呼肠孤病毒3型S1基因的原核表达及间接ELISA检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼肠孤病毒3型(reovirus type 3,Reo-3)属于呼肠孤病毒科(Reoviridae)、正呼肠孤病毒属(Orthoreovirus)、双链RNA病毒[1]。呼肠孤病毒3型是实验动物SPF级大鼠、小鼠、豚鼠、地鼠的必须检测项目[2]。其自然感染宿主比较广泛[3],如人类、小鼠、大鼠、猴、牛等,可隐性感染动物并在体内产生抗体,给血液制品、单克隆抗体、细胞培养等外来致病因子的检定及动物试验带来一定的困难[4]。因此建立快速诊断方法十分必要。
     目前,检测呼肠孤病毒3型主要用酶联免疫吸附法(ELISA)检测,其抗原获得方法主要为细胞培养,但很难获得高滴度的病毒;病毒虽可在鸡胚内增殖,但没有规律性[5]。本研究利用大肠杆菌表达系统pQE31表达呼肠孤病毒δ1蛋白抗原部分,用纯化的融合蛋白作为包被抗原建立ELISA方法,可用于呼肠孤病毒血清抗体的检测。
     用生物学软件DNAstar分析δ1蛋白,根据GenBank中报道的Reo-3 S1基因序列(gi:61780)设计特异性引物,用一步法RT-PCR方法扩增S1基因的主要抗原片段SR,将其插入到pMD18-T载体中,酶切鉴定后测序。将阳性重组质粒用Sph I+Sal I双酶切后连接到同样双酶切的表达载体pQE-31上,转化E.coli M15(pREP-4),IPTG诱导表达。对表达蛋白进行SDS-PAGE电泳和Western-blot的结果表明,SR基因在E.coli M15中获得表达,表达蛋白SR-δ1分子质量约为32 kD,与预期大小相符,能与Reo-3阳性血清发生特异性反应,说明SR-δ1有很高的抗原性。
     把表达的SR-δ1重组蛋白经初步纯化后用作包被抗原,建立了检测Reo-3血清抗体的间接ELISA方法,并确定了最适抗原包被浓度(0.6μg/mL)、最适血清稀释度(1:100)、血清最适作用时间(150 min)、最适封闭液(8%脱脂奶粉)、最适封闭时间(45min)、酶标抗体最适稀释度(1:8000)、酶标二抗最适作用时间(60min)、底物最适显色时间(10 min)和判定界值(0.292)。包被的重组抗原不与EcT(鼠痘病毒)、SeV(仙台病毒)、MHV(小鼠肝炎病毒)、PVM(小鼠肺炎病毒)阳性血清发生交叉反应,表明建立的ELISA诊断方法具有良好的特异性。批内重复试验和批间重复试验变异系数均小于10%,说明该方法具有很好的重复性。该诊断方法与国家实验动物检测中心建立的ELISA检测试剂盒比较,特异性、敏感性和符合率分别为98.5%、100%和98.7%。上述结果表明该诊断方法具有良好的特异性和敏感性,显示了良好的应用前景。
     本研究成功克隆了Reo-3 S1基因,进行了表达。利用表达的SR-δ1蛋白成功建立了快速简便的ELISA诊断方法,为实验动物的质量控制、开发商品化试剂盒提供了技术支持。
Reovirus type 3(Reo-3), a orthoreovirus of the Reoviridae, has a linear double -stranded RNA genome. Reo-3 is the must detection project for the SPF level laboratory animal, such as rat, mouse, Cavia procellus and hamster. Its nature infection host is quite widespread, such as human, rat, mouse, monkey, cattle and so on, and can silent infect animal and produce the antibody in vivo. It brings difficulty for animal test and the external pathogenic factor examination such as blood product, monoclonal antibody, cell culture etc. Thus, it is necessary to establish a quick and accurate diagnostic method.
     Serological methods, such as the enzyme-linked immunosorbent assay (ELISA), are commonly used to determine whether laboratory animals are infected with Reo-3. The antigen gain method mainly is the cell culture, but is very difficult to obtain the high titer the virus; Although may multiply in the chicken embryo, but does not have the regularity. In our study ,δ1 is expressed by prokaryotic expression system pQE31 and we establishes new ELISA method using the purified recombinant antigen .The serum antibodies of Reo-3 can be detected easily and quickly.
     Based on hydrophilicity and antigenity analysis of the amino acids ofδ1 using biosoftware DNAstar, PCR primers were designed according to gene order of Reo-3 S1(gi:61780). SR gene was amplified by one step reverse transcription polymerase chain reaction (RT-PCR), and was cloned into pMD18-T vector for sequence analysis .The masculine recombinant plasmid was digested by restriction enzymes Sph I+Sal I and then was sub-cloned into prokaryotic expression vector pQE-31, and was induced expression in E.coli M15(pREP-4).The expressed SR-δ1 protein was identified by SDS-PAGE and Western-blot analysis. The results showed that the molecular weight of the expressed protein was 32 kD and the protein could specifically react with antiserum against Reo-3.
     The indirect ELISA for detection of antibodies of Reo-3 was established using SR-δ1 as coated antigen with the optimal working parameters, including 0.6μg/mL of the SR-δ1 protein antigen for coating, testing sera dilution at 1:100, second antibody (Sigma) dilution at 1:8000, the standard of determining as positive sample S/P≥0.292 and others. It revealed a negative reaction with the positive sera of EcT, SeV, MHV and PVMT. demonstrating specificity of the diagnosis method is excellent. The variation coefficient of inter- and inner- batch antigen production testing quality control serum which can guarantee the quality of antigen and the accuracy of testing results is below 10 percents, demonstrating that repeatability of the antigen is good. Compared with the Reo-3 ELISA kit by national monitoring center of the quality laboratory animals, the two methods had 98.7% agreement by detecting 75 samples. the speciality of the test is 98.5%, the sensitivity, 100%. The result shows that the ELISA assay has excellent specificity , high sensitivity and excellent reproducibility, and could be used to detect the antibody against Reo-3.
     In conclusion, Reo-3 S1 gene was successfully cloned and expressed in E.coli and purified. They lay the foundation for further studies of the protein structure and function ofδ1. The simple and fast diagnosis method using SR-δ1 expressed as diagnosis antigen can be a technique support for further developing the commercial kit of diagnosis and quality control for Laboratory Animals.
引文
1.陆承平.兽医微生物学.第三版.中国农业出版社,2001.505-518.
    2.李厚达.实验动物学.第二版.中国农业出版社,2003.
    3.田克恭主编.实验动物病毒性疾病.农业出版社,1992.12.
    4.郎书惠,贺争鸣,吴惠英.呼肠孤病毒感染不同免疫功能状态小鼠的病理组织学研究,实验动物科学与管理.1998,15(3):54.
    5.殷震,刘景华.动物病毒学.第二版:科学出版社.1997.11.
    6.徐耀先,周晓峰,刘立德.分子病毒学.第一版:湖北科学技术出版社,2000.1.
    7. Shweta Shahi, Akhil C. Banerjea. Multitarget ribozyme against the S1 genome segment of reovirus possesses novel cleavage activities and is more efficacious than its constituent mono-ribozymes. Antiviral Research .2002,55,129-140.
    8. J Gen Virol Expression of reovirus type 3 (Dearing) sigma 1 and sigma s polypeptides in Escherichia coli. 1987,68 (1):135-45.
    9. Laura.A. Breun,Teresa.J. Broering, Aimee.M. McCutcheon, Stephan.J. Harrison,Cindy L. Luongo, and Max L. Nibert.Mammalian Reovirus L2 Gene and l2 Core Spike Protein Sequences and Whole-Genome Comparisons of Reoviruses Type 1 Lang, Type 2 Jones, and Type 3 Dearing.Virology, 2001,287:333-348.
    10. Chappell, J. D., A. Prota, T. S. Dermody, and T. Stehle. Crystal structure of reovirus attachment proteinσ1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 2002.21:1-11.
    11. Breun, L. A., T. J. Broering, A. M. McCutcheon, S. J. Harrison, C. L.Luongo, and M. L. Nibert.. Mammalian reovirus L2 gene andλ2 corespike protein sequences and whole-genome comparisons of reoviruses type 1 Lang, type 2 Jones, and type 3 Dearing. Virology 2001.287:333-348.
    12.方勤.呼肠孤病毒内源性转录的结构基础.中国病毒学.2004,19(5):535-539.
    13. Thomas P ,James C, Michelle L etc. Detection of Mammalian Reovirus RNA by Using Reverse Transcrip PCR: Sequence Diversity within theλ3-encoding L1 Gene J Clin Microbilo. 2002, 40(4):1368-1375.
    14. Thomas P ,James C, Michelle L etc. Detection of reovirus by reverse transcription-polymerase chain reaction using primers corresponding to conserver regions of the viral L1 genome segment J Virol. Meth. 2002,104:161-165.
    15. F. bootz, L sieber, D Popovic etc. Comparison of the sensitivity of in vivo antibody production tests with in vitro PCR-based methods to detect infectious contamination of biological materials. Laboratory Animals. 2003,37:341-351.
    16.张云等.正呼肠孤病毒及其分类学依据研究进展.动物医学进展.2004,25(6):46-49.
    17. Louis Van der Heide著.刘文波摘译.呼肠孤病毒简介.国外畜牧科技. 2002,29(l):50-51.
    18.呼肠孤病毒的历史.中国禽业导刊.2002,19(7):29-31.刘文波摘译自(Avian Diseases),2000(44):638-641.
    19. Dryden,K.A,Wang.G,Yeager.M,etal. Early steps in reovirus infection are associated with dramatic changes in supramo - lecular structure and protein conformation :analysis of virionsand subviral particles by cryoelectron microscopy and image reconstruction.JCell Biol ,1993 ,122 :1023 - 1041.
    20. Nibert ,M.L,Schiff.L.A. Reoviruses and their replication.D.M.Knipe ,P.MHowley.Fields Virology [M].Philadelphia:Lippincott Williams and Wilkins,2001,1679-1728.
    21. Reinisch.K.M,Nibert.M.L,Harrison.S.C.Structure of the reovirus core at 3.6 A resolution[J].Nature,2000,404:960-967.
    22. Breun.L.A,Broering.T.J,McCutcheon.A.M,etal.Mammalian reovirus L2 gene and lambda2 core spike protein sequences and wholegenome comparisons of reoviruses type 1 Lang,type2 Jones,andtype3 Dearing.Virology,2001,287(2):333-48.
    23. Chandran.K,Walker.S.B,Chen.Y,etal.In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteinsμ1 andδ3.J Virol,1999,73:3941 -3950.
    24. Chandran.K,Zhang.X ,Olson.N.H,et al. Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein.J Virol,2001,75:5335-5342.
    25. Starne.M.C,Joklik.W.K.Reovirus proteinλ3 is a poly (C)-dependent poly(G) polymerase[J].Virology,1993,193:356-366.
    26. Chappell.J.D,Gunn.V.L,Wetzel.J.D,etal.Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment proteinδ1.J Virol,1997,71 :1834-1841.
    27.方勤,朱作言.呼肠孤病毒结构与功能研究进展.病毒学报.2003,19(4):381-384.
    28. F.M.奥斯伯, R.E.金斯顿,J.G塞德曼,等.精编分子生物学实验指南.第四版.北京:科学出版社. 2005.
    29. Armstrong, G. D., R. W. Paul, and P. W. K. Lee. Studies on reovirus receptors of L cells: virus binding characteristics and comparison with reovirus receptors of erythrocytes. Virology .1984.138:37-48.
    30. Banerjea, A. C., K. A. Brechling, C. A. Ray, H. Erikson, D. J.Pickup, and W. K. Joklik. High-level synthesis of biologically active reovirus protein al in a mammalian expression vector system. Virology .1988.167:601-612.
    31. Bassel-Duby, R., A. Jayasuriya, D. Chatterjee, N. Sonnenberg, J. V. Maizel, Jr., and B. N. Fields. Sequence of reovirus haemagglutinin predicts a coiled-coil structure. Nature (London).1985. 315:421-423.
    32. Bassel-Duby, R., D. R. Spriggs, K. L. Tyler, and B. N. Fields. Identification of attenuating mutations on the reovirus type 3 S1 double-stranded RNA segment with a rapid sequencing technique. J. Virol. 1986.60:64-67.
    33. Burstin, S. J., D. R. Spriggs, and B. N. Fields. Evidence for functional domains of the reovirus type 3 hemagglutinin. Virology.1982.117:146-155.
    34. Dermody, T. S., M. L. Nibert, R. Bassel-Duby, and B. N. Fields. Sequence diversity in S1 genes and S1 translation products of 11 sero type 3 reovirus strains. J. Virol. 1990. 64:4842-4850.
    35. Martin Bisaillon ,Guy Lemay.Computational Sequence Analysis of Mammalian Reovirus Proteins.Virus Genes. 1998,18(1):13-37.
    36.卢圣栋.现代分子生物学实验技术.北京:中国协和医科大学出版社,1993.382-386.
    37. Qiagen. A handbook for high-level expression and purification of 6×His-tagged proteins. 2003.
    38. Shmulevitz, M., and Duncan, R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the nonenveloped fusogenic reoviruses. EMBO J. 2000.19, 902-912.
    39. Antczak, J. B., Chmelo, R., Pickup, D. J., and Joklik, W. K. .Sequence at both termini of the 10 genes of reovirus serotype 3 (strain Dearing). Virology. 1982. 121, 307-319.
    40. Barton, E. S., J. L. Connolly, J. C. Forrest, J. D. Chappell, and T. S.Dermody. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 2001. 276:2200-2211.
    41. Barton, E. S., J. C. Forrest, J. L. Connolly, J. D. Chappell, Y. Liu, F. Schnell, A. Nusrat, C. A. Parkos, and T. S. Dermody. Junction adhesion molecule is a receptor for reovirus. Cell .2001.104:441-451.
    42. Ebert, D. H., J. Deussing, C. Peters, and T. S. Dermody. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells.J. Biol. Chem. 2002.277:24609-24617.
    43. Akula, S. M., N. P. Pramod, F. Z. Wang, and B. Chandran. Integrinα3b1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell .2002.108:407-419.
    44. Bazzoni, G., O. M. Martinez-Estrada, F. Orsenigo, M. Cordenonsi, S. Citi,and E. Dejana. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 2000.275:20520-20526.
    45. Ebnet, K., C. U. Schulz, M. K. Meyer Zu Brickwedde, G. G. Pendl, and D.Vestweber. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 2000. 275:27979-27988.
    46. Ebnet, K., A. Suzuki, Y. Horikoshi, T. Hirose, M. K. Meyer Zu Brickwedde,S. Ohno, and D. Vestweber. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 2001. 20:3738-3748.
    47. Cheng Huang Kk, Yutaka fujii et al. Involvement of the zinc-binding capacity of Sendai virus v protein in viral pathogenesis. virology, 2000,74(17):7834-7841.
    48. Nicola Decaro, Marco Campolo, Costantina Desario et al. Virological and molecular characterization of a mammalian orthoreovirus type 3 strain isolated from a dog in Italy .Veterinary Microbiology. 2005,109:19-27.
    49. Millipore. Western blotting handbook .2003.
    50.李育阳.基因表达技术.北京:科学出版社,2001.
    51. Parker J.C, A.J.O.Beirne,M.J.Collins. Sensitivity of enzyme-linked immunosorbent assay,complement fixation,and hemagglutination inhibition serological tests for detection of sendai virus antibody in laboratory mice. Clin Microbiol .1979,9:444-447.
    52.沈关心,周汝麟.现代免疫学实验技术.湖北,湖北科学技术出版社, 1998.
    53. Wagner A.K, Besselsen D.G. Detection of Sendai virus and pneumonia virus of mice by use of fluorogenic nuclease reverse transcriptase chain reaction analysis. Comp Medt .2003,53(2):173-177.
    54. J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).北京,北京科学出版社. 1996.
    55. Bewley, M. C., K. Springer, Y. B. Zhang, P. Freimuth, and J. M. Flanagan. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science .1999. 286:1579-1583.
    56. Bodkin, D. K., and B. N. Fields. Growth and survival of reovirus in intestinal tissue: role of the L2 and S1 genes. J. Virol. 1989. 63:1188-1193.
    57. Borsa, J., B. D.Morash,M. D. Sargent, T. P. Copps, P. A. Lievaart, and J. G.Szekely. Two modes of entry of reovirus particles into L. cells. J. Gen.Virol. 1979. 45:161-170.
    58. Borsa, J., M. D. Sargent, P. A. Lievaart, and T. P. Copps. Reovirus: evidence for a second step in the intracellular uncoating and transcriptaseactivation process. Virology. 1981. 111:191-200.
    59. Campbell, J. A., P. Shelling, J. D. Wetzel, E. M. Johnson, G. A. R. Wilson,J. C. Forrest, M. Aurrand-Lions, B. Imhof, T. Stehle, and T. S. Dermody. Junctional adhesion molecule-A serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J. Virol. 2005. 79:7967-7978.
    60. Chandran, K., D. L. Farsetta, and M. L. Nibert. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein m1 mediates membrane disruption. J. Virol. 2002. 76:9920-9933.
    61. Chandran, K., S. B. Walker, Y. Chen, C. M. Contreras, L. A. Schiff, T. S.Baker, and M. L. Nibert. In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteinsμ1 andσ3. J. Virol. 1999.73:3941-3950.
    62. Chen, W. J., J. L. Goldstein, and M. S. Brown. NPXY. a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 1990. 265:3116-3123.
    63. Chiu, C. Y., P. Mathias, G. R. Nemerow, and P. L. Stewart. Structure of adenovirus complexed with its internalization receptor,αvβ5 integrin. J. Virol. 1999. 73:6759-6768.
    64. Ebert, D. H., J. Deussing, C. Peters, and T. S. Dermody. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells.J. Biol. Chem. 2002.277:24609-24617.
    65. Cohen, C. J., J. T. Shieh, R. J. Pickles, T. Okegawa, J. T. Hsieh, and J. M.Bergelson. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA .2001.98:15191-15196.
    66. Chandran, K., J. S. Parker, M. Ehrlich, T. Kirchhausen, and M. L. Nibert. The delta region of outer-capsid proteinμ1 undergoes conformational change and release from reovirus particles during cell entry. J. Virol. 2003. 77:13361-13375.
    67. Davis, C. G., M. A. Lehrman, D. W. Russell, R. G. Anderson, M. S. Brown,and J. L. Goldstein. The J.D. mutation in familial hypercholesterol emia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell.1986. 45:15-24.
    68. Daniel B Hrdy, Leon Rosen, Bernard N Fields.Polymorphism of the Migration of Double-Stranded RNA Genome Segments of Reovirus Isolates from Humans, Cattle,and Mice.Journal of virology, 1979.31(1): 104-111.
    69. Dryden, K. A., G. Wang, M. Yeager, M. L. Nibert, K. M. Coombs, D. B.Furlong, B. N. Fields, and T. S. Baker. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectronmicroscopy and image reconstruction. J. Cell Biol. 1993. 122:1023-1041.
    70. Edelman, J. M., B. M. Chan, S. Uniyal, H. Onodera, D. Z. Wang, N. F. StJohn, L. Damjanovich, D. B. Latzer, R. W. Finberg, and J. M. Bergelson. The mouse VLA-2 homologue supports collagen and laminin adhesion but not virus binding. Cell Adhes. Commun. 1994.2:131-143.
    71. Stehle, T., and T. S. Dermody. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. Rev.Med. Virol. 2003. 13:123-132.
    72. Morgan, E. M., and Zweerink, H. J. Reovirus morphogenesis.Corelike particles in cells infected at 39 degrees with wild-type reovirus and temperature-sensitive mutants of groups B and G. Virology .1974.59, 556-565.
    73.范薇,于长明,杨敬,隋丽华,等.重组钩端螺旋体外膜蛋白酶联免疫吸附(ELISA)检测方法的建立.中国实验动物学报.2005,13(4):249-252.
    74. Stehle, T., and T. S. Dermody. Structural similarities in the cellular receptors used by adenovirus and reovirus. Viral Immunol. 2004.17:129-143.
    75.耿宏伟,郭东春,张云等.以番鸭呼肠孤病毒σC表达蛋白为抗原的ELISA检测方法的建立.中国兽医科学.2006.36(03):171-176
    76. Sturzenbecker, L. J., M. L. Nibert, D. B. Furlong, and B. N. Fields. Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J. Virol. 1987.61:2351-2361.
    77. Virgin, H. W., IV, R. Bassel-Duby, B. N. Fields, and K. L. Tyler. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J. Virol. 1988. 62:4594-4604.
    78. Kedl, R., Schmechel, S., and Schiff, L. Comparative sequence analysis of the reovirus S4 genes from 13 serotype 1 and sero type 3 field isolates. J. Virol. 1995. 69, 552-559.
    79. Terence S. Dermody, MlAX L. NIBERT, Rhonda Bassel-duby ,et al. Aσ1 Region Important for Hemagglutination by Serotype 3 Reovirus Strains.Journal of virology,1990.64(10): 5173-5176.
    80. McCutcheon, A. M., Broering, T. J., and Nibert, M. L. Mammalian reovirus M3 gene sequences and conservation of coiled-coil motifs near the carboxyl terminus of the mNS protein. Virology .1999. 264, 16-24.
    81. Tyler, K. L., D. A. McPhee, and B. N. Fields. Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science .1986. 233:770-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700