of 2,2’-(2-Methoxybenzylidene)bis(4-methyl6-tert-butylphenol) with Trimethylaluminum: Novel Efficient Catalysts for “Living” and “Immortal” Polymerization of ε-Caprolactone. Macromolecules, 2002, 35, 5763.
    [1] (a) C. Baleizao and H. Garcia. Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chem. Rev. 2006, 106, 3987;
    (b) K. C. Gupta and A. K. Sutar. Catalytic activities of Schiff base transition metal complexes Coord. Chem. Rev. 2007. doi :10.1016/j.ccr.2007.09.005;
    (c) N. S. Venkataramanan, G. Kuppuraj and S. Rajagopal Metal–salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds-synthetic and mechanistic aspects. Coord. Chem. Rev. 2005, 249, 1249;
    (d) G. Musie, M. Wei, B. Subramaniam and D. H. Busch. Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord. Chem. Rev. 2001, 219-221, 789.
    [2] (a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow and E. N. Jacobsen. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)CoIII Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. J. Am. Chem. Soc. 2002, 124, 1307;
    (b) L. S. Zhao, B. Han, Z. L. Huang, M. Miller, H. J. Huang, D. S. Malashock, Z. L. Zhu, A. Milan, D. E. Robertson, D. P. Weiner and M. J. Burk. Epoxide Hydrolase-Catalyzed Enantioselective Synthesis of Chiral 1,2-Diols via Desymmetrization of meso-Epoxides. J. Am. Chem. Soc. 2004, 126, 11156;
    (c) L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond and E. N. Jacobsen. Mechanistic Investigation Leads to a Synthetic Improvement in the Hydrolytic Kinetic Resolution of Terminal Epoxides. J. Am. Chem. Soc. 2004, 126, 1360;
    (d) J. M. Ready and E. N. Jacobsen. Highly Active Oligomeric (salen)Co Catalysts for Asymmetric Epoxide Ring-Opening Reactions. J. Am. Chem. Soc. 2001, 123, 2687;
    (e) M. H. Yang, C. J. Zhu, F. Yuan, Y. J. Huang and Y. Pan. Enantioselective Ring-Opening Reaction of meso-Epoxides with ArSeH Catalyzed by Heterometallic Ti-Ga-Salen System. Org. Lett. 2005, 7, 1927;
    (f) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, M. Massaccesi, P. Melchiorre and L. Sambri. Asymmetric Aminolysis of Aromatic Epoxides: A Facile Catalytic Enantioselective Synthesis of anti-β-Amino Alcohols. Org. Lett. 2004, 6, 2173.
    [3] (a) E. M. McGarrigle and D. G. Gilheany. Chromium- and Manganese-salen Promoted Epoxidation of Alkenes. Chem. Rev. 2005, 105, 1563;
    (b) T. Katsuki. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 1995, 140, 189;
    (c) W. Adam, C. Mock-Knoblauch, C. R. Saha-M?ller and M. Herderich. Are MnIV Species Involved in Mn(Salen)-Catalyzed Jacobsen-Katsuki Epoxidations? A Mechanistic Elucidation of Their Formation and Reaction Modes by EPR Spectroscopy, Mass-Spectral Analysis, and Product Studies: Chlorination versus Oxygen Transfer. J. Am. Chem. Soc. 2000, 122, 9685;
    (d) P. Fristrup, B. B. Dideriksen, D. Tanner and P. O. Norrby. Probing Competitive Enantioselective Approach Vectors Operating in the Jacobsen-Katsuki Epoxidation: A Kinetic Study of Methyl-Substituted Styrenes. J. Am. Chem. Soc. 2005, 127, 13672;
    (e) J. Y. Yang and D. G. Nocera. Catalase and Epoxidation Activity of Manganese Salen Complexes Bearing Two Xanthene Scaffolds. J. Am. Chem. Soc. 2007, 129, 8192;
    (f) H. Jacobsen and L. Cavallo. Donor-Ligand Effect on the Product Distribution in the Manganese-Catalyzed Epoxidation of Olefins: A Computational Assessment. Organometallics 2006, 25, 177.
    [4] (a) J. A. Miller, W. C. Jin and S. T. Nguyen. An Efficient and Highly Enantio- and Diastereoselective Cyclopropanation of Olefins Catalyzed by Schiff-Base Ruthenium(II) Complexes. Angew. Chem., Int. Ed. 2002, 41, 2953;
    (b) B. Saha, T. Uchida and T. Katsuki. Asymmetric intramolecular cyclopropanation of diazo compounds with metallosalen complexes as catalyst: structural tuning of salen ligand. Tetrahedron: Asymmetry 2003, 14, 823;
    (c) X. Q. Yao, M. Qiu, W. R. Lv, H. L. Chen and Z. Zheng. Substituted salen–Ru(II) complexes as catalysts in the asymmetric cyclopropanation of styrene by ethyl diazoacetate: the influence of substituents and achiral additives on activity and enantioselectivity. Tetrahedron: Asymmetry 2001, 12, 197;
    (d) G. Dyker, B. H?lzer and G. Henkel. A chiral bis-N-oxide isoelectronic with Jacobsen's salen ligand. Tetrahedron: Asymmetry. 1999, 10, 3297;
    (e) J. A. Miller, E. J. Hennessy, W. J. Marshall, M. A. Sciadone and S. T. Nguyen. trans-Cyclopropyl β-Amino Acid Derivatives via Asymmetric Cyclopropanation Using a (Salen)Ru(II) Catalyst. J. Org. Chem. 2003, 68, 7884;
    (f) G. Y. Li, J. Z. Zhang, P. W. H. Chan, Z. J. Xu, N. Y. Zhu and C. M. Che. Enantioselective Intramolecular Cyclopropanation of cis-Alkenes by Chiral Ruthenium(II) Schiff Base Catalysts and Crystal Structures of (Schiff base)ruthenium Complexes Containing Carbene, PPh3, and CO Ligands. Organometallics 2006, 25, 1676;
    (g) S. K. Edulji and S. T. Nguyen. Catalytic Olefin Cyclopropanation Using μ-Oxo-bis[(salen)iron(III)] Complexes. Organometallics 2003, 22, 3374;
    (h) K. J. Miller, J. H. Baag and M. M. Abu-Omar. Synthesis, Characterization, and Reactivity of Palladium(II) Salen and Oxazoline Complexes. Inorg. Chem. 1999, 38, 4510.
    [5] (a) E. F. DiMauro and M. C. Kozlowski. BINOL-Salen Metal Catalysts Incorporating a Bifunctional Design. Org. Lett. 2001, 3, 1641;
    (b) S. C. Jha and N. N. Joshi. Aluminium–SALEN complex: a new catalyst for the enantioselective Michael reaction. Tetrahedron: Asymmetry 2001, 12, 2463;
    (c) V. Annamalai, E. F. DiMauro, P. J. Carroll and M. Kozalowski. Catalysis of the Michael Addition Reaction by Late Transition Metal Complexes of BINOL-Derived Salens. J. Org. Chem. 2003, 68, 1973;
    (d) M. S. Taylor and E. N. Jacobsen. Enantioselective Michael Additions to α, β-Unsaturated Imides Catalyzed by a Salen-Al Complex. J. Am. Chem. Soc. 2003, 125, 11204.
    [6] (a) E. F. DiMauro and M. C. Kozlowski. Salen-Derived Catalysts Containing Secondary Basic Groups in the Addition of Diethylzinc to Aldehydes. Org. Lett. 2001, 3, 3053;
    (b) S. Jammi, L. Rout and T. Punniyamurthy. Chiral linear polymers bonded alternatively with salen and 1,4-dialkoxy-2,6-diethynylbenzene: synthesis and application to diethylzinc addition to aldehydes. Tetrahedron: Asymmetry 2007, 18, 2016;
    (c) T. I. Danilova, V. I. Rozenberg, Z. A. Starikova and S. Br?se. Planar-chiral salen and hemisalen [2.2] paracyclophane ligands for asymmetric diethylzinc addition to aldehydes. Tetrahedron: Asymmetry 2004, 15, 223;
    (d) E. F. DiMauro and M. C. Kozlowski. Development of Bifunctional Salen Catalysts: Rapid, Chemoselective Alkylations of α-Ketoesters. J. Am. Chem. Soc. 2002, 124, 12668.
    [7] (a) D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers, C. C. Fang, D. R. Billodeaux and J. H. Reibenspies. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(III) Salen Complexes and N-Methylimidazole: Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem. 2004, 43, 6024;
    (b) D. J. Darensbourg. Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 2007, 107, 2388;
    (c) R. T. Paddock and S. T. Nguyen. Chiral (salen)CoIII catalyst for the synthesis of cyclic carbonates. Chem. Commun. 2004, 1622;
    (d) X. B. Lu and Y. Wang. Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions. Angew. Chem. Int. Ed. 2004, 43, 3574;
    (e) Z. Q. Qin, C. M. Thomas, S. Lee and G. W. Coates. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2: Active and Selective Catalysts for Polycarbonate Synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484;
    (f) C. T. Cohen, T. Chu and G. W. Coates. Cobalt Catalysts for the Alternating Copolymerization of Propylene Oxide and Carbon Dioxide: Combining High Activity and Selectivity. J. Am. Chem. Soc. 2005, 127, 10869;
    (g) D. J. Darensbourg, R. M. Mackiewicz and D. R. Billodeaux. Pressure Dependence of the Carbon Dioxide/Cyclohexene Oxide Coupling Reaction Catalyzed by Chromium Salen Complexes. Optimization of the Comonomer-Alternating Enchainment Pathway. Organometallics 2005, 24, 144.
    [8] (a) J. C. Hierso, R. Amardeil, E. Bentabet, R. Broussier, B. Gautheron and P. Meunier. Structural diversity in coordination chemistry of tridentate and tetradentate polyphosphines of Group 6 to 10 transition metal complexes. Coord. Chem. Rev. 2003, 236, 143;
    (b) T. C. Marxen, B. J. Johnson, P. V. Nilsson and L. H. Pignolet. Synthesis and structural characterization of rhodium(I) and iridium(I) complexes of the asymmetric tetradentate PPNN ligand 2,2'-bis[[o-(diphenylphosphino)benzylidene]amino]-6,6'-dimethylbiphenyl. Inorg. Chem. 1984, 23, 4663;
    (c) P. D. Knight and P. Scott. Predetermination of chirality at octahedral centres with tetradentate ligands: prospects for enantioselective catalysis. Coord. Chem. Rev. 2003, 242, 125.
    [9] Z. Li, K. R. Conser and E. N. Jacobsen. Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J. Am. Chem. Soc. 1993, 115, 5326.
    [10] H. J. Zhu, M. Wang, C. B. Ma, B. Li, C. N. Chen and L. C. Sun. Preparation and structures of 6- and 7-coordinate alen-type zirconium complexes and their catalytic properties for oligomerization of ethylene. J. Organomet. Chem. 2005. 3929.
    [11] X. B. Lu, B. Liang, Y. J. Zhang, Y. Z. Tian, Y. M. Wang, C. X. Bai, H. Wang and R. Zhang. Asymmetric Catalysis with CO2: Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc. 2004, 126, 3732.
    [12] Y. M. Shen, W. L. Duan and M. Shi. Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes. J. Org. Chem. 2003, 68, 1559.
    [1] (a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow and E. N. Jacobsen. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)CoIII Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. J. Am. Chem. Soc. 2002, 124, 1307;
    (b) L. S. Zhao, B. Han, Z. L. Huang, M. Miller, H. J. Huang, D. S. Malashock, Z. L. Zhu, A. Milan, D. E. Robertson, D. P. Weiner and M. J. Burk. Epoxide Hydrolase-Catalyzed Enantioselective Synthesis of Chiral 1,2-Diols via Desymmetrization of meso-Epoxides. J. Am. Chem. Soc. 2004, 126, 11156;
    (c) L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond and E. N. Jacobsen. Mechanistic Investigation Leads to a Synthetic Improvement in the Hydrolytic Kinetic Resolution of Terminal Epoxides J. Am. Chem. Soc. 2004, 126, 1360;
    (d) J. M. Ready and E. N. Jacobsen. Highly Active Oligomeric (salen)Co Catalysts for Asymmetric Epoxide Ring-Opening Reactions. J. Am. Chem. Soc. 2001, 123, 2687;
    (e) M. H. Yang, C. J. Zhu, F. Yuan, Y. J. Huang and Y. Pan. Enantioselective Ring-Opening Reaction of meso-Epoxides with ArSeH Catalyzed by Heterometallic Ti-Ga-Salen System. Org. Lett. 2005, 7, 1927;
    (f) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, M. Massaccesi, P. Melchiorre and L. Sambri. Asymmetric Aminolysis of Aromatic Epoxides: A Facile Catalytic Enantioselective Synthesis of anti-β-Amino Alcohols. Org. Lett. 2004, 6, 2173.
    [2] (a) E. M. McGarrigle and D. G. Gilheany. Chromium- and Manganese-salen Promoted Epoxidation of Alkenes. Chem. Rev. 2005, 105, 1563;
    (b) T. Katsuki. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 1995, 140, 189;
    (c) W. Adam, C. Mock-Knoblauch, C. R. Saha-M?ller and M. Herderich. Are MnIV Species Involved in Mn(Salen)-Catalyzed Jacobsen-Katsuki Epoxidations? A Mechanistic Elucidation of Their Formation and Reaction Modes by EPR Spectroscopy, Mass-Spectral Analysis, and Product Studies: Chlorination versus Oxygen Transfer. J. Am. Chem. Soc. 2000, 122, 9685;
    (d) P. Fristrup, B. B. Dideriksen, D. Tanner and P. O. Norrby. Probing Competitive Enantioselective Approach Vectors Operating in the Jacobsen-Katsuki Epoxidation: A Kinetic Study of Methyl-Substituted Styrenes. J. Am. Chem. Soc. 2005, 127, 13672;
    (e) J. Y. Yang and D. G. Nocera. Catalase and Epoxidation Activity of Manganese Salen Complexes Bearing Two Xanthene Scaffolds. J. Am. Chem. Soc. 2007, 129, 8192;
    (f) H. Jacobsen and L. Cavallo. Donor-Ligand Effect on the Product Distribution in the Manganese-Catalyzed Epoxidation of Olefins: A Computational Assessment. Organometallics 2006, 25, 177.
    [3] (a) D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers, C. C. Fang, D. R. Billodeaux and J. H. Reibenspies. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(III) Salen Complexes and N-Methylimidazole: Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem. 2004, 43, 6024;
    (b) D. J. Darensbourg. Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 2007, 107, 2388;
    (c) R. T. Paddock and S. T. Nguyen. Chiral (salen)CoIII catalyst for the synthesis of cyclic carbonates. Chem. Commun. 2004, 1622;
    (d) X. B. Lu and Y. Wang. Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions. Angew. Chem. Int. Ed. 2004, 43, 3574;
    (e) Z. Q. Qin, C. M. Thomas, S. Lee and G. W. Coates. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2: Active and Selective Catalysts for Polycarbonate Synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484;
    (f) C. T. Cohen, T. Chu and G. W. Coates. Cobalt Catalysts for the Alternating Copolymerization of Propylene Oxide and Carbon Dioxide: Combining High Activity and Selectivity. J. Am. Chem. Soc. 2005, 127, 10869;
    (g) D. J. Darensbourg, R. M. Mackiewicz and D. R. Billodeaux. Pressure Dependence of the Carbon Dioxide/Cyclohexene Oxide Coupling Reaction Catalyzed by Chromium Salen Complexes. Optimization of the Comonomer-Alternating Enchainment Pathway. Organometallics 2005, 24, 144.
    [4] (a) C. Baleizao and H. Garcia. Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chem. Rev. 2006, 106, 3987;
    (b) K. C. Gupta and A. K. Sutar. Catalytic activities of Schiff base transition metal complexes Coord. Chem. Rev. 2007. doi :10.1016/j.ccr.2007.09.005;
    (c) N. S. Venkataramanan, G. Kuppuraj and S. Rajagopal Metal–salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds-synthetic and mechanistic aspects. Coord. Chem. Rev. 2005, 249, 1249;
    (d) G. Musie, M. Wei, B. Subramaniam and D. H. Busch. Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord. Chem. Rev. 2001, 219-221, 789. [5] (a) P. G. Hayes, G. C. Welch, D. J. H. Emslie, C. L. Noack, W. E. Piers and M. Parvez. A new chelating anilido-imine donor related to beta-diketiminato ligands for stabilization of organoyttrium cations. Organometallics 2003, 22, 1577;
    (b) E. C. Brown, I. Bar-Nahum, J. T, York, N. W. Aboelella and W. B. Tolman. Ligand structural effects on Cu2S2 bonding and reactivity in side-on disulfido-bridged dicopper complexes. Inorg Chem 2007, 46, 486;
    (c) X. M. Liu, W. Gao, Y. Mu, G. H. Li, L. Ye, H. Xia, Y. Ren and S. H. Feng. Dialkylaluminum complexes with chelating anilido-imine ligands: Synthesis, structures, and luminescent properties. Organometallics 2005, 24, 1614;
    (d) Q. Su, W. Gao, Q. L. Wu, L. Ye, G. H. Li and Y. Mu. Syntheses, characterization, and luminescent properties of monoethylzinc complexes with anilido-imine ligands. Eur J Inorg Chem 2007, 4168;
    (e) Y. Ren, X. M. Liu, H. Xia, L. Ye and Y. Mu. Boron complexes with Chelating anilido-imine ligands: Synthesis, structures and luminescent properties. Eur J Inorg Chem 2007, 1808;
    (f) H. Y. Wang, X. Meng and G. X. Jin. Synthesis, molecular structure and norbornene polymerization behavior of three-coordinate nickel(I) complexes with chelating anilido-imine ligands. Dalton Trans 2006, 2579;
    (g) X. M. Liu, H. Xia, W. Gao, L. Ye, Y. Mu, Q. Su and Y. Ren. Synthesis, structures, and luminescent properties of aluminum complexes with chelating anilido-imine ligands. Eur J Inorg Chem 2006, 1216;
    (h) E. C. Brown, N. W. Aboelella, A. M. Reynolds, G. Aullón, S. Alvarez and W. B. Tolman. A New Class of (μ-η2:η2-Disulfido)dicopper Complexes: Synthesis, Characterization, and Disulfido Exchange. Inorg Chem 2004, 43, 3335;
    (i) A. M. Reynolds, B. F. Gherman, C. J. Cramer and W. B. Tolman. Characterization of a 1:1 Cu-O-2 adduct supported by an anilido imine ligand. Inorg Chem 2005, 44, 6989;
    (j) H.Y. Gao, W. J. Guo, F. Bao, G. Q. Gui, J. K. Zhang, F. M. Zhu and Q. Wu. Synthesis, molecular structure, and solution-dependent behavior of nickel complexes chelating anilido-imine donors and their catalytic activity toward olefin polymerization. Organometallics 2004, 23, 6273.
    [6] H. D. K. Ballem, V. Shetty, N. Etkin, B. O. Patrick and K. M. Smith. Chromium(iii) and chromium(iv) bis(trimethylsilyl)amido complexes as ethylene polymerisation catalysts. Dalton Trans., 2004, 3431.
    [7] (a) V. C. Gibson, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams. Synthesis, Structures and Ethylene Polymerization Behaviour of Low Valent β-Diiminato Chromium Complexes. Eur. J. Inorg. Chem., 2001, 1895.
    (b) W. K. Kim, M. J. Fevola, L. M. Liale-Sands, A. L. Rheingold and K. H. Theopold. [(Ph)2nacnac]MCl2(THF)2 (M = Ti, V, Cr): A New Class of Homogeneous Olefin Polymerization Catalysts Featuring β-Diiminate Ligands. Organometallics, 1998, 17, 4541;
    (c) V. C. Gibson, P. J. Maddox, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams. Chromium(III) complexes bearing N,N-chelate ligands as ethene polymerization catalysts. Chem. Commun., 1998, 1651;
    (d) L. A. MacAdams, W. K. Kim, L. M. Liable-Sands, I. A. Guzei, A. L. Rheingold and K. H. Theopold. The (Ph)2nacnac Ligand in Organochromium Chemistry. Organometallics, 2002, 21, 952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700