猪瘟病毒影响RANTES产生分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical Swine Fever, CSF)又称猪霍乱(Hog Cholera,HC),是由猪瘟病毒(CSFV)引起的猪的一种急性热性致死性疾病,给世界养猪业造成了巨大的经济损失。近几年猪瘟的免疫失败、猪瘟与其它疫病的混合感染及继发感染不断出现,使疫病的防控形式日趋严峻。深入研究CSFV感染细胞后的免疫反应及其分子机制进一步阐明猪瘟病毒的免疫机理,对猪瘟新型疫苗研制和防控措施制定具有十分重要的意义。
     调节活化正常T细胞表达与分泌的因子(Regulated upon Activation, Normal T cell Expressed and Secreted, RANTES)是趋化因子CC家族的重要因子之一,也是一种多效性的趋化因子。它不仅对多种细胞有趋化作用,还可以激活淋巴细胞,参与炎症反应的发生,调节细胞的生长和分化。目前的研究已经证实:RANTES在包括细菌、病毒在内的多种微生物的感染与致病中扮演十分重要的角色,但迄今为止猪瘟病毒感染与RANTES表达之间的关系尚不清楚。鉴于此,本研究开展了猪瘟病毒感染后RANTES的表达动力学研究,并探讨了猪瘟病毒调控RANTES表达的信号通路。主要研究内容如下:
     1、CSFV感染PK-15细胞后RANTES mRNA表达的动力学
     采用荧光定量Real-time PCR分析了CSFV感染PK-15细胞后不同时间RANTES的表达,发现CSFV感染PK-15细胞后早期RANTES mRNA的表达水平没有明显的变化,但感染后72h显著低于未感染细胞,而且CSFV感染能显著抑制poly(I:C)诱导的RANTES表达。为了进一步验证荧光定量PCR的结果,随后构建了猪RANTES基因启动子荧光素酶报告系统,发现CSFV能抑制RANTES启动子的激活。
     2、CSFV Npro参与抑制RANTES表达
     为了确定猪瘟病毒编码的蛋白在抑制RANTES中的作用,分别构建了猪瘟病毒12种编码蛋白的真核表达表达质粒,采用RANTES启动子荧光素酶报告系统分析不同编码对RANTES启动子活性的影响,发现转染Npro的表达质粒能显著抑制RANTES启动子的活性。进一步对RANTES启动子中不同转录因子结合位点进行突变分析,发现ISRE结合位点在CSFV Npro抑制RANTES中起重要作用。为了确定Npro抑制RANTES的必需区域,构建了Npro的一系列突变体,发现Npro的N端21个氨基酸对抑制RANTES的表达是非必需的,而突变与Npro切割活性有关的第69位及第112、136位氨基酸后可以完全或部分消除Npro对RANTES表达的抑制,提示Npro的切割活性在抑制RANTES中扮演重要角色。
     3、CSFV Npro抑制RANTES表达的信号通路研究
     为了进一步揭示CSFV Npro是否抑制RANTES产生的上游信号通路,分别利用RIG-Ⅰ、MDA5、IPS-1、IRF3、IRF7等激活RANTES信号通路的信号分子和转录因子进行分析,发现Npro可以抑制RIG-Ⅰ、MDA5、IPS-1、IRF3、IRF7超表达诱导的RANTES,表明Npro通过抑制RIG-I/MDA5信号通路,从而抑制RANTES的表达。
CSF (also called Hog Cholera), caused by Classical Swine Fever virus,is a serious acute and fatal disease for pigs causing significant economic losses worldwidely for the pig industry. In recent years, due to the failure of imuunization for CSF, and the emergence of combined infection and secondary infection of CSF, the prevention and control of this disease is increasingly urgent. To study intensively the immune response and its molecular mechanism upon the infection with CSFV and further demonstrate the immune mechanism of CSF virus is of great significance for the development of novel vaccines to CSF as well as for more effective strategies for controlling and preventing the disease.
     Regulated upon Activation, Normal T cell Expressed and Secreted, RANTES is an important member of chemokine CC family, and is a chemokine with multiple activities. It not only has chemotaxis effect on different types of cells, but also activates lymphocytes, participate to the pathogenesis of inflammation and regulate the growth and differentiation of cells. Studies by now have revealed that RANTES plays a rather important role in the infection anf pathogenesis of many bacterial and viral pathogens. However, the relationship between CSF infection and RANTES expression is still not well understood. For this reason, we studied the dynamics of RANTES expression after CSF virus infection, and discussed the signal pathway of CSF regulation on RANTES expression. The main content are as follows
     1. The dynamics of RANTES mRNA expression after the PK-15 cells is infected with CSFV
     Using Real-time PCR to analyze the expression of RANTES t different time points after PK-15 cells was infected with CSFV. We found no significant change of RANTES mRNA expression level in the early stage after CSFV infection on PK-15 cells. But 72 hours after infection, it was significantly lower than cells without infection, and CSFV infection significantly inhibited RANTES expression induced by poly (I:C). To further verify the result of real-time PCR, the luciferase reporter system of porcine RANTES promoter was constructed, and it was found that CSFV inhibited the activation of RANTES promoter.
     2. CSFV Npro is involved in the inhibition of RANTES expression
     To determine which proteins of CSFV play a vital role in the inhibition of RANTES, we built the eukaryotic expression plasmids of twelve CSFV proteins and analysed the affect on different protein on the activity of RANTES promoter by RANTES promoter luciferase reporter system. We found the transfection of expression plasmid for Npro could significantly inhibit the activity of RANTES promoter. Subsequently, mutation analysis was conducted on different transcription factor binding sites in RANTES promoter. It was shown that ISRE binding site played an important role in the inhibition of RANTES by CSFV Npro. To determine the essential region for Npro to inhibit RANTES, a series of mutants of Npro was constructed. The result indicated 21 amino acids on N terminal of Npro were not essential for the inhibition of RANTES expression. But the mutation of the 69th,112nd, and 136th amino acid related to the cleavage activity of Npro could partially or completely disable the Npro's inhibition on RANTES expression. It can be inferred that the cleavage activity of Npro is crucial for the inhibition of RANTES expression.
     3, Study on the Signal pathways of CSFV Npro on the inhibition of RANTES
     To comprehend the upstream signal pathways of CSFV Npro on the inhibition of RANTES,The signal molecules and transcription factors activating RANTES signal pathway, including RIG-Ⅰ、MDA5、IPS-1、IRF3、IRF7 were used for analyzing,and we found that the Npro inhibited the RANTES which is induced by the overexpresiion of RIG-Ⅰ、MDA5、IPS-1、IRF3、IRF7.It demonstrated that Npro suppressed RANTES through the RIG-I/MDA5 signal pathway
引文
1. 蔡宝祥.家畜传染病学(第四版)[M]北京:中国农业出版社,2001,147-153.
    2. 陈周.肠外致病性大肠杆菌E044株的质粒克隆分析及激活RANTES的分子机制研究.[硕士学位论文].武汉:华中农业大学,2009.
    3. 杜念兴.猪瘟的回顾与展望.中国畜禽传染病,1998,20(5):317-319.
    4. 顾晓.趋化因子及其受体的移植免疫学研究进展[J].国外医学泌尿系统分册,2001,21(4):168-170.
    5. 李臻,张远强.β-趋化性细胞因子RANTES的研究进展,生理科学进展,2006,37,17,79-82
    6. 李兵华,张紫莱,徐蔚晶,裴子飞,刘新垣.人白细胞介素的新成员:IL-24,25,26,27.国外医学分子生物学分册,2003,25(5):257-259.
    7. 蔺听,宗扬勇,许逊等.PTD-eGFP-△E250mFoxp3融合蛋白的表达与穿膜能力鉴定.江苏大学学报(医学版),2009,19,1;14-22
    8. 马大龙.细胞因子研究进展.中国肿瘤生物治疗杂志,1997,4(3):164-166.
    9. 秦贵军,罗方,赵艳艳等.IL-1β对体外人Graves眼病球后成纤维细胞分泌RANTES的影响[J].郑州大学学报,2005,40(3):485-488.
    10.水华,丁国华.P38信号通路对单侧输尿管结扎大鼠RANTES的影响[J].中华急症医学杂志,2006,8(15):706-709.
    11.孙卫民,王惠琴.细胞因子研究方法学.北京:人民卫生出版社,1999.
    12.吴升华,陆超,董玲等.结缔组织生长因子促进肾小球系膜细胞合成RANTES部分依赖于p42/44MAPK[J].现代免疫学,2005,25(4):311-314.
    13.徐蔚晶,刘新垣.人白细胞介素家族的新成员—IL-19、IL-20、IL-21、IL-22、IL-23.国外医学分子生物学分册,2001,4(23):193-196.
    14.殷震,刘景华.动物病毒学(第二版)[M).北京:科学出版社,1997,652-664.
    15.周泰冲.CSFV与防制猪瘟的研究进展[J],中国兽医杂志,1980,2950,6(2):23-39.
    16. Afonso L C C, Scharton J M, Vierira L Q, Wysocka M, Trinchieri G, Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science,1994,263:235-237.
    17. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature,2001,413,732-738.
    18. Baigent, S. J., G. Zhang, M. D. Fray, H. Flick-Smith, S. Goodbourn, and J. W. McCauley.. Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J. Virol,2002,76:8979-8988.
    19. Bauhofer O,Summerfield A,Sakoda Y et al., Classical swine fever virus Npro interacts with interfer on regulatory factor 3and induces its Proteasomal degradation [J]. J Virol,2007,81: 3087-3096.
    20. Bossert, B., S. Marozin, and K. K. Conzelmann. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol,2003, 77:8661-8668.
    21. Brzozka, K., S. Finke, and K. K. Conzelmann.. Identification of the rabies virus alpha/beta interferon antagonist:phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J. Virol,2005,79:7673-7681.
    22. Chen, Z., Rijnbrand, R., Jangra, R. K., Devaraj, S. G.,Qu,L.,Ma,Y. et al.()Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology,2007,366,277-292.
    23. Delhaye, S., V. van Pesch, and T. Michiels.. The leader protein of Theiler's virus interferes with nucleocytoplasmic trafficking of cellular proteins. J. Virol,2004,78:4357-4362.
    24. Depner K R, Strebelow, Staubach C, et al., Case report:The significance of genotyping for the epidemiological tracing of classical swine fever [J]. Dtsch Tierarztl Wochenschr,2006,113: 159-162.
    25. Elber K., Tautz P., Becher D. et al., Processing in the pestivirus E2-NS2 region:identification of protein p7 and E2p7. J.Virol,1996,70:4131-4135.
    26. Fitzgerald, KA, McWhirter, SM, FAIA, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway [J].Nat Immunol,2003,4:491-496.
    27. Fort M M, Cheung J, Yen D, Li J, Zurawski S M, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst S D, Zurawski G, Leach M W, Gorman D M, Rennick D M. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity,2001,15 (6):985-995.
    28. Galligan C L, Murooka T T, Rahbar R et al., Interferon sand viruses:signaling for Supremaey [J].Immunol Res,2006,35:27-40.
    29. Gil, L. H., I. H. Ansari, V. Vassilev, D. Liang, V. C. Lai, W. Zhong, Z. Hong, E. J. Dubovi, and R. O. Donis. The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J. Virol,2006,80:900-911.
    30. Gonzalez C, Pijoan C, Ciprian A, et al., The effect of vaccination with the PAV-250 strain classical swine fever virus on the airborne transmission of CSF virus [J]. J Vet Med Sci,2001,63: 991-996.
    31. Habenicht A. Growth factor, Differentiation factor and cytokines. Berlin:Springer-Verlag,1990.
    32. He, B., R. G. Paterson, N. Stock, J. E. Durbin, R. K. Durbin, S. Goodbourn, R. E. Randall, and R. A. Lamb. Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain:the multifunctional V protein blocks both interferon-beta induction and interferon signaling. Virology,2002,303:15-32.
    33. Hilton L, Moganeradj K, Zhang G, et al.The Npro Produet of bovine viral diarrhea virus inhibits DNA binding by interfer on regulatory factor 3 and targets it for proteasomal degradation. J.Virol, 2006,80:11723-11732.
    34. Hilton, L., K. Moganeradj, G. Zhang, Y. H. Chen, R. E. Randall, J. W. McCauley, and S. Goodbourn. The Npro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J. Virol,2006,80:11723-11732.
    35. Honda, K., and Taniguchi, T. IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol,2006,6,644-658.
    36. Ihle JN.The STAT family in cytokine signaling [J]. Curr Opin Cell Biol,2001,13 (2):211-217.
    37. Jan V. Forty years of interferon, forty years of cytokines. Cytokine & Growth Reviews,1997,8 (4):239.
    38. Jennings, S., L. Martinez Sobrido, A. Garcia Sastre, F. Weber, and G. Kochs. Thogoto virus ML protein suppresses IRF3 function. Virology,2005,331:63-72.
    39. Johnson Z, Kosco-Vilbois MH, Herren S et al., Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system.J Immunol,2004,173:5776-5785.
    40. Kaden V, Lange E, Steyer H, et al., Role of birds in transmission of classical swine fever virus [J]. J Vet Med B Infect Dis Vet Public Health,2003,50:357-359.
    41. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamagu chi, O., Otsu, K., Tsujimura, T., Koh, C. S., Reis e Sousa, C., Matsuura, Y, Fujita, T., and Akira, S. Differential roles of MDA5 and RIG-Ⅰ helicases in the recognition of RNA viruses. Nature,2006,441,101-105.
    42. Kawamura I, Morishita R, T omita N, et al., Intratumoral injection of oligonucleotides to the NF kappa B binding site inhibits cachexia in a mouse tumor model [J].Gene Ther,1999,6 (1):91.
    43. Kazuo Nakamichi,Megumi Saiki,Hiroshi Kitani et al., Suppressive effect of simvastatin on interferon-β-induced expression of CC chemokine ligand 5 in microglia[J]. Neuro Let,2006,407 (3):205-210.
    44. Kimman JG.Cellular immune response to hog cholera virus (HCV):T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the E1 envelope glycoprotein is not a major T-cell antigen. J Virol,1993,67:2922-2927.
    45. Knappe A, Hor S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of Interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol, 2000,74 (8):3881-3887.
    46. Komatsu, T., K. Takeuchi, J. Yokoo, and B. Gotoh. C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production. Virology,2004,325:137-148.
    47. Koutarou Miyabayashi, Muneharu Maruyama.Isoproterenol suppresses cytokine induced RANTES secretion in human lung epithelial cells through the inhibition of c-jun N-terminal kinase pathway [J]. biochem and biophy rescom,2006,350 (3):753-761.
    48. La Roeca S A, Herbert R J, Crooke H et al., Loss of interfer on regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal Protease, Npro[J].J Virol,2005, 79:7239-7247.
    49. Lee JB, Matsumoto T, Shin YO et al., The role of RANTES in a murine model of food allergy. Immunol Invest,2004,33:27-38.
    50. Lemay N, Proietti D S, de Santis L, et al., TF11H transcription factor, a target for the Rift Valley hemorrhagic fever virus [J]. Cell,2004,116:541-550.
    51. Macdonald A, Harris M.Hepatitis C virus NS5A:tales of a Promiscuous Protein [J].J GenVirol, 2004,85:2485-2502.
    52. Marino AP, Silva AA, Santos PV, et al., CC-chemokine receptors:a potential therapeutic target for Trypanosoma cruzielicited myocarditis. Mem Inst Oswaldo Cruz,2005,100 (Supp 11) 93-96.
    53. Meager A. Cytokine. New Jersey:Prentice Hall,1991.
    54. Mi-La Cho,So2Youn Min,Soog-Hee Chang et al., Transforming growth factor beta 1 (GF-β1) down-regulates TNF-a-induced RANTES Production in Rheumatoid synovial fibroblasts through NF-κB-mediated transcriptional repression[J].Immunol L,2006,105 (2):159-166.
    55. Miyamoto, N. G., P. S. Medberry, J. Hesselgesser, S. Boejlk, P. J. Nelson, A. M. Krensky, and H. D. Perez. Interleukin-lb induction of the chemokine RANTES promoter in the human astrocytoma line CH235 requires both constitutive and inducible transcription factors. J. Neuroimmu-nol,2000,105:78-90.
    56. Moening V.The Hog cholera virus[J].Comp Immun Microbiol Infect Dis,1992,15 (3):189-201
    57. Moennig V.Pestiviruses:a review.Vet Microbiol,1990,23:35-54.
    58. Mofiuchi M,Fauci AS.Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES a chemokine that blocks HIV infection[J].J Immunol,1997,158 (7):3483-3491.
    59. Moriuchi, H., M. Moriuchi, and A. S. Fauci. Nuclear factor-kB potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J. Immunol.1997,158: 3483-3491.
    60. Mosmann T R, Coffman R L. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol,1989,7:145-173.
    61. Munoz J J L, Burgoss S G G, Rolle L M, et al.Inhibition of interferon signalling by Dengue virus[J].Proc Natl Aead SciUSA,2003,100:14333-14338.
    62. Nelson, P. J., B. D. Ortiz, J. M. Pattison, and A. M. Krensky.. Identification of a novel regulatory region critical for expression of the RANTES chemokine in activated T lymphocytes. J. Immunol. 1996,157:1139-1148.
    63. Neyts, J, Leyssen, P, and De Clereq, E. Infections with flaviviridae.Verhandelingen-Koninklijke Academie voor Geneeskunde van Beigie.1999,61,661-697.
    64. Nishimori Y. Identification of hog cholera virus using monoclonal antibodies[J].Vet Med Sei, 1996,581:707-712.
    65. Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T. Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K, Fukuda S, Kurimoto M. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature,1995,378:88-91.
    66. Ortiz, B. D., A. M. Krensky, and P. J. Nelson. Kinetics of transcription factors regulating the RANTES chemokine gene reveals a developmental switch in nuclear events during T-lymphocyte maturation. Mol. Cell. Biol.1996,16:202-210.
    67. Page K, Li J, Zhou L et al., Regulation of airway epithelial cell NF-kappa B-dependent gene expression by protein kinase C delta [J]. J Immunol,2003,170 (11):5681-5689.
    68. Pan I C et al., The skintongue and brain as favorable organs for hog cholera diagnosis by immunofluorescence. Arch Virol,1993,131:475-81.
    69. Peng, T., S. Kotla, R. E. Bumgarner, and K. E. Gustin. Human rhinovirus attenuates the type I interferon response by disrupting activation of interferon regulatory factor 3. J. Virol.2006,80: 5021-5031.
    70. Pflanz S, Timans J C, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein W M, Mattson J D, Wagner J L, To W, Zurawski S, McClanahan T K, Gorman D M, Bazan J F, de Waal Malefyt R, Rennick D, Kastelein R A. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity,2002,16:779-790.
    71. Pierre Ge'nin, Rongtuan Lin, John Hiscott, Ahmet Civas..Differential Regulation of Human Interferon A Gene Expression by Interferon Regulatory Factors 3 and 7. Molecular and cellular biology, Vol.2009,29, No.12.3435-3450.
    72. Pierre Ge nin, Miche'le Algarte, Philippe Roof, et al.Regulation of RANTES Chemokine Gene Expression Requires Cooperativity Between NF-kB and IFN-Regulatory Factor Transcription Factors[J]. Immunology,2000,164:5352-5361.
    73. Pocock J,Gomez-guerrero C,Harendza S et al., Differerential activation of NF-κB,AP-1 and C/ EBP in endotoxin-tolerantrats:Mechanisms for in vitro regulation of glomerular RANTES/CCL5 experession [J]. JImmunol,2003,170 (12):6280.
    74. Poole, E., B. He, R. A. Lamb, R. E. Randall, and S. Goodbourn.. The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-beta. Virology,2002,303:33-46.
    75. Rampura T,Venkatesha E,Berla Thangam et al., Distinct regulation of C3a-induced MCP21/ CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase[J]. Mole Immunol,2005,42 (5):581.
    76. Rashu B Seth,Lijun Sun, Chee-Kwee Ea, et al. Identification and characterization of MAVS,a mitochondrial antiviral signaling protein that activates NF-κB and IRF3[J].Cell,2005,122:1-14.
    77. RobjM Moormann, PetraaM Warmerdam, BertV an DerMeer. Molecular Cloning and Nucleotide Sequence of Hog Cholera Virus Strain Brescia and Mapping of the Genomic Region Encoding envelope Protein E1 [J]. Virology,1990,177:184-198.
    78. Ruggli N, Bird B H, Liu L et al., Npro of classical swine fever virus is an antagonist double-stranded RNA-mediated apoptosis and IFN-a/p induction [J]. Virology,2005,34265-279.
    79. Ruggli N, Tratsehin J D, Schweizer M, et al., Classieal swine fever virus interferes with cellular antiviral defense:evidence for a novel function of N (Pro). J Virol,2003,77 (13):7645-7654.
    80. Ruggli, N., Summerfield, A., Fiebach, A. R., Guzylack Piriou, L., Bauhofer, O., Lamm, C. G. et al.Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J. Virol.2009,83,817-829.
    81. Rujun Gong, Abdalla Rifai, Lance DD. Activation of PI3K-Akt-GSK3β pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells[J]. Biochem and Biophysi Res Com,2005,330 (1):27-33.
    82. Rumenapf T, Stark R, Heimann M, et al., N-terminal Protease of Pestiviruses:Identification of Putative catalytic residues by site-directed mutagenesis. J. Virol,1998,72:2544-2547.
    83. Schols D.HIV co-receptors as targets for antiviral therapy. Curr Top Med Chem,2004,4: 883-893
    84. Schuurmann E, Floge-Niesmann G, Monnig V et al., Susceptibility of in vivo and in vitro produced porcine embryos to classical swine fever virus [J].Reprod Domest Anim,2005,40: 415-421.
    85. Seago, J., Hilton, L., Reid, E., Doceul, V, Jeyatheesan, J., Moganeradj, K. et al. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatoryfactor-3.J. Gen. Virol.2007,88,3002-3006.
    86. Sehweizer M, Matzener P, Pfaffen G, et al. "Self, and"nonself, manipulation of interfer on defense during persistent infection:bovine viral diarrhea virus resists alPha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. J. Virol, 2006,80:6926-6935.
    87. Sheng Hua Wu,Chao Lu,Ling Dong, et al, pI3-K/p KB/NF-κB and p42/44 MAPK Pathway mediates inhibition of lipoxin A4 on CTGF-induced production of RANTES in mesangial cells [J]. J Microbiol Immunol,2005,3 (3):174-181.
    88. Shimamura H, Terada Y, Okado T et al., The pI3-kinase-Akt pathhway promotes mesangialcell survival and inhibits apoptosis vitro via NF-κB and Bad [J]. J Am Soc Nephrol,2003,14 (6) 1427-1434.
    89. Shimizu M et al., Cytocidal infection of hog cholera virus in porcine bone marrow stroma cell cultures. Vet Microbiol,1995,47:395-400.
    90. Sigrist S,Oberholzer J,Bohbot A, et al., Activation of human macrophages by allogeneic islets preparations:inhibition by AOP-RANTES and heparinoids. I mmunology,2004,111:416-421.
    91. Sizova, D.V., KoluPaeva, V.G., Pestova, T.V, Shatsky, 1.N., andHellen, C.U. Specific interaction of eukaryotic translation initiation factor 3 with the 5'nontranslated regions of hepatitis C virus and classical swine fever virus sRNAs. Journal of virology,1998,72,4775-4782.
    92. Slavik JM, Hutchcroft J E, Bierer BE.CD 28/CTLA4 and CDS0/CD86 families:signaling and ruction [J]. Immunol Res,1999,19 (1):1-8.
    93. Spann, K. M., K. C. Tran, and P. L. Collins. Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-κB, and proinflammatory cytokines. J. Virol.2005,79:5353-5362.
    94. Spiegel, M., A. Pichlmair, L.Martinez-Sobrido, J. Cros, A. Garcia-Sastre, O. Haller, and F. Weber. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol.2005,79:2079-2086.
    95. Stegeman A, Elbers A, de Smit H, et al., The 1997-1998 epidemics of classical swine fever in the Netherlands. Vet Microbiol.2000,73:183-196.
    96. Susa M et al., Pathogenesis of classical swine fever:B-lymphocyte deficiency caused by hog cholera virus. J Virol,1992,66:1171-1175.
    97. Takeuchi, O., and Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol.2008,20, 17-22.
    98. Thiel H.J.,Stark R.,Weiland E. et al., Hog cholera virus:molecular composition of virions from a pestvirus. J. Virol,1991,65:4705-4712.
    99. Thomas JS, Jan J, Bradley JD et al., A human T cell specific molecule is a member of a new gene family.J Immumol,1998,141:1018-1025.
    100. Tratsch in J D, Moser C, Ruggli N et al., Classical swine fever virus leader p roteinase Npro is not required for viral replication in cell culture [J]. J Virol,1998,72 (9):7681-7684.
    101. Van Duivenvoorde L M, vanMierlo G J, Boonman Z F, et al., Dendritic cells:vehicles for tolerance induction and Prevention of autoimmune diseases [J]. Immunobiology,2006,21 (6-8): 627-632.
    102. Wong M, Fish EN. RANTES and MIP-1 alpha activate stats in T cells [J]. J Biol Chem,1998, 273 (6):309-314.
    103. Wood P R and Seow H F. T cell cytokines and disease prevention. Vet Immunol Immunopathol, 1996,54:33-44.
    104. Xin ML,Cat harine R.Physiological and Receptor-selective Retinoids Modulate Interferon y Sinaling by Increasing the expression,Nuclear Localization,and Functional Activity of Interferon Regulatory Factor-1[J]. J Bio chem,2005,280 (43):36228-36236.
    105. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science,2003,301,640-643.
    106. Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S. Cutting edge:a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol.2002,169,6668-6672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700