乳腺癌中p100蛋白高表达对其生物学行为的影响及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     p100蛋白是一种多功能蛋白,它既作为共激活因子介导STAT6和基本转录调控元件之间的作用,又参与pre-mRNA剪接加工过程。此外,p100蛋白作为RISC的组份之一可能参与调控microRNA的代谢。最近研究表明p100在结肠癌和前列腺癌中表达异常,这些表象提示我们p100蛋白与肿瘤的发生发展之间可能存在某种联系。本课题的主要目的是在已有的p100蛋白研究基础上,发现p100蛋白异常表达对乳腺肿瘤形成等生物学行为的影响并探讨其可能的分子机制。
     方法:
     第一部分采用免疫组化方法检测人乳腺癌组织和正常乳腺组织中p100蛋白的表达情况。
     第二部分我们将p100I质粒转染乳腺癌MDA-MB-231细胞并建立了稳定低表达p100蛋白的细胞株,利用此细胞株进行体外Transwell小室侵袭实验和划痕实验,观察p100低表达对乳腺癌细胞侵袭性和迁移能力的影响,从而了解p100蛋白低表达对乳腺癌细胞生物学行为的影响。
     第三部分我们进行了裸鼠乳腺肿瘤移植实验,将对照组和p100低表达的乳腺癌MDA-MB-231细胞株接种至裸鼠第二对乳腺脂肪垫,观察并测定肿瘤体积变化,分析在体内p100低表达对乳腺肿瘤生长速率和侵袭性有何作用。
     第四部分采用ChIP-GLAS启动子芯片技术筛选出启动子能与p100蛋白高亲和力结合的靶基因一-TGF-β信号通路成员,RT-PCR进行验证。利用mRNA表达谱基因芯片技术筛选出与p100低表达密切相关的基因,同时利用分析软件将筛选出的差异表达基因按照其所在的信号通路归类。选取其中差异表达较大的TGF-β通路成员进行Real-time PCR和Western blot,检测裸鼠乳腺原位肿瘤组织,瞬时转染siRNA-p100细胞和p100I稳定株乳腺癌MDA-MB-231细胞中几种Smad蛋白的mRNA水平和蛋白表达水平。
     结果:
     第一部分:我们观察到p100蛋白在人乳腺癌组织中p100的表达显著高于正常乳腺组织。
     第二部分:我们成功地建立了稳定表达p100I的乳腺癌MDA-MB-231稳定株细胞。体外Transwell小室实验结果显示,p100蛋白提高乳腺癌MDA-MB-231细胞的侵袭能力,p100蛋白低表达降低231稳定株细胞的侵袭性。用231稳定株细胞进行的划痕实验得到了与侵袭实验相似的结果:p100蛋白过表达提高231稳定株细胞的迁移能力。
     第三部分:我们进行的裸鼠体内实验表明,p100低表达对乳腺原位肿瘤生长具有明显的抑制作用,p100蛋白过表达促进肿瘤细胞的体内增殖。此外,p100蛋白低表达组裸鼠肿瘤向周围组织侵袭的能力低于对照组。
     第四部分:在前期完成的ChIP-GLAS启动子芯片结果中,我们发现TGF-β信号通路相关的十几个转录因子或调节因子的启动子与p100蛋白具有较高的亲和力。我们选取其中七个在HeLa细胞和乳腺癌MDA-MB-231细胞中进行mRNA水平的验证实验。结果与芯片结果基本一致:当p100蛋白过表达时,HeLa和MDA-MB-231细胞中Smad1, Smad2, TGIF1, Smad4, TGFβ1I1和Smurf2的mRNA水平显著高于对照组。分析mRNA表达谱基因芯片结果时我们发现,TGF-β信号通路中的某些成员的表达水平随p100蛋白低表达而发生明显的改变。Western blot检测裸鼠乳腺原位肿瘤组织中TGF-β通路蛋白的表达水平时,我们发现p100低表达肿瘤组织中p-Smadl, Smad2/3和p-Smad2蛋白的表达均低于HK组和对照组。瞬转siRNA-p100组细胞中Smad6和Smad9的mRNA相对表达量明显低于对照组,而Smad3和Smurf2的mRNA水平高于对照组。稳定表达p100I组细胞只有Smad6的相对表达量显著低于对照组,其余被检测蛋白均无明显变化。
     结论:
     1.p100蛋白在乳腺癌组织中高表达。
     2.p100蛋白提高乳腺癌MDA-MB-231细胞在体外的侵袭和迁移能力。p100蛋白促进裸鼠体内乳腺原位肿瘤的生长、侵袭和增殖能力。活体内p100蛋白低表达影响TGF-β两个信号转导通路的活性。
     3.细胞内p100蛋白异常表达可能通过调节TGF-β信号通路中的一条或两条途径的活性进而影响细胞的生物学行为。
Objectives:
     p100is a multifunctional protein. It has been identified as a bridging factor between STAT6and the basal transcription machinery and also participates in pre-mRNA splicing. It is reported recently p100is one of components of RNAi-induced silencing complex (RISC) and its overexpression alter the expression level of some miRNA in cells. Meanwhile, alterations in p100protein expression are found in prostate cancer and colon cancers. Therefore we suppose that p100protein may have function in tumorigenesis and progression. The main purpose of this study is to clarify the effect of p100protein on breast cancer biological behaviours and find out its potential molecular mechanism.
     Methods:
     Part Ⅰ:To investigate p100expression in different human breast cancer specimens by. immunohistochemical appoach.
     Part Ⅱ:Plasmid p100I were transfected into breast cancer cell line MDA-MB-231and then to construct a stable transfectant cell line which stably suppress the expression of p100protein. Cell invasion and mobility assays were performed with stable transfectant231cells to evaluate the effect of low expression of p100on its biological behaviours in vitro.
     Part Ⅲ:in vivo assay. Parental and stable transfectant231cells were injected into the second mammary fat pads of athymic nude mice. Observing and noting the volume of tumor till the mean diameter of tumor reached to1.0-1.5cm. Evaluate the effect of low expressed p100on tumor growth velocity and invasion to neighbour tissues.
     Part Ⅳ:Target genes (TGFβ signal pathway members) whose promoter had high affinity binding with p100proteins were selected from ChIP-GLAS results, and verified by RT-PCR and real-time PCR in HeLa and MDA-MB-231cells, respectively. P100low expression related genes were also selected and classified into the signal pathway they involved in. Several components of TGFβ signal pathway were subject to real-time PCR and Western blot in tumor tissues, siRNA-p100 transient transfection231cells and stable transfectant MDA-MB-231cell line.
     Results
     Part Ⅰ:The expression of p100protein is significantly higher in human breast cancer tissues than that of normal breast tissues.
     Part Ⅱ:We have successfully constructed a stable transfectant MDA-MB-231cell line whose p100expression were suppressed persistently.
     Part Ⅲ:In vivo assay shows that low expression of p100decrease the growth velocity of breast tumor in nude mice. The invasiveness of tumor in p100I group is lower than that of parental group.
     Part Ⅳ:The RT-PCR experiments in HeLa and MDA-MB-231cells verified that mRNA level of Smadl, Smad2, TGIF1, Smad4, TGFB1I1and Smurf2increased significantly when p100protein was overexpressed. After analysing the results of gene expression profiles in stable transfectant231cell line we found altered expression of some members of TGFβ signal pathway in p100I group compared with parental group. The protein expression of p-Smadl, Smad2/3and p-Smad2decreased with p100protein low expressed in tumor tissues. There were no significant mRNA differences in vitro between the parental231cells and transient transfectant siRNA-p100except Smad6and Smad9.
     Conclusion:
     Our study show that p100protein are high expressed in breast cancer tissues, p100protein enhanced the invasion and mobility of breast cancer cell line MDA-MB-231in vitro and in vivo. Abnormal expression of p100may affect the breast cancer cell biological behaviour by regulating the TGFp signal pathway activity.
引文
[1]Oren M. Decision making by p53:life, death and cancer. Cell Death Differ 2003; 10:431-42.
    [2]Alitalo K, Koskinen P, Makela TP, Saksela K, Sistonen L, Winqvist R. myc oncogenes:activation and amplification. Biochim Biophys Acta 1987;907:1-32.
    [3]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69
    [4]Tourriere, H., Gallouzi, I., Chebli, K., Capony, J., Mouaikel, J., Vander Geer, P. And Tazi, J. Rasgap-associated endoribonuclease g3bp; selective rna degradation and phosphorylation-dependent localisation. [J] Mol. Cell Biol.2001,21: 7747-7760.
    [5]Lund E, Guttinger S, Calado A, Dahlberg JE and Kutay U. Nuclear export of microRNA precursors. Science 2004; 303:95-98.
    [6]Khvorova A, Reynolds A and Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115:209-216.
    [7]Calin GA Ferracin M, Cimmino A, Di Leva G, MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793-1801
    [8]Calin GA, and Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006; 33:167-173.
    [9]Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, Poppema S and van den Berg A. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 2006; 45:147-153.9.
    [10]He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828-833.
    [11]Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H and Takahashi T. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster.Cancer Res 2008; 68:5540-5545.
    [12]Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R and Shah K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007; 67:8994-9000.
    [13]Papagiannakopoulos T, Shapiro A and Kosik KS. MicroRNA-21 targets a network of key tumorsuppressive pathways in glioblastoma cells. Cancer Res 2008; 68:8164-8172
    [14]Shi L, Cheng Z, Zhang J, Li R, You Y and Fu Z. [The mechanism of apoptosis in human U87 glioma cells induced by miR-21 antisense oligonucleotide]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2008; 25:497-501
    [15]Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26:2799-2803.
    [16]Zhu S, Si ML, Wu H and Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007; 282:14328-14336.
    [17]Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18:350-359.
    [18]Callebaut I, Mornon JP. The human EBNA-2 coactivator p100:multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development [J]. Biochem J,1997, 321(Pt 1):125-132.
    [19]Orphanides, G., Lagrange,T. and Reinberg,D. The general transcription factors of RNA polymerase Ⅱ [J]. Genes Dev.,1996,10:2657-2683
    [20]Kirsi P., Jie Yang, and Olli silvennoinen. Tudor and Nuclease-Like Domains Containing Protein p100 Function as Coactivators for Signal Transducer and Activator of Transcription 5 [J].Molecular Endocrinology,2003,17:1805-1814.
    [21]Chia-Lung Li,, Wei-Zen Yang, Yi-Ping Chen and Hanna S. Yuan. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Research,2008,36(11) 3579-3589.
    [22]何津岩.人类p100蛋白对HeLa细胞周期的影响及其机制研究[D].天津:天津医科大学,2008
    [23]Yang J. Alttomaki S. Pesu M. et al. Identification of P100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase Ⅱ [J]. The EMBO,2002, 21(18):4950-4958
    [24]Valineva T, Yang J, Palovuori R. et al. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6 [J] J. Bio Chem,2005,280(15): 14989-14996.
    [25]Connell MA, Keegan LP. Drosha versus ADAR:wrangling over pri-miRNA[J]. Nat. Structu. Mol. Biol.,2006,13:3-4
    [26]Amy A, Rene FK., Scott M. et al. A micrococcal nuclease homologue in RNAi effector complexes[J]. Nature,2003,(425):411-414
    [27]Yang W, Chendrimada RP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases [J]. Nat. Struct. Mol. Biol.,2006,13:13-21
    [28]Ho J, Kong JW, Choong LY, et al. Novel breast cancer metastasis-associated proteins. JProteome Res 2009; 8(2):583-594.
    [29]Kuruma H, Kamata Y, Takahashi H, et al. Staphylococcal nuclease domain-containing protein 1 as a potential tissue marker for prostate cancer. Am J Pathol 2009; 174(6):2044-2050.
    [30]Tsuchiya N, Ochiai M, Nakashima K, Ubaqai T, Suqimura T, Nakagama H. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res 2007; 67(19):9568-9576.
    [31]Naoto Tsuchiyaa, Hitoshi Nakagama. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. Mutation Research 693 (2010) 94-100.
    [32]Naoto Tsuchiya, Masako Ochiai, Katsuhiko Nakashima, et al. SND1, a component of RNA-Induced Silencing Complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. [J] Cancer Res 2007;67(19):9568-76.
    [33]Bittner M,Meltzer,P,Chen Y,et al.Noleculer classification of cutaneous malignant melanoma by gene expression profiling.Nature,2000,406(6795):536-540
    [34]Bange,J.,Prechtl,D.,Cheburkin,Y, et al. (2002) Cancer Res 62,840-847.
    [35]Mandal,C.C.,GhoshChoudhury,G.,GhoshAChoudhury,N.(2009)Endocrinology 150,4989-4998.
    [36]Gaku Matsumoto,et,al.Targeting of Nuclear Factor KB Pathways by Dehydroxymethylepoxyquinomicin, a Novel Inhibitor of Breast Carcinomas: Antitumor and Antiangiogenic Potential In vivo. Clinical Cancer Res.2005,11(1)1287-1293
    [37]Tong,X., Drapkin,R., Yalamanchili,R., Mosialos,G. and Kieff,E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell Biol.1995; 15, 4735.4744
    [38]Paukku K, Yang J. and Silvennoinen O. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5 [J]. Mol. Endocrinol.,2003,17:1805-1814.
    [39]Graveley BR. Sorting out the complexity of SR protein functions [J]. RNA,2000, 6:1197-1211.
    [40]Zhou Z, Licklider LJ, Gygi SP, et al. Comprehensive proteomic analysis of the human spliceosome[J].Science,2002,419:182-185
    [41]步天栩.转录激活因子-人类P100蛋白参与pre-mRNA剪接加工的分子机制[D].天津:天津医科大学,2006
    [42]Sunbin L, Reinhard R, Hans PV, et al. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP [J]. RNA,2006,12: 1418-1430.
    [43]Vermeuien K, Van Bockstaele DR, Berneman ZN.The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer [J]. Cell Prolif,2003, 36(3):131-49.
    [44]Murashov AK, Chintalgattu V, Islamov RR,et al.RNAi pathway is functional in peripheral nerve axons[J].The FASEB Journal,2007,21:656-670.
    [45]Ponting CP. Tudor domains in proteins that interact with RNA[J].Trends Biochem. Sci,1997,22:51-52.
    [46]French, J., Stirling, R., Walsh, M. And Kennedy, D. The expression of ras-gtpase activating protein sh3 domain-binding proteins, g3bps, in human breast cancers. [J]Histochem J.2002,34:223-231.
    [47]Brandi N. Davis, Aaron C. Hilyard, Peter H. Nguyen, Giorgio Lagna, and Akiko Hata. Smad Proteins Bind a Conserved RNA Sequence to Promote MicroRNA Maturation by Drosha. Molecular Cell.2010:(39) 373-384.
    [48]Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer.Cell Cycle.2008 Aug 15;7(16):2591-600.
    [49]Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A. 2010;107(18):8231-6.
    [50]Hurst DR, Edmonds MD, Welch DR. Metastamir:the field of metastasis-regulatory microRNA is spreading. Cancer Res.2009;69(19):7495-8.
    [51]Massague J. TGFβ signal transduction. Annu Rev Biochem 67:753-791,1998.
    [52]Ichiaki Ito, Aki Hanyu, Mitsutoshi Wayama et al. Estrogen inhibits TGF-β signaling by promoting Smad2/3 degradation. (JBC Papers in Press). Published on March 5,2010.
    [53]ten Dijke, P., Miyazono, K. and Heldin, C.-H. Signaling inputs converge on nuclear effectors in TGF-b signaling. Trends. Biol. Sci.2000; 25:64-70.
    [54]Massague, J. and Wotton, D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J.2000; 19:1745-1754.
    [55]Lin, X., Liang, M. and Feng, X. H. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-p signaling. J. Biol. Chem.2000; 275:36818-36822.
    [56]Zhang, Y, Chang, C., Gehling, D. J., Hemmati-Brivanlou, A. and Derynck, R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA.2001; 98:974-979.
    [57]Chang et al. · Mammalian TGF-Superfamily Endocrine Reviews, December 2002,23(6):787-823 789
    [58]Joan Massague. TGFβ in cancer. Cell.2008; 134:215-230.
    [59]Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem. 2005; 96(3):447-462.
    [60]Krimpenfort, P., Ijpenberg, A., Song, J.Y., van der Valk, M., Nawijn, M., Zevenhoven, J., and Berns, A. (2007). pl5Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448,943-946.
    [61]Oft, M., Heider, K.H., and Beug, H.1998. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol.8:1243-1252.
    [62]Levy, L., and Hill, C.S. (2006). Alterations in components of the TGF-beta su perfamily signaling pathways in human cancer. Cytokine Growth Factor Rev.17, 41-58.
    [63]Conery, A. R., Cao, Y., Thompson, E. A., Townsend, C. M., Jr., Ko, T. C., and Luo, K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol.2004; 6:366-372
    [64]Liberati, N. T., Datto, M. B., Frederick, J. P., Shen, X., Wong, C., Rougier-Chapman, E. M., and Wang, X. F. Proc. Natl. Acad. Sci. U. S. A.1999; 96:4844-4849
    [65]Shen, X., Hu, P. P., Liberati, N. T., Datto, M. B., Frederick, J. P., and Wang, X. F. Mol Biol. Cell.1998; 9:3309-3319
    [66]Miyazono, K., Kusanagi, K., and Inoue, H. J. Cell Physiol.2001; 187:265-276
    [67]Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev.2006; 25(3):435-457.
    [68]Wei D, Le x, Zheng L, et al. Stat3 activation regulate the expression of vascular endothelial growth factor and human pancreatic cancer angrogenesis and metastasis [J]. Ongene,2003,22(3):319-329
    [69]Douglas S. Micalizzi,1,2 Kimberly L.et al. The Sixl homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-P signaling. J. Clin. Invest. 119:2678-2690(2009).
    [70]Jiri Zavadiland Erwin P Bottinger. TGF-b and epithelial-to-mesenchymal transitions. Oncogene (2005) 24,5764-5774.
    [71]Serra, R., and Crowley, M.R.2003. TGF-beta in mammary gland development and breast cancer. Breast Dis.18:61-73.
    [72]Padua, D., Zhang, X.H., Wang, Q., Nadal, C., Gerald, W.L., Gomis, R.R., and Massague", J. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133,66-77.
    [73]Kang, Y., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.R., Manova, Todorova, K., Blasberg, R., Gerald, W.L., and Massague, J. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 102,13909-13914.
    [74]Isao Matsuura, Keng-Nan Chiang, et al. Pinl promotes transforming growth actor-P-induced migration and invasion. J. Biol. Chem.2010; 285:1754-1764.
    [75]Jian Xu, Samy Lamouille, Rik Derynck. TGF-P-induced epithelial to mesenchymal transition. Cell Res (2009) 19:156-172.
    [76]Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 1997;389:622-6.
    [77]Osawa H, Nakajima M, Kato H, Fukuchi M, Kuwano H. Prognostic value of the expression of Smad6 and Smad7, as inhibitory Smads of the TGF-h superfamily, in esophageal squamous cell carcinoma. Anticancer Res 2004;24:3703-9. superfamily, in esophageal squamous cell carcinoma. Anticancer Res 2004;24:3703-9.
    [26]Conery, A. R., Cao, Y, Thompson, E. A., Townsend, C. M., Jr., Ko, T. C., and Luo, K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol.2004; 6:366-372
    [27]Liberati, N. T., Datto, M. B., Frederick, J. P., Shen, X., Wong, C., Rougier-Chapman, E. M., and Wang, X. F. Proc. Natl. Acad. Sci. U. S. A.1999; 96:4844-4849
    [28]Shen, X., Hu, P. P., Liberati, N. T., Datto, M. B., Frederick, J. P., and Wang, X. F. Mol. Biol. Cell.1998; 9:3309-3319
    [29]Miyazono, K., Kusanagi, K., and Inoue, H. J. Cell Physiol.2001; 187: 265-276
    [30]Ho J, Kong JW, Choong LY, et al. Novel breast cancer metastasis-associated proteins. JProteome Res 2009; 8(2):583-594.
    [31]Douglas S. Micalizzi,1,2 Kimberly L.et al. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-0 signaling. J. Clin. Invest.119:2678-2690(2009).
    [32]Jiri Zavadiland Erwin P Bottinger. TGF-b and epithelial-to-mesenchymal transitions. Oncogene (2005) 24,5764-5774.
    [33]Serra, R., and Crowley, M.R.2003. TGF-beta in mammary gland development and breast cancer. Breast Dis.18:61-73.
    [34]Padua, D., Zhang, X.H., Wang, Q., Nadal, C, Gerald, W.L., Gomis, R.R., and Massague, J. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133,66-77.
    [35]Kang, Y., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.R., Manova, Todorova, K., Blasberg, R., Gerald, W.L., and Massague, J. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 102,13909-13914.
    [36]Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev.2006; 25(3):435-457.
    [37]Isao Matsuura, Keng-Nan Chiang, et al. Pinl promotes transforming growth actor-β-induced migration and invasion. J. Biol Chem.2010; 285:1754-1764.
    [38]Jian Xu, Samy Lamouille, Rik Derynck. TGF-(3-induced epithelial to mesenchymal transition. Cell Res (2009) 19:156-172.
    [39]Ying SY, Murata T. Molecular biology of the gonadal proteins:inhibin, activin, and follistatin. In:Gwatkin RBL, Ed. Genes in Mammalian Reproduction. New York:Wiley-Liss, pp207-228,1993.
    [40]Mathews L. Activin receptors and cellular signaling by the receptor serine kinase family. Endocrine Rev 15:310-325,1994.
    [41]Batres Y, Zhang Z, Ying SY. Expression of activins and activin receptor messenger RNAs in LNCaP cells, a human prostatic adenocarcinoma cell line. Int J Oncol 6:1185-1188,1995.
    [42]Furst AF, Zhang Z, Ying SY. Expression of activin and activin receptors in human prostatic carcinoma cell line DU-145. Int J Oncol 7:239-243,1995.
    [43]Ying SY, Zhang Z, Xing W. Expression of activin and activin receptors in PC3 human prostatic cancer cells. Int J Oncol 6:601-606,1995.
    [44]Ying SY, Zhang Z, Huang G, Hsieh HC. Inhibin/activin subunits and activin receptors in human breast cell lines and lactating rat mammary glands. Int J Oncoolgy 7:481-485,1995.
    [45]Liu QY, Niranjan B, Gomes P, Gomm JJ, Davies D, Coombes RC, Buluwela L. Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells. Cancer Res 56:1155-1163,1996.
    [46]Zhang Z. Ying SY. Expression of activins and activin receptors in human retinoblastoma cell line Y-79. Cancer Lett 89:207-214,1995.
    [47]Jaffe GJ, Harrison CE, Lui GM, Roberts WL, Goldsmith PC, Mesiano S, Jaffe RB. Activin expression by cultured human retinal pigment epithelial cells. Invest Ophthal Visual Sci 35:2924-2931,1994.
    [48]Massague J, Cheifetz S, Laiho M, Ralph DA, Weis FMB, Zentella A. Transforming growth factor-β. Cancer Surveys 12:81-103,1992.
    [49]Chen YG, Lui HM, Lin SL, Lee JM, Ying SY Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp Biol Med (Maywood) 2002;227:75-87.
    [50]Kanamaru C, Yasuda H, Fujita T. Involvement of Smad proteins in TGF-beta and activin A-induced apoptosis and growth inhibition of liver cells. Hepatol Res 23:211-219,2002.
    [51]Ho J, de Guise C, Kim C, Lemay S, Wang XF, Lebrun JJ. Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cell Signal 16:693-701,2004.
    [52]Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroeck D, Balling R, Werner S. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. Embo J 18:5205-5215, 1999.
    [53]Caniggia I, Lye SJ, Cross JC. Activin is a local regulator of human cytotrophoblast cell differentiation. Endocrinology 138:3976-3986,1997.
    [54]Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495-4509,2005.
    [55]James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/ activin/nodal signaling is necessary for the maintenance of pluripo-tency in human embryonic stem cells. Development 132:1273-1282,2005.
    [56]Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee EH, Krystal G, Ali S, Lebrun JJ. Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol 4:963-969,2002.
    [57]Reis FM, Luisi S, Carneiro MM, Cobellis L, Federico M, Camargos AF, Petraglia F. Activin, inhibin and the human breast. Mol Cell Endocrinol 225:77-82,2004.
    [58]Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK. Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res 65:7968-7975,2005
    [59]Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T. Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 65:1877-1886,2005.
    [60]Tanaka T, Toujima S, Umesaki N. Activin A inhibits growth-inhibitory signals by TGF-betal in differentiated human endometrial adenocarcinoma cells. Oncol Rep 11:875-879,2004.
    [61]Yoshinaga K, Inoue H, Utsunomiya T, Sonoda H, Masuda T, Mimori K, Tanaka Y, Mori M. N-cadherin is regulated by activin A and associated with tumor aggressiveness in esophageal carcinoma. Clin Cancer Res 10:5702-5707,2004.
    [62]Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R (1987) Isolation and partial characterization of follistatin:a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci USA 84:8282-8286.
    [63]Shimasaki S, Koga M, Esch F, Cooksey K, Mercado M, Koba A, Ueno N, Ying SY, Ling N, Guillemin R (1988) Primary structure of the human follistatin precursor and its genomic organization. Proc Natl Acad Sci USA 85: 4218-4222.
    [64]Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247:836-838.
    [65]Schneyer AL, Rzucidlo DA, Sluss PM, Crowley WF Jr (1994) Characterization of unique binding kinetics of follistatin and activin or inhibin in serum. Endocrinology 135:667-674.
    [66]Meriggiola MC, Dahl KD, Mather JP, Bremner WJ (1994) Follistatin decreases activin-stimulated FSH secretion with no effect on GnRH-stimulated FSH secretion in prepubertal male monkeys. Endocrinology 134:1967-1970.
    [67]de Winter JP, ten Dijke P, de Vries CJ, van Achterberg TA, Sugino H, de Waele P, Huylebroeck D, Verschueren K, van den Eijnden-van Raaij AJ (1996) Follistatins neutralize activin bioactivity by inhibition of activin binding to its type Ⅱ receptors. Mol Cell Endocrinol 116:105-114.
    [68]Bauer-Dantoin AC, Weiss J, Jameson JL (1996) Gonadotropin-releasing hormone regulation of pituitary follistatin gene expression during the primary follicle-stimulating hormone surge. Endocrinology 137:1634-1639.
    [69]Shimasaki S, Koga M, Buscaglia ML, Simmons DM, Bicsak TA, Ling N (1989) Follistatin gene expression in the ovary and extragonadal tissues. Mol Endocrinol 3:651-659.
    [70]Tisdall DJ, Hudson N, Smith P, McNatty KP (1994) Localization of ovine follistatin and alpha and beta A inhibin mRNA in the sheep ovary during the oestrous cycle. J Mol Endocrinol 12:181-193.
    [71]Sidis, Y., Mukherjee, A, et al. Biological Activity of Follistatin Isoforms and Follistatin-Like-3 Is Dependent on Differential Cell Surface Binding and Specificity for Activin, Myostatin, and Bone Morphogenetic Proteins. [J]Endocrinology,147,3586-3597.
    [72]Welt C, Sidis Y, Keutmann H & Schneyer A 2002 Activins, inhibins, and follistatins:from endocrinology to signaling. A paradigm for the new millennium. Experimental Biology and Medicine 227 724-752.
    [73]Keutmann HT, Schneyer AL & Sidis Y 2004 The role of follistatin domains in follistatin biological action. Molecular Endocrinology 18228-240.
    [74]Thompson TB, Lerch TF, Cook RW, Woodruff TK & Jardetzky TS.2005 The structure of the follistatin:activin complex reveals antagonism of both type I and type Ⅱ receptor binding. Developmental Cell 9 535-543.
    [75]Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H & Krasney PA 2008 Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology 149:4589-4595.
    [76]Michel U, Albiston A & Findlay JK 1990 Rat follistatin:gonadal and extragonadal expression and evidence for alternative splicing. Biochemical and Biophysical Research Communications 173 401-407.
    [77]Schneyer AL, Wang Q, Sidis Y & Sluss PM 2004 Differential distribution of follistatin isoforms:application of a new FS315-specific immunoassay. Journal of Clinical Endocrinology and Metabolism 89 5067-5075.
    [78]Fischer WH, Park M, Donaldson C, Wiater E, Vaughan J, Bilezikjian LM & Vale W (2003). Residues in the C-terminal region of activin-A determine specificity for follistatin and type Ⅱ receptor binding. Journal of Endocrinology 176 61-68.
    [79]Guo Q, Kumar TR, Woodruff T, Hadsell LA, DeMayo FJ & Matzuk MM 1998 Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Molecular Endocrinology 12 96-106.
    [80]Bilezikjian LM, Blount A, Leal AMO, Donaldson C, Fischer W & Vale W 2004 Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Molecular and Cellular Endocrinology 225:29-36.
    [81]Bilezikjian LM, Corrigan AZ, Vaughan JM & Vale WW 1993 Activin-A regulates follistatin secretion from cultured rat anterior pituitary cells. Endocrinology 133:2554-2560.
    [82]DePaolo LV, Mercado M, Guo Y, Ling N. Increased follistatin (activin-binding protein) gene expression in rat anterior pituitary tissue after ovariectomy may be mediated by pituitary activin. Endocrinology 132:2221-2228,1993.
    [83]Dalkin AC, Haisenleder DJ, Gilrain JT, Aylor K, Yasin M, Marshall JC. Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic acids (mRNAs) in male and female rats:evidence for inhibin regulation of follistatin mRNA in females. Endocrinology 139:2818-2823, 1998.
    [84]Roberts VJ, Barth S, el-Roeiy A, Yen SS (1993) Expression of inhibin/activin subunits and follistatin messenger ribonucleic acids and proteins in ovarian follicles and the corpus luteum during the human menstrual cycle. J Clin Endocrinol Metab 77:1402-1410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700