金属蛋白电化学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用电化学手段研究氧化还原蛋白质在电极上的电化学行为和电催化性能,可以理解和认识它们在生命体内的电子转移机制和生理作用,对于构建生物传感器和生物反应器具有重要的理论意义和实际意义。构成生物体新陈代谢的几乎全部化学反应都是在活性蛋白质―酶的催化下进行的,生物体中最基本的运动便是电荷的运动。细胞色素c(cyt-c)是生物体电子传递链中的一个组成部分,位于线粒体的内膜上,由于其在生命体内的氧化还原反应被认为是生物电化学氧化还原反应的典型例子,故cyt-c的电化学性质研究引起了人们广泛的关注。本论文对蛋白膜伏安法(PFV)进行了较为详细的综述,并用PFV对cyt-c直接电化学展开了一系列的研究和探索。具体包括如下内容:
     将cyt-c通过静电吸附作用直接固定在处理好的棱面热解石墨电极(EPPGE)上,用PFV研究了cyt-c氧化还原电位与pH和扫描速度的关系,考察了直接吸附在EPPGE电极表面的cyt-c耦合质子的电子传递行为,实验结果提示,高铁cyt-c还原为亚铁cyt-c时与质子传递没有关系,但亚铁cyt-c氧化为高铁cyt-c时耦合一个质子。
     由于cyt-c在EPPGE电极表面的直接吸附不牢固,水强力冲洗电极表面或在溶液中浸泡五分钟则观察不到cyt-c的电化学信号。故用海藻酸钠水凝胶(SA hydrogel)和琼脂糖(agarose)水凝胶将cyt-c固定在EPPGE表面,形成稳定的hydrogel-cyt-c/EPPGE电极,研究了cyt-c与电极表面之间的直接电化学,和离子强度、pH、外加金属离子对其电化学行为的影响以及其电催化性能。结果表明:cyt-c中血红素辅基Fe(III)/Fe(II)电对表现出准可逆行为,外加金属离子则有抑制作用,该电极可催化还原氧,有可能发展成为一种溶解氧的生物传感器。
     离子液体可作为一些生物催化过程的理想介质,蛋白质在离子液体中不仅不会失活,而且其在离子液体中的稳定性也比在有机溶剂中的稳定性好。本文开展了两种离子液体中金电极(Au)、EPPGE和玻碳电极(GC)上固载在agarose水凝胶中的cyt-c的直接电化学的研究,考察了agarose-cyt-c膜中DMF加与不加、离子液体中含水量、蛋白质溶液中加入金属离子对cyt-c电化学行为的影响及cyt-c的电催化性能。结果表明:agarose-cyt-c膜中加入DMF后,cyt-c则表现出好的准可逆氧化还原过程,电极连续扫描50圈峰型无变化。在非水的亲水性离子液体中,必须加入少量的水分,才能保持cyt-c的电化学活性,cyt-c在[Bmim][Br]和[Bmim][BF4]含水量分别为5.2%和5.8%时电化学活性最好。外加金属离子对cyt-c电化学行为有抑制作用。固载在GC和EPPGE电极上的cyt-c在[Bmim][BF4]中对三氯乙酸、叔丁基过氧化氢有电催化还原作用,而在[Bmim][Br]中则无。初步探讨了cyt-c在不同电极、不同离子液体中的电化学性质差异的原因。
By studying the electrochemical behavior and electrocatalytic properties of redox proteins on electrodes with electrochemical methods, we could understand the electron transfer mechanism and biological function in vivo, which are significant for theory and practice to construct biosensors and bioreactors. In fact, most chemical reactions during the metabolism are catalyzed by active protein-enzymes, and the basal movement in human body is charge movement. Cytochrome c (cyt-c) is located on the inner mitochondrion membranes of living cell, and is a part of the electron transport chain. As its redox reaction in vivo may be considered as a model and test system for bioelectrochemical redox ones, its electrochemical properties have been studied extensively. In this work, protein film voltammetry (PFV) was reviewed detailedly, and then a series of research and exploration on direct electrochemistry of cyt-c were carried out by PFV. The details are as follows:
     Cyt-c was electrostatically adsorbed on the surface of the edge plane pyrolytic graphite electrode (EPPGE). Then, the relationship between redox potential of cyt-c and pH and the scan rate was studied by PFV, thus to investigate proton-coupled electron transfer of cyt-c directly adsorbed on EPPGE surface. Results suggested that the reduction of ferricytochrome c is independent of proton, but the oxidation of ferrocytochrome c is coupled by a slow one-proton transfer process.
     Because direct adsorption of cyt-c on the EPPGE surface is not firm, electrochemical signals of cyt-c would not be monitored any longer if the electrode was rinsed strongly or immersed in solution for more than five minutes. Therefore, cyt-c entrapped in sodium alginate (SA) and agarose hydrogel was electrostatically bound to EPPGE, thus to prepare stable hydrogel-cyt-c/EPPGE. Then, direct electrochemistry between cyt-c and the electrodes, effects of ionic strength, pH and exterior substances on the direct electrochemistry, and electrocatalytic properties of cyt-c were monitored by PFV. Results showed that the electrochemical behavior of Heme Fe(III)/Fe(II) in cyt-c is quasi-reversible, and the peak currents are inhibited by exterior metal ions. Catalytic reduction of oxygen could be achieved by the hydrogel-cyt-c/EPPGE, which means that it could be developed into a kind of biological sensor for dissolved oxygen possibly.
     Ionic liquids can be used as ideal mediums for some bio-catalytic processes, in which proteins are not inactivated but more stable than in other organic solvents. In this paper, direct electrochemistry of cyt-c entrapped in agarose hydrogel on gold electrode (Au), EPPGE and glassy carbon electrode (GC) in two room temperature ionic liquids was investigated. The effects of the addition of DMF in the agarose-cyt-c film, water concentration in ionic liquids and exterior metal ions on the electrochemical behavior of cyt-c were monitored, and electrocatalytic properties of cyt-c were also done. Results showed that a good quasi-reversible redox behavior of cyt-c could be found after adding DMF in agarose-cyt-c film, and peak shape would not change after continuously scanning for 50 cycles. In addition, a certain amount of water in hydrophilic ionic liquids is necessary to maintain electrochemical activities of cyt-c, electrochemical performance of cyt-c is the best when the water content is 5.2% and 5.8% for [Bmim][Br] and [Bmim][BF4] respectively. However, electrochemical activities of cyt-c are inhibited by exterior metal ions. Interestingly, Cyt-c entrapped in agarose hydrogel on EPPGE and GC could catalyze the electroreduction of trichloroacetic acid and t-BuOOH in [Bmim][BF4], but could not in [Bmim][Br]. Reasons for above-mentioned differences of electrochemical properties of cyt-c in different ionic liquids were preliminarily discussed.
引文
[1]周波,孙润光,王丽华,宋世平,樊春海.蛋白质直接电化学研究及其应用,化学进展, 2006, 18(7/8): 1009–1013
    [2]刘慧宏,庞代文.氧化还原蛋白质电化学研究,化学进展, 2002, 14(6): 425–432
    [3] Léger C, Lederer F, Guigliarelli B, Bertrand P. Electron Flow In Multicenter Enzymes: Theory, Applications, and Consequences on the Natural Design of Redox Chains, J. Am. Chem. Soc., 2006, 128(1): 180–187
    [4] Sultana N, Schenkman J B, Rusling J F. Protein Film Electrochemistry of Microsomes Genetically Enriched In Human Cytochrome P450 Monooxygenases, J. Am. Chem. Soc., 2005, 127(39): 13460–13461
    [5] Heering H A, Wiertz F G M, Dekker C, Vries S D. Direct Immobilization of Native Yeast Iso-1 Cytochrome c on Bare Gold: Fast Electron Relay to Redox Enzymes and Zeptomole Protein-Film Voltammetry, J. Am. Chem. Soc., 2004, 126(35): 11103–11112
    [6] Aguey-Zinsou F K, Bernhardt P V, Leimkühler S. Protein Film Voltammetry of Rhodobacter Capsulatus Xanthine Dehydrogenase, J. Am. Chem. Soc., 2003, 125(50): 15352–15358
    [7]李根喜.基于蛋白膜伏安技术的第三代生物传感器,化学传感器, 2005, 25(2): 26
    [8]李根喜,朱德煦.探究生命活动的电化学技术,生命科学, 2004, 16(3): 182–183
    [9] Vincent K A, Belsey N A, Lubitz W, Armstrong F A. Rapid and Reversible Reactions of [NiFe]-Hydrogenases with Sulfide, J. Am. Chem. Soc., 2006, 128(23): 7448–7449
    [10] Hudson J M, Heffron K, Kotlyar V, Sher Y, Maklashina E, Cecchini G, Armstrong F A. Electron Transfer and Catalytic Control by the Iron-Sulfur Clusters in a Respiratory Enzyme, E. Coli Fumarate Reductase, J. Am. Chem. Soc., 2005, 127(19): 6977–6989
    [11] Chen K, Hirst J, Camba R, Bonagura C A, Stout C D, Burgess B K, Armstrong F A. Atomically Defined Mechanism for Proton Transfer to a Buried Redox Centre in a Protein, Nature, 2000, 405: 814–817
    [12] Jones A K, Camba R, Reid G A, Chapman S K, Armstrong F A. Interruption and Time-Resolution of Catalysis by a Flavoenzyme Using Fast Scan Protein Film Voltammetry, J. Am. Chem. Soc., 2000, 122(27): 6494–6495
    [13] Hirst J, Jameson G N L, Allen J W A, Armstrong F A. Very Rapid, Cooperative Two-Electron/Two-Proton Redox Reactions of [3Fe-4S] Clusters: Detection and Analysis by Protein-Film Voltammetry, J. Am. Chem. Soc., 1998, 120(46): 11994–11999
    [14] Hirst J, Armstrong F A. Fast-Scan Cyclic Voltammetry of Protein Films on Pyrolytic Graphite Edge Electrodes: Characteristics of Electron Exchange, Anal. Chem., 1998, 70(23): 5062–5071
    [15] Léger C, Elliott S J, Hoke K R, Jeuken L J C, Jones A K, Armstrong F A. Enzyme Electrokinetics: Using Protein Film Voltammetry to Investigate Redox Enzymes and Their Mechanisms, Biochemistry, 2003, 42(29): 8654–8662
    [16] Hirst J. Elucidating the Mechanisms of Coupled Electron Transfer and Catalytic Reactions by Protein Film Voltammetry, BBA, 2006, 1757: 225–239
    [17] Jeuken L J C, Wisson L J, Armstrong F A. The Kinetics of a Weakly Electron-Coupled Proton Transfer in Azurin, Inorg. Chim. Acta, 2002, 331(1): 216–223
    [18] Yue H J, Khoshtariya D, Waldeck D H, Grochol J, Hildebrandt P, Murgida D H. On the Electron Transfer Mechanism between Cytochrome c and Metal Electrodes. Evidence For Dynamic Control at Short Distances, J. Phys. Chem. B, 2006, 110(40): 19906–19913
    [19] Hoeben F J M, Heller I, Albracht S P J, Dekker C, Lemay S G, Heering H A. Polymyxin-Coated Au and Carbon Nanotube Electrodes for Stable [Nife]-Hydrogenase Film Voltammetry, Langmuir, 2008, 24(11): 5925–5931
    [20] Banks C E, Compton R G. New Electrodes for Old: From Carbon Nanotubes to Edge Plane Pyrolytic Graphite, Analyst, 2006, 131: 15–21
    [21] Ye T, Kaur R, Senguen F T, Michel L V, Bren K L, Elliott S J. Methionine Ligand Lability of Type I Cytochromes c: Detection of Ligand Loss Using Protein Film Voltammetry, J. Am. Chem. Soc., 2008, 130(21): 6682–6683
    [22] Alcantara K, Munge B, Pendon Z, Frank H A, Rusling J F. Thin Film Voltammetry of Spinach Photosystem II. Proton-Gated Electron Transfer Involving the Mn4 Cluster, J. Am. Chem. Soc., 2006, 128(46): 14930–14937
    [23] Fleming B D, Zhang J, Elton D, Bond A M. Detailed Analysis of the Electron-Transfer Properties of Azurin Adsorbed on Graphite Electrodes Using dc and Large-Amplitude Fourier Transformed ac Voltammetry, Anal. Chem., 2007, 79(17): 6515–6526
    [24] Marritt S J, Kemp G L, Xiaoe L, Durrant J R, Cheesman M R, Butt J N. Spectroelectrochemical Characterization of a Pentaheme Cytochrome In Solution and As Electrocatalytically Active Films on Nanocrystalline Metal-Oxide Electrodes, J. Am. Chem. Soc., 2008, 130(27): 8588–8589
    [25] Duff J L C, Breton J L J, Butt J N, Armstrong F A, Thomson A J. Novel Redox Chemistry of [3Fe-4S] Clusters: Electrochemical Characterization of the All-Fe(II) Form of the [3Fe-4S] Cluster Generated Reversibly In Various Proteins and Its Spectroscopic Investigation In Sulfolobus Acidocaldarius Ferredoxin, J. Am. Chem. Soc., 1996, 118(36): 8593–8603
    [26] Hoke K R, Cobb N, Armstrong F A, Hille R. Electrochemical Studies of Arsenite Oxidase: An Unusual Example of a Highly Cooperative Two-Electron Molybdenum Center, Biochemistry, 2004, 43(6): 1667–1674
    [27] Wijma H J, Jeuken L J C, Verbeet M Ph, Armstrong F A, Canters G W. Protein Film Voltammetry of Copper-Containing Nitrite Reductase Reveals Reversible Inactivation, J. Am. Chem. Soc., 2007, 129(27): 8557–8565
    [28] Barker C D, Reda T, Hirst J. The Flavoprotein Subcomplex of Complex I (NADH:Ubiquinone Oxidoreductase) from Bovine Heart Mitochondria: Insights Into the Mechanisms of NADH Oxidation and NAD+ Reduction from Protein Film Voltammetry, Biochemistry, 2007, 46(11): 3454–3464
    [29] Elliott S J, McElhaney A E, Feng C J, Enemark J H, Armstrong F A. A Voltammetric Study of Interdomain Electron Transfer Within Sulfite Oxidase, J. Am. Chem. Soc., 2002, 124(39): 11612–11613
    [30] Frangioni B, Arnoux P, Sabaty M, Pignol D, Bertrand P, Guigiarelli B, Léger C. In Rhodobacter Sphaeroides Respiratory Nitrate Reductase, The Kinetics of Substrate Binding Favors Intramolecular Electron Transfer, J. Am. Chem. Soc., 2004, 126(5): 1328–1329
    [31] Dementin S, Belle V, Bertrand P, Guigiarelli B, Adryanczyk-Perrier G, De Lacey A L, Fernandez V M, Rousset M, Léger C. Changing the Ligation of the Distal [4Fe4S] Cluster In NiFe Hydrogenase Impairs inter- and Intramolecular Electron Transfers, J. Am. Chem. Soc., 2006, 128(15): 5209–5218
    [32] Munge B, Das S K, Ilagan R, Pendon Z, Yang J, Frank H A, Rusling J F. Electron Transfer Reactions of Redox Cofactors in Spinach Photosystem I Reaction Center Protein in Lipid Films on Electrodes, J. Am. Chem. Soc., 2003, 125(41): 12457–12463
    [33] Yue H J, Waldeck D H, Petrovi? J, Clark R A. The Effect of Ionic Strength on the Electron-Transfer Rate of Surface Immobilized Cytochrome c, J. Phys. Chem. B, 2006, 110(10): 5062–5072
    [34] Rusling J F, Eldin A, Nassar A E F. Enhanced Electron Transfer for Myoglobin in Surfactant Films on Electrodes, J. Am. Chem. Soc., 1993, 115(25): 11891–11897
    [35] Fan C H, Zhong J, Guan R, Li G X. Direct Electrochemical Characterization of Vitreoscilla Sp. Hemoglobin Entrapped in Organic Films, BBA, 2003, 1649: 123–126
    [36] Udit A K, Hindoyan N, Hill M G, Arnold F H, Gray H B. Protein-Surfactant Film Voltammetry of Wild-Type and Mutant Cytochrome P450 BM3, Inorg. Chem., 2005, 44(12): 4109–4111
    [37] Udit A K, Hill M G, Gray H B. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films, Langmuir, 2006, 22(25): 10854–10857
    [38] Hirst J, Ackrell B A C, Armstrong F A. Global Observation of Hydrogen/Deuterium Isotope Effects on Bidirectional Catalytic Electron Transport in an Enzyme: Direct Measurement by Protein-Film Voltammetry, J. Am. Chem. Soc., 1997, 119(32): 7434–7439
    [39] Hirst J, Duff J L C, Jameson G N L, Kemper M A, Burgess B K, Armstrong F A. Kinetics and Mechanism of Redox-Coupled, Long-Range Proton Transfer in an Iron-Sulfur Protein. Investigation by Fast-Scan Protein-Film Voltammetry, J. Am. Chem. Soc., 1998, 120(28): 7085–7094
    [40] Armstrong F A. Recent Developments in Dynamic Electrochemical Studies of Adsorbed Enzymes and Their Active Sites, Curr. Opin. Chem. Biol., 2005, 9: 110–117
    [41] Camba R, Jung Y S, Hunsicker-Wang L M, Burgess B K, Stout C D, Hirst J, Armstrong F A. Mechanisms of Redox-Coupled Proton Transfer in Proteins: Role of the Proximal Proline in Reactions of the [3Fe-4S] Cluster in Azotobacter Vinelandii Ferredoxin, Biochemistry, 2003, 42(36): 10589–10599
    [42] Gwyer J D, Richardson D J, Butt J N. Diode or Tunnel-Diode Characteristics? Resolving the Catalytic Consequences of Proton Coupled Electron Transfer in a Multi-Centered Oxidoreductase, J. Am. Chem. Soc., 2005, 127(43): 14964–14965
    [43] Jeuken L J C, Camba R, Armstrong F A, Canters G W. The PH-Dependent Redox Inactivation of Amicyanin from Paracoccus Versutus as Studied by Rapid Protein-Film Voltammetry, J. Bio. Inorg. Chem., 2002, 7(1–2): 94–100
    [44] Clinton F B, Nicholas J W, Sean J E. Electrochemical Evidence for Multiple Peroxidatic Heme States of the Diheme Cytochrome c Peroxidase of Pseudomonas aeruginosa, Biochemistry, 2009, 48(1): 87–95
    [45] Zu Y B, Couture M M-J, Kolling D R J, Crofts A R, Eltis L D, Fee J A, Hirst J. Reduction Potentials of Rieske Clusters: Importance of the Coupling between Oxidation State and Histidine Protonation State, Biochemistry, 2003, 42(42): 12400–12408
    [46] Leggate E J, Bill E, Essigke T, Ullmann G M, Hirst J. Formation and Characterization of an All-Ferrous Rieske Cluster and Stabilization of the [2Fe-2S]0 Core by Protonation, PNAS, 2004, 101(30): 10913–10918
    [47] Bernhardt P V, Santini J M. Protein Film Voltammetry of Arsenite Oxidase from the Chemolithoautotrophic Arsenite-Oxidizing Bacterium NT-26, Biochemistry, 2006, 45(9): 2804–2809
    [48] Rooney M B, Honeychurch M J, Selvaraj F M, Blankenship R E, Bond A M, Freeman H C. A Thin-Film Electrochemical Study of the‘‘Blue’’Copper Proteins, Auracyanin a and Auracyanin B, from the Photosynthetic Bacterium Chloroflexus Aurantiacus: The Reduction Potential as a Function of pH, J. Biol. Inorg. Chem., 2003, 8(3): 306–317
    [49] Nassar A E F, Zhang Z, Hu N F, Rusling J F, Kumosinski T F. Proton-Coupled Electron Transfer from Electrodes to Myoglobin in Ordered Biomembrane-like Films, J. Phys. Chem. B, 1997, 101(12): 2224–2231
    [50] Anderson L J, Richardson D J, Butt J N. Catalytic Protein Film Voltammetry from a Respiratory Nitrate Reductase Provides Evidence for Complex Electrochemical Modulation of Enzyme Activity, Biochemistry, 2001, 40(38): 11294–11307
    [51] Butt J N, Anderson L J, Rubio L M, Richardson D J, Flores E, Herrero A. Enzyme-Catalysed Nitrate Reduction—Themes and Variations as Revealed by Protein Film Voltammetry, Bioelectrochemistry, 2002, 56(1): 17–18
    [52] Angove H C, A, Cole J A, Richardson D J, Butt J N. Protein Film Voltammetry Reveals Distinctive Fingerprints of Nitrite and Hydroxylamine Reduction by a Cytochrome c Nitrite Reductase, J. Bio. Chem., 2002, 277(26): 23374–23381
    [53] Heffron K, Léger C, Rothery R A, Weiner J H, Armstrong F A. Determination of an Optimal Potential Window for Catalysis by E. coli Dimethyl Sulfoxide Reductase and Hypothesis on the Role of Mo(V) in the Reaction Pathway, Biochemistry, 2001, 40(10): 3117–3126
    [54] Elliott S J, Hoke K R, Heffron K, Palak M, Rothery R A, Weiner J H, Armstrong F A. Voltammetric Studies of the Catalytic Mechanism of the Respiratory Nitrate Reductase from Escherichia coli: How Nitrate Reduction and Inhibition Depend on the Oxidation State of the Active Site, Biochemistry, 2004, 43(3): 799–807
    [55] Léger C, Jone A K, Roseboom W, Albracht S P J, Armstrong F A. Enzyme Electrokinetics: Hydrogen Evolution and Oxidation by AllochromatiumVinosum [NiFe]-Hydrogenase, Biochemistry, 2002, 41(52): 15736–15746
    [56] Bradley A L, Chobot S E, Arciero D M, Hooper A B, Elliott S J. A Distinctive Electrocatalytic Response from the Cytochrome c Peroxidase of Nitrosomonas europaea, J. Biol. Chem., 2004, 279(14): 13297–13300
    [57] Bateman L, Léger C, Goodin D B, Armstrong F A. A Distal Histidine Mutant (H52Q) of Yeast Cytochrome c Peroxidase Catalyzes the Oxidation of H2O2 Instead of Its Reduction, J. Am. Chem. Soc., 2001, 123(38): 9260–9263
    [58] Bertrand P, Frangioni B, Dementin S, Sabaty M, Arnoux P, Guigliarelli B, Pignol D, Léger C. Effects of Slow Substrate Binding and Release in Redox Enzymes: Theory and Application to Periplasmic Nitrate Reductase, J. Phys. Chem. B, 2007, 111(34): 10300–10311
    [59] Clarke T A, Kemp G L, Van Wonderen J H, Doyle R-M A S, Cole J A, Tovell N, Cheesman M R, Butt J N, Richardson D J, Hemmings A M. Role of a Conserved Glutamine Residue in Tuning the Catalytic Activity of Escherichiacoli Cytochrome c Nitrite Reductase,Biochemistry, 2008, 47(12): 3789–3799
    [60] Liebgott P P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps J C, Guigliarelli B, Bertrand P, Rousset M, Léger C. Relating Diffusion Along the Substrate Tunnel and Oxygen Sensitivity in Hydrogenase, Nat. Chem. Biol., 2010, 6: 63–70
    [61] Vincent K A, Parkin A, Lenz O, Albracht S P J, Fontecilla-Camps J C, Cammack R, Friedrich B, Armstrong F A. Electrochemical Definitions of O2 Sensitivity and Oxidative Inactivation in Hydrogenases, J. Am. Chem. Soc., 2005, 127(51): 18179–18189
    [62] Parkin A, Cavazza C, Fontecilla-Camps J C, Armstrong F A. Electrochemical Investigations of the Interconversions between Catalytic and Inhibited States of the [FeFe]-Hydrogenase from Desulfovibrio desulfuricans, J. Am. Chem. Soc., 2006, 128(51): 16808–16815
    [63] Léger C, Dementin S, Bertrand P, Rousset M, Guigliarelli B. Inhibition and Aerobic Inactivation Kinetics of Desulfovibrio fructosovorans NiFe Hydrogenase Studied by Protein Film Voltammetry, J. Am. Chem. Soc., 2004, 126(38): 12162–12172
    [64] Aguey-Zinsou K F, Bernhardt P V, Kappler U, McEwan A G. Direct Electrochemistry of a Bacterial Sulfite Dehydrogenase, J. Am. Chem. Soc., 2003, 125(2): 530–535
    [65] Pulcu G Su, Elmore B L, Arciero D M, Hooper A B, Elliott S J. Direct Electrochemistry of Tetraheme Cytochrome c554 from Nitrosomonas europaea: Redox Cooperativity and Gating, J. Am. Chem. Soc., 2007, 129(7): 1838–1839
    [66] Butt J N, Armstrong F A, Breton J, Feorge S J, Thomson A J, Hatchikian E C. Investigation of Metal Ion Uptake Reactivities of [3Fe-4S] Clusters in Proteins: Voltammetry of Co-Adsorbed Ferredoxin-Aminocyclitol Films at Graphite Electrodes and Spectroscopic Identification of Transformed Clusters, J. Am. Chem. Soc., 1991, 113(17): 6663–6670
    [67] Butt J N, Sucheta A, Armstrong F A. Binding of Thallium(I) to a [3Fe-4S] Cluster: Evidence for Rapid and Reversible Formation of [Tl3Fe-4S]2+ and [Tl3Fe-4S]1+ Centers in a Ferredoxin, J. Am. Chem. Soc., 1991, 113(23): 8948–8950.
    [68] Butt J N, Sucheta A, Armstrong F A, Breton J, Thomson A J, Hatchikian E C. Voltammetric Characterization of Rapid and Reversible Binding of an Exogenous Thiolate Ligand at a [4Fe-4S] Cluster in Ferredoxin III from Desulfovibrio Africanus, J. Am. Chem. Soc., 1993, 115(4): 1413–1421
    [69] Ye T, Kaur R, Wen X, Bren K L, Elliott S J. Redox Properties of Wild-Type and Heme-Binding Loop Mutants of Bacterial Cytochromes c Measured by Direct Electrochemistry, Inorg. Chem., 2005, 44(24): 8999–9006
    [70] Jeuken L J C, Van Vliet P, Verbeet M Ph, Camba R, McEvoy J P, Armstrong F A, Canters G W. Role of the Surface-Exposed and Copper-Coordinating Histidine in Blue Copper Proteins:The Electron-Transfer and Redox-Coupled Ligand Binding Properties of His117Gly Azurin, J. Am. Chem. Soc., 2000, 122(49): 12186–12194
    [71] Daniel W B, John A Z, Mark L P, Patricia A J, Sean J E, Redox Characterization of the FeS Protein MitoNEET and Impact of Thiazolidinedione Drug Binding, Biochemistry, 2009, 48(43): 10193–10195
    [72] Lovri? M. Modeling of Catalytic Reaction in Protein-Film Linear Scan Voltammetry at Rotating Disk Electrode, Portugaliae Electrochimica Acta, 2009, 27(4): 505–515
    [73] Gulaboski R, Lovri? M, Mir?eski V, Bogeski I, Hoth M. A New Rapid and Simple Method to Determine the Kinetics of Electrode Reactions of Biologically Relevant Compounds from the Half-Peak Width of the Square-Wave Voltammograms. Biophys. Chem., 2008, 138(3): 130–137
    [74] Gulaboski R, Lovri? M, Mir?eski V, Bogeski I, Hoth M. Protein-Film Voltammetry: A Theoretical Study of the Temperature Effect Using Square-Wave Voltammetry, Biophys. Chem., 2008, 137(1): 49–55
    [75] Gulaboski R. Surface ECE Mechanism in Protein Film Voltammetry—A Theoretical Study under Conditions of Square-Wave Voltammetry, J. Solid. State. Electrochem., 2009, 13(7): 1015–1024
    [76] Sanghamitra M, Sean J E, Oxidative Disassembly of the [2Fe-2S] Cluster of Human Grx2 and Redox Regulation in the Mitochondria, Biochemistry, 2009, 48(18): 3813–3815
    [77] Li S Y, Wackett L P. Reductive Dehalogenation by Cytochrome P450CAM: Substrate Binding and Catalysis, Biochemistry, 1993, 32(36): 9355–9361
    [78] Bard A J. Toward Single Enzyme Molecule Electrochemistry, ACS Nano, 2008, 2(12): 2437–2440
    [79] Amatore C, Bouret Y, Maisonhaute E, Abru?a H D, Goldsmith J I. Electrochemistry within Molecules Using Ultrafast Cyclic Voltammetry, C. R. Chim., 2003, 6(1): 99–115
    [80] Amatore C, Bouret Y, Maisonhaute E, Goldsmith J I, Abru?a H D. Precise Adjustment of Nanometric-Scale Diffusion Layers within a Redox Dendrimer Molecule by Ultrafast Cyclic Voltammetry: An Electrochemical Nanometric Microtome, Chem. Eur. J., 2001, 7(10): 2206–2226
    [81] Amatore C, Grün F, Maisonhaute E. Electrochemistry within a Limited Number of Molecules: Delineating the Fringe between Stochastic and Statistical Behavior, Angew. Chem., 2003, 115(40): 5094–4097
    [82]董绍俊,车广礼,谢远武.化学修饰电极.修订版,北京:科学出版社, 2003, 456–478
    [83] Armstrong F A, Cox P A, Hill H A O, Lowe V J, Oliver B N. Metal Ions and Complexes asModulators of Protein-Interfacial Electron Transport at Graphite Electrodes. J. Electroanal. Chem., 1987, 217(2), 331–366
    [84] Durliat H, Barrau M B, Comtat M. FAD Used as a Mediator in the Electron Transfer Between Platinum and Several Biomolecules, Bioelectronchem. Bioenerg., 1988, 253(3): 413–423
    [85] Eddowes M J, Hill H A O. Novel Method for the Investigation of the Electrochemistry of Metalloproteins: Cytochrome c, J. Chem. Soc. Chem. Commun., 1977, 771–772
    [86] Sun S C, Reed D E, Callison J K, Richard L H, Hawridge F M. Die Bestimmung von Platin in Biotischen und Umweltrelevanten Materialien, Microchim. Acta, 1988, 3(99): 299–304
    [87]孙一新,王升富.细胞色素c在L-半胱氨酸自组装膜电极上的电化学行为,应用化学, 2005, 22(3): 295–299
    [88] Liu Y C, Cui S Q, Zhao J, Yang Z S. Direct Electrochemistry Behavior of Cytochrome C/L-Cysteine Modified Electeode and Its Electrocatalytic Oxidation to Nitric Oxide, Bioelectrochemistry, 2007, 70(2): 416–420
    [89] Ding X Q, Hu J B, Li Q L. Direct Electrochemistry and Superficial Characterization of DNA-Cytochrome c-MUA Films on Chemically Modified Gold Surface, Talanta, 2006, 68(3): 653–658
    [90] Chen S M, Chen S V. The Bioelectrocatalytic Properties of Cytochrome c by Direct Electrochemistry on DNA Film Modified Electrode, Electrochim Acta, 2003, 48(5): 513–529
    [91]曲晓刚,于秀娟,周成立,董绍俊.细胞色素c在氨基酸及二肽修饰金电极上的电化学反应,生物化学杂志, 1995, 11(5): 580–583
    [92] Haladjian J, Biano P, Pilard R. Modification of the Gold Electrode for the Electrochemical Study of Cytochrome c, Electrochim.Acta, 1983, 28(12): 1823–1828
    [93]汤国新,吴霞琴.几种促进剂存在下细胞色素c电子迁移过程的研究,电化学, 1995, 1(2): 181–185
    [94] Jiang X, Zhang L, Dong S J. Assemble of Poly(Aniline-Co-O-Aminobenzenesulfonic Acid)Three-Dimensional Tubal Net-Works onto ITO Electrode and Its Application for the Direct Electrochemistry and Electrocatalytic Behavior of Cytochrome c, Electrochem. Commun, 2006, 8(7): 1137–1141
    [95] Balamurugan A, Chen S M. Fabrication of Cytochrome c-poly(5-amino-2-napthalenesulfonic acid) Electrode by One Step Procedure and Direct Electrochemistry of Cytochrome c, Biosens. Bioelectron, 2008, 24(4): 976–980
    [96] Yeh P, Kuwana T. Reversible Electrode Reaction of Cytochrome c, Chem. Lett. 1977, 6(10):1145–1148
    [97] Bowden E F, Hawkridge F M, Blount H N. Interfacial Electrochemistry of Cytochrome c at Tin Oxide, Indium Oxide, Gold, and Platinum Electrodes, J. Electroanal. Chem., 1984, 161(2), 355–376
    [98] T.Daido, T.Akaie. Electrochemistry of Cytochrome c: Influence of Coulombic Attraction with Indium Tin Oxide Electrode, J. Electroanal. Chem., 1993, 344(1–2), 91–106
    [99] Harmer M A, Hill H A O. The Direct Electrochemistry of Redox Proteins at Metal Oxide Electrodes, J. Electroanal. Chem., 1985, 189(2): 229–246
    [100] Harmer M A, Hill H A O. The Direct Electrochemistry of Horse Heart Cytochrome c, Ferredoxin and Rubredoxin at Ruthenium Dioxide and Iridium Dioxide Electrodes, J. Electroanal. Chem., 1984, 170(1-2): 369–375
    [101]李红丽,王荣,魏雅,朱国阳,吴霞琴.细胞色素c在离子液体修饰电极上的电化学行为,化学应用与研究, 2007, 19(9): 987–990
    [102] Wang S F, Chen T, Zhang Z L, Shen X C, Lu Z X, Pang D W, Wong K Y. Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids, Langmuir, 2005, 21(20): 9260–9266
    [103]王升富,陈婷,张志凌,庞代文.琼脂糖膜固定血红素蛋白质在亲水性室温离子液体中的直接电化学,第九届全国电分析化学学术会议第九届全国电分析化学学术会议论文集, 2005
    [104] Wang S F, Chen T, Zhang Z L, Pang D W, Wong K Y. Effects of Hydrophilic Room-Temperature Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate on Direct Electrochemistry and Bioelectrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films, Electrochem. Commun., 2007, 9(7): 1709–1714
    [105] Ding S F, Wei W, Zhao G C. Direct Electrochemical Response of Cytochrome c on a Room Temperature Ionic Liquid, N-Butylpyridinium Tetrafluoroborate, Modified Electrode, Electrochem. Commun., 2007, 9(9): 2202–2206
    [106] Xiang C L, Zou Y J, Sun L X, Xu F. Direct Electron Transfer of Cytochrome c and Its Biosensor Based on Gold Nanoparticles/Room Temperature Ionic Liquid/Carbon Nanotubes Composite Film, Electrochem. Commun., 2008, 10(1): 38–41
    [107] Zhang Y, Zheng J B. Direct Electrochemistry and Electrocatalysis of Cytochrome c Based on Chitosan–Room Temperature Ionic Liquid-Carbon Nanotubes Composite, Electrochim. Acta, 2008, 54(2): 749–754
    [108] Alberg W J, Eddowes M J, Hill H A O, Hillamam A.R. Mechanism of the Reduction and Oxidation Reaction of Cytochrome c at a Modified Gold Electrode Mechanism of the Reduction and Oxidation Reaction of Cytochrome c at a Modified Gold Electrode, J. Am.Chem. Soc., 1981, 103(13): 3904–3910
    [109] Sagare T, Niwa K, Sone A, Hinnen C, Niki K. Redox Reaction Mechanism of Cytochrome c at Modified Gold Electrodes Redox Reaction Mechanism of Cytochrome c at Modified Gold Electrodes, Langumir, 1990, 6(1): 254–262
    [110]曲晓刚,乔专虹,陆天虹,董绍俊.细胞色素c的电化学行为研究,分析化学, 1994, 22(12): 1267–1272
    [111] Yue H J, Khoshtariya D, Waldeck D H. Grochol J, Hildebrandt P, Murgida D H. On the Electron Transfer Mechanism between Cytochrome c and Metal Electrodes. Evidence for Dynamic Control at Short Distances, J. Phy. Chem. B, 2006, 110(40):19906–19913
    [112] Murgida D H, Hildebrandt P. Proton-Coupled Electron Transfer of Cytochrome c, J. Am. Chem. Soc., 2001, 123(17): 4062–4068
    [113] Ugo P, Pepe N, Moretto L M, Battagliarin M. Direct Voltammetry of Cytochrome c at Trace Concentrations with Nanoelectrode Ensembles, J. Electroana. Chem., 2003, 560(1): 51–58
    [114] Kluck R M, Martin S J, Hoffman B M, Zhou J S, Green D R, Newmayer D D. Cytochrome c Activation of CPP32-Like Proteolysis Plays a Critical Role in a Xenopus Cell-Free Apoptosis System, EMBO. J, 1997, 16(15): 4639–4649
    [115] Moore G R, Pettigrew G W. Cytochromes c: Evolutionary, Structural and Physicochemical aspects, Springer-Verlag, Berlin, 1990
    [116] Lee T Y, Kim H J, Moon T O, Shim Y B. Determination of Cytochrome C with Cellulose±DNA Modified Carbon Paste Electrodes, Electroanalysis, 2004, 16(10): 821–826
    [117] Scott R A, Mauk A G. Cytochrome c: A multidisciplinary approach, University Science Books, Sausalito, CA, 1995
    [118] Chen S M, Chen S V. The Bioelectrocatalytic Properties of Cytochrome c by Direct Electrochemistry on DNA Film Modified Electrode, Electrochim. Acta, 2003, 48(5): 513–529
    [119] Ikeda O, Shirota Y, Sakurai T. Electrical Communication Between Horse Heart Cytochrome c and Electrodes in the Presence of DNA or RNA, J. Electroanal. Chem., 1990, 287(1): 179–184
    [120] Chottard G, Lexa G D. Direct Electrochemistry of Cytochrome c in the Presence of Heteropolytungstates, J. Electroanal. Chem., 1990, 278(1–2): 387–391
    [121] Zhang L, Jiang X, Niu L, Dong S J. Syntheses of Fully Sulfonated Polyaniline Nano-Networks and Its Application to the Direct Electeochemistry of Cytochrome c, Biosens. Bioelectron, 2006, 21: 1107–1115
    [122] Shie J W, Umasankar Y, Chen S M. Electroanalytical Properties of Cytochrome c by Direct Electrochemistry on Multi-Walled Carbon Nanotubes Incorporated with DNA BiocompositeFilm, Talanta, 2008, 74(5): 1659–1669
    [123] Nagaraju D H, Pandey R K, Lakshminarayanan V. Electrocatalytic Studies of Cytochrome c Functionalized Single Walled Carbon Nanotubes on Self-Assembled Monolayer of 4-ATP on Gold, J. Electroanal. Chem., 2009, 627(1-2): 63–68
    [124]张会娜,郭智勇,盖盼盼.蛋白膜伏安法研究,分析化学, 2009, 37(3): 461–465
    [125]李业梅,戴月.琼脂糖水凝胶固定化血红素蛋白质的电化学研究,分析实验室, 2006, 25(3): 28–31
    [126]荣联清,张志凌,林毅,谢娅妮,庞代文.魔芋多糖固定化肌红蛋白的直接电化学与电催化,分析化学, 2006, 34(12): 1683–1687
    [127] Zhang Y, He P L, Hu N F. Horseradish Peroxidase Immobilized in Tio2 Nanoparticle Films on Pyrolytic Graphite Electrodes: Direct Electrochemistry and Bioelectrocatalysis, Electrochim. Acta, 2004, 49(12): 1981–1988
    [128] Imabayashi S I, Mita T, Kakiuchi T. Effect of the Electrostatic Interaction on the Redox Reaction of Positively Charged Cytochrome c Adsorbed on the Negatively Charged Surfaces of Acid-Terminated Alkanethiol Monolayers on a Au(111) Electrode, Langmuir, 2005, 21(4): 1470–1474
    [129] E. Laviron. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems, J. Electroanal. Chem. 1979, 101(1): 19–28
    [130] Avila A, Gregory B W, Niki K, Cotton T M. An Electrochemical Approach to Investigate Gated Electron Transfer Using a Physiological Model System: Cytochrome c Immobilized on Carboxylic Acid-Terminated Alkanethiol Self-Assembled Monolayers on Gold Electrodes, J. Phys. Chem. B, 2000, 104(12): 2759–2766
    [131] Onuoha A C, Zu X, Rusling J F. Electrochemical Generation and Reactions of Ferrylmyoglobins in Water and Microemulsions, J. Am. Chem. Soc., 1997, 119(17): 3979–3986
    [132] Lu X B, Hu J Q, Yao X, Wang Z P, Li J H. Composite System Based on Chitosan and Room temperature ionic liquids: Direct Electrochemistry and Electrocatalysis of Hemoglobin, Bioacromolecules, 2006, 7(3): 975–980
    [133] Li J H, Shen Y F. Room Temperature Ionic Liquids as Media to Enhance the Electrochemical Stability of Self-Assembled Monolayers Alkanethiols on Gold Eletrodes, Chem.Commun., 2005, 3: 360–362
    [134] Liu Y, Li J H. Highly Active Horseradish Peroxidase Immobilized in 1-Butyl-3-Methy Limidazolium Tetrafluoroborate Room Temperature Ionic Liquid Based Sol-Gel Host Materials, Chem.Commun., 2005, 13: 1778–1780
    [135] Bowden E F, Hawkridge F M, Blount H N. Interfacial Electrochemistry of Cytochrome c atTin Oxide, Indium Oxide, Gold, and Platinum Electrodes, J. Electroanal. Chem., 1984, 161(2): 355–376
    [136]戴志晖,鞠熀先.介孔分子筛上的蛋白质直接电化学,物理化学学报, 2004, 20(10): 1262–1266
    [137]李玉平,曹宏斌,张懿.血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为,物理化学学报, 2005, 21(2): 187–191
    [138] Topoglidis E, Aatuti Y, Duriaux F, Gr?tzel M, Durrant J R. Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes, Langmuir, 2003, 19(17): 6894–6900
    [139] Li Q, Luo G, Feng J. Direct Electron Transfer for Heme Proteins Assembled on Nanocrystalline TiO2 Film, Electroanalysis, 2001, 13(5): 359–363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700