海洋聚球藻对铁限制的生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁供应不足限制了海洋初级生产力,特别是在约占全球海洋面积1/3的高营养盐低叶绿素(high-nutrient low-chlorophyll, HNLC)区域。自1988年以来,在HNLC海区进行了多次培养瓶内以及大规模的现场铁添加实验,研究结果表明铁在调节海洋初级生产力、生物地球化学循环以及全球气候方面起重要作用。在海洋生态系统中,聚球藻(Synechococcus)数量大、分布广,是全球海洋初级生产力的主要贡献者。聚球藻在海洋微食物网中周转迅速,每天被鞭毛虫和纤毛虫牧食的聚球藻占其现存量的35-100%。在HNLC海区的铁添加实验中,只有硅藻没有受到浮游动物捕食的影响,其生物量大量增加。长期以来,人们认为超微型浮游藻类聚球藻在HNLC海区并未受到铁限制。但是,也有一些证据表明,Synechococcus在海洋中同样受到铁限制。以往,有关铁限制对浮游藻类的生理生化影响研究主要集中在硅藻等真核藻类,而有关原核藻类聚球藻的研究较少。
     铁元素是许多酶和蛋白的辅因子,在光合和呼吸电子传递,以及硝态氮的吸收利用等许多代谢过程中起重要作用。但是,藻细胞内绝大多数的铁存在于光合机构中。近岸水体中的铁浓度比大洋水体中的铁浓度高,铁限制的选择压力导致真核硅藻的海岸株比大洋株对铁限制更敏感。根据理论推测,浮游藻类细胞以硝酸盐为氮源时比以铵盐为氮源时有更高的铁需求。人们不清楚海洋聚球藻的大洋株是否也比海岸株更能耐受铁限制,并且对于聚球藻以铵盐为氮源时是否有更低的铁需求也还存有争议。海洋中的铁浓度随着深度的增加而升高,但海洋中的光强随着深度的增加而逐渐减弱。结合理论预测与真核硅藻的研究表明,藻细胞在低光条件下生长时对铁的需求更高,但铁限制的藻细胞在高光条件下PSII更容易受到光抑制。因此,在聚球藻海岸株的绿色株系和红色株系中铁元素和光的互作关系值得我们深入研究。目前,聚球藻PCC7002已被实验证实能产生铁载体,以适应铁限制环境的海洋蓝藻。当它与那些不能合成铁载体的藻株共培养时,它是否具有竞争优势也值得我们探讨。
     本文采用专为研究微量金属元素对海洋藻类生理影响而设计的Aquil培养基,全程采用痕量金属洁净技术控制微量元素污染,采用Water-PAM荧光仪测定F0的方法监测藻细胞的生长,运用Water-PAM和FIRe荧光技术以及流式细胞技术研究铁元素对不同藻株的生理影响,探究铁限制生理反应的种间差异以及铁元素对氮素和光能利用的影响。研究结果将有助于我们正确评估铁限制对超微型浮游藻类初级生产的影响,揭示铁元素对海洋生态系统种群结构的影响,为进一步研究不同藻株适应低铁的生化和分子机制提供依据。主要结果如下:
     1.最小荧光产额是测定超微型浮游藻类生物量的可靠便捷方法。在铁浓度为4-1000nM的Aquil培养基中,培养两株海岸聚球藻(PCC7002和CC9311)和一株大洋聚球藻(WH8102),采用WATER-PAM荧光仪测定藻液的最小荧光F0,同时利用流式细胞仪进行细胞计数。结果表明,通过这两种方法得出的比生长速率没有显著差异。与铁充足条件(1000nM Fe)相比,WH8102和CC9311在15nMFe培养基中的比生长速率分别降低了59%和37%,PCC7002在4nM Fe条件下的比生长速率降低了57%。这表明,PCC7002最能耐受铁限制,而WH8102对铁限制最敏感。最小荧光F0值与细胞浓度之间存在线性关系,铁充足条件下不含藻红蛋白的PCC7002的每细胞最小荧光是富含藻红蛋白藻株(WH8102和CC9311)的100倍。在铁限制条件下,WH8102和CC9311每细胞的最小荧光分别增加128%和7%,但是PCC7002却降低了30%,这主要与各藻株的藻胆素组成差异以及铁限制对不同藻株光合色素的影响差异有关。在光暗周期中,PCC7002与CC9311的每细胞最小荧光变化较小,而WH8102的每细胞最小荧光在光照条件下更高。总之,通过测定稳态条件下藻细胞的F0值是一种可靠的比生长速率测定方法。
     2.聚球藻海岸株和大洋株的光合作用和流式信号对铁限制和氮源的不同反应。本研究比较了四株海洋聚球藻在不同铁浓度和氮源条件下的光合作用和流式信号的差异,结果表明大洋株比海岸株对铁限制更敏感,铁限制对两个大洋株的生长、光系统Ⅱ最大光化学效率、最大电子传递速率以及光化学淬灭的抑制程度大于两个海岸株。在铁限制条件下,两个海岸株不同光合单位之间的连接系数增加,而两个大洋株的连接系数降低,同时铁限制加快了两个大洋株QA的氧化速率以及海岸株PQ库的氧化速率。在铁限制条件下,两个大洋株的细胞大小与细胞内色素含量降低,而侧向散射光与前向散射光的比值(SS/FS)增加。与铁限制不同,氮源对四个藻株的光合作用影响相对较小。在铁充足条件下,以氨为氮源时促进了两个海岸株的生长。以氨为氮源时,在铁充足和铁限制条件下两个大洋株的细胞体积增加,SS/FS与细胞内色素含量降低。以往的研究表明,真核硅藻的海岸种较大洋种对铁限制更敏感,而本研究以海洋聚球藻得出的结论与此相反。至于聚球藻大洋株比海岸株对铁限制更敏感的生化机制,还有待进一步探讨。
     3.铁和光对聚球藻绿色和红色海岸株生长、光合作用及流式色素荧光的影响。在高铁和低铁以及高光和低光条件下培养绿色海岸株(PCC7002)与红色海岸株(CC9311),结果表明PCC7002在低光条件下更容易受到铁限制,而CC9311在铁限制条件下更容易受到高光抑制,另外在高光和低光条件下培养的CC9311都比PCC7002更容易受到铁限制。通过流式细胞仪分析发现,CC9311和PCC7002的叶绿素、藻蓝蛋白和藻红蛋白荧光在铁限制和高光条件下降低。PCC7002的捕光截面(OPSⅡ)在铁光共限制条件下降低,CC9311的σPSⅡ在铁限制和高光条件下降低,这可能是由于铁限制和高光导致与光系统Ⅱ反应中心结合的色素分子数量降低。在铁限制和光限制条件下,PCC7002的线性电子传递速率降低,而PQ的氧化速率(1/τPQ)加快,这可能是由于围绕PSI的循环电子传递加快。在铁限制和高光条件下,CC9311的线性电子传递降低,而QA氧化速率(1/τQa)和PQ的氧化速率(1/τPQ)都加快,这可能是由于围绕PSⅠ和PSⅡ的循环电子传递加快。不同铁浓度和光照条件下培养的PCC7002和CC9311,经过30min高光(300μmol photons·m-2·s-1)处理,然后进行低光恢复。通过比较高光处理后以及低光恢复后的Fv/Fm值,结果表明CC9311比PCC7002对高光更敏感且恢复程度较低。另外,在低光和低铁条件下培养的藻细胞更容易受到光抑制且恢复程度较低,这可能与低光低铁培养条件下的CC9311和PCC7002的非光化学淬灭(NPQ)较低有关。铁元素和光照的相互作用可能是红色藻株和绿色藻株垂直分布的决定因素之一。
     4.聚球藻PCC7002与WH8102和CC9311对铁限制的生理反应以及铁元素对它们之间竞争的影响。在铁限制条件下,聚球藻PCC7002能合成铁载体参与铁的吸收,因而通常认为具有竞争优势。在单培养条件下,铁限制对WH8102和CC9311的细胞数以及比生长速率的抑制程度较PCC7002大。铁限制对PCC7002的细胞内ROS相对含量以及死亡细胞比例的影响也较小,因此PCC7002比WH8102和CC9311更耐受铁限制。在铁限制条件下,PCC7002的前向散射光(与细胞大小相关)降低,CC9311和WH8102的前向散射光显著增大。铁限制影响三个藻株的DNA含量和细胞周期,WH8102和CC9311的细胞周期属于快速生长模式,PCC7002的细胞周期属于慢速生长模式。在铁限制条件下,WH8102和CC9311的G1期细胞比例增大。PCC7002的DNA含量分布图在铁充足条件下为较宽的单峰,而在铁限制条件下为较窄的单峰。与单培养时相比,在铁限制条件下分别与WH8102和CC9311混合培养的PCC7002,其比生长速率、细胞产量、叶绿素荧光、前向散射光和DNA含量降低,ROS含量升高,死亡细胞的比例增大。然而,在铁充足条件下混合培养的PCC7002与单培养时没有显著差异。无论是在铁充足还是铁限制条件下,单培养的WH8102和CC9311与混合培养时生理指标没有显著差异。因此,我们推测铁限制条件下混合培养的PCC7002比单培养时受到了更严重的铁限制。
Iron supply limits primary production in the ocean, especially HNLC (high-nutrient low-chlorophyll) regions whose area is one-third of the world's ocean. The important role of iron in oceanic productivity, biogeochemical cycle, and global climate can be seen from many iron enrichment experiments in HNLC regions since1988. Synechococcus species are ubiquitous and abundant in major oceanic regimes, underlying their ecological importance as significant contributors to the total photosynthetic biomass in the ocean. They also play a key role in pelagic food-web structure via energy transfer within the microbial loop, It has been estimated that35%-100%of the Synechococcus standing stock can be grazed per day. Picophytoplankton such as Synechococcus had previously been assumed not to be strongly limited by iron in HNLC regions because only the diatoms bloomed by escaping grazing pressure upon iron enrichment. But there were also some evidences indicated that Synechococcus also iron limited in the oceans. The physiolgical and biochemical response to iron limitation has been well studied in diatoms and other marine eukaryotic algae, but there are much less physiological information about ecological important Synechococcus.
     Iron plays a catalytic role in many biochemical reactions as a cofactor of enzymes and proteins involved in photosynthetic and respiratory electron transports, nitrogen assimilation and many other metabolic processes. But the majority of intracellular iron is required in the photosynthetic apparatus. Iron concentrations in coastal waters are higher than those in open ocean waters. Selection pressure imposed by iron limitation has resulted in oceanic eukaryotic diatoms less susceptible to iron limitation than coastal species. More iron was predicted to be required by using nitrate as the nitrogen source compared to ammonium. We did not know whether the oceanic Synechococcus strains were more tolerant to iron limitation than the coastal strains. Furthermore, there are conflicting data over whether ammonium, rather than nitrate, supports a higher growth rate under iron limited conditions. Iron concentrations are depleted in the surface ocean but light intensity decreased with depth in the ocean. According to the prediction as well as some data on diatoms, cellular iron demand enhanced under low irradiation but the physiological consequences of Fe limitation would increase susceptibility to PSII photoinhibition at high irradiance. Thus further studies need to be done about the interactive influences of iron and light on the growth and photosynthesis of green and red coastal synechococcus strains. Synechococcus sp. PCC7002has been proved to release extracellular Fe3+chelating agents (siderophore) to cope with iron limitation. It is worth us to explore whether PCC7002possessed a competitive advantage when they mixed-cultured with the strains that do not produce these ligands.
     In these studies, Synechococcus strains were grown in Aquil medium that was developed specifically for studying trace-metal physiology in algae, and the Metal Clean technique will be used to rigorously control the trace metal contaminations all through our experiments. The F0value measured by Water-PAM fluorometer was used to monitor the growth of Synechococcus. Water-PAM and FIRe fluorescence techniques as well as Flow cytometry technique were used to study the physiolgical response of different Synechococcus strains to iron limitation. The species-specific differences in physiology responses to iron limitation and the effects of iron in untilization of nitrogen and light in marine Synechococcus were explored. The results could help us to well evaluate the effects of iron limitation on primary productivity of the picophytoplankton, and to open out the effects of iron on the phytoplankton community composition of the ocean ecosystem. These results also provide us some bases to further research on biochemical and molecular mechanisms to cope with iron limitation in different strains. The mail results are as follows:
     1. The minimal fluorescence yield is a reliable and easy biomass measurement of picophytoplankton Synechococcus under semicontinuous batch culture. Two coastal Synechococcus strains (PCC7002and CC9311) and one oceanic strain (WH8102) were cultured with4-1000nM Fe in Aquil medium. The cell concentration and minimal fluorescence yield (F0) were measured daily by Flow cytometry and Water-PAM fluorometer in the exponential growth stage, and the growth rates obtained from these two methods showed little difference. Compared with those under iron-replete condition, their growth rates were significantly decreased by59%for WH8102at15nM Fe, by37%for CC9311at15nM Fe and by57%for PCC7002at4nM Fe. Among these three strains, PCC7002was the most tolerant to iron limitation while WH8102was the most sensitive to iron limitation. The linear correlation was established between F0value and cell concentration although Fo value per cell varied depending of the strains and iron levels. Under iron-replete condition, the minimal fluorescence yield per cell was100-fold higher for phycoerythrin-lacking strain PCC7002than two phycoerythrin-containing strains WH8102and CC9311. Under iron-deplete condition, it was increased respectively by128%and7%for WH8102and CC9311but was decreased by30%for PCC7002. This is mainly related to differences in the pigment composition of phycobilisomes of the various strains and to different effect of iron limitation on photosynthetic pigment contents. Furthermore, F0value per cell concentration for PCC7002and CC9311showed little difference throughout the light and dark diel cycle. However, it was significantly higher for WH8102in the daytime than in the dark. In a word, it is a reliable and easy method to assay the specific growth rate by measuring F0value at the steady state of cultures.
     2. Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). This study have been compared the photosynthesis and flow cytometric signals of four Synechococcus strains grown under different iron concentrations with either nitrate or ammonium as the sole nitrogen source. Two oceanic strains were much more sensitive to iron limitation than two coastal strains. The inhibition of iron limitation on the growth, maximal PSII photochemical yield, maximal rate of relative electron transport and photochemical quenching of the two oceanic strains was higher than for their coastal counterparts. Under iron limitation condition, the connectivity factor between individual photosynthetic units (p) increased for the two coastal strains while decreased for the two oceanic strains. Furthermore, iron limitation accelerated the QA re-oxidation of the two oceanic strains and the PQ pool re-oxidation of the two coastal strains. Under iron limitation condition, the cell size of the two coastal strains and intracellular pigment concentrations of the two oceanic strains decreased while the side light scatter/front light scatter (SS/FS) ratio of the two coastal strains increased. In contrast to iron limitation, nitrogen source only marginally affected the photosynthesis of the four Synechococcus strains. Ammonium enhanced the growth of the two coastal strains under iron-replete condition. For the two oceanic strains, ammonium increased their cell size and decreased their SS/FS ratio and intracellular pigment concentrations under iron-deplete and iron-replete conditions. Previously studies indicated that oceanic eukaryotic diatoms were less susceptible to iron limitation than coastal species. These were opposite to our results in Synechococcus. Further works need to be done to understand the biochemical mechanisms responsible for these physiological responses to iron limitation between oceanic and coastal Synechococcus strains.
     3. Different responses of growth, photosynthesis and flow cytometric pigments fluoresence to iron and light in one green and one red coastal synechococcus strains (Cyanophyceae). One green (PCC7002) and one red (CC9311) coastal synechococcus strains were cultured under different iron(10and1000nM) and light conditions (10and60μmol photons·m-1·s-1). The results indicated that PCC7002was more sensitive to iron limitation under low light while CC9311was more easily to suffer from photoinhibition under iron limitation. Anymore, CC9311was more sensitive to iron limitation than PCC7002both under high light and low light. The flow cytometric chl a, PE and PC fluorescence of the two strains decreased under iron limitation and high light conditions. Decrease in aPSII for PCC7002cultured under iron and light colimitation and for CC9311under iron limitation and photoinhibition conditions might resulted from decrease in the amount of pigments serving one RCII. Under low iron and low light conditions, the linear electron transport rate (rETRmax) decreased but PQ pool re-oxidation(1/τPQ) accelerated for PCC7002which might result from the stimulation of cyclic electron transport around PSI. Under low iron and high light conditions, the rETRmax decreased but Qa re-oxidation and PQ pool re-oxidation (1/τPQ) accelerated for CC93311which might result from the stimulation of cyclic electron transport around PSI and PSII respectively. Samples of PCC7002and CC9311cultured under different light and iron conditions were illuminated at300μmol photons-m·2-s·1for30min and then transferred to10μmol photons·m-2·s-1for60min for recovery. The Fv/Fm values were measured after high light treatment and low light recovery. The results indicated that CC9311was more susceptible to high light exposure and had lower capacity to recover from this photoinhibitory stress compared to PCC7002. Anymore, cells cultured at low light and low iron conditions were more easily to suffer from photoinhibition and had lower capacity to recover from photoinhibition. These might result from their lower NPQ (nonphotochemical quenching). Our results suggested that iron and light interaction might be important for vertical separation of red and green strains of synechococcus.
     4. Physiology response to iron limitation and effects of iron on the competition of PCC7002between WH8102or CC9311. PCC7002which could produce siderophore involved in iron sequestration under iron limitation conditions was predicted to own competitive advantage. In monoculture, the cell yieds and relative growth rate of WH8102and CC9311was inhibited more than PCC7002under iron limitation. Anymore, celluar ROS content and percentages of dead cells of WH8102and CC9311were also effected more by iron limitation. This results indicated that PCC7002was much more tolerant to iron limitation than WH8102and CC9311. Front light scatter (FS, related to cell size) of CC9311and WH8102increased significantly whereas the FS of PCC7002decreased significantly under iron limitation. Iron limitation effected cell cycle behavior and decreased DNA content of the three strains. The cell-cycle behavior of CC9311and WH8102were different from PCC7002, which corresponds to the slow and fast growth case of cell-cycle model respectively. Percentages of cells in G1phase decreased under low iron for WH8102and CC9311while PCC7002presented a broad and narrow unimodal under iron replete and deplete conditions respectively. Compared to monoculture, cell yieds, relative growth rate, Chl a fluorescence, FS and DNA content of PCC7002were decreased while celluar ROS content and percentages of dead cells increased in mixed-culture under iron limitation. However, there were no significant differences between the physiological characteristics for PCC7002in monoculture and mixed-cultured under iron replete conditions, and so is the physiological characteristics of WH8102or CC9311both under iron deplete and replete conditions. We concluded that cells of PCC7002in mixed-culture suffered from more heavily iron stress than it in monoculture under iron limitation conditions.
引文
焦念志等(2006)海洋微生物生态学科学出版社,第一版,北京。
    李合生等(2006)现代植物生理学高等教育出版社,第二版,北京。
    Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition:a historical perspective. Photosynth Res 76:343-370.
    Administration of Technique Supervision in People's Republic of China. (1998) National standards of the People's Republic of China:Electronic grade water (GB/T 11446.1-1997). Beijing: Standards Press of China, pp,1-7[中华人民共和国国家技术监督局.(1998)中华人民共和国国家标准:电子级水(GB/T 11446.1-1997).北京:中国标准出版社.pp,1-7].
    Administration of Technique Supervision in People's Republic of China. (1998) National standards of the People's Republic of China:Specification and testing methods of water for analytical laboratory use (GB6682-92). Beijing:Standards Press of China. pp,1-4[中华人民共和国国家技术监督局.(1998)中华人民共和国国家标准:分析实验室用水规格和试验方法(GB6682-92).北京:中国标准出版社.pp,1-4].
    Agawin NSR, Agusti S, Duarte CM (2002) Abundance of Antarctic picophytoplankton and their response to light and nutrient manipulation. Aquat Microb Ecol 29:161-172.
    Agusti S, Duarte CM (2000) Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral. Limnol Oceanogr 45:940-947.
    Alberte RS, Wood A, Kursar TA, Guillard RRL (1984) Novel Phycoerythrins in Marine Synechococcus spp.:Characterization and evolutionary and ecological implications. Plant Physiol 75: 732-739.
    Alderkamp AC, de Baar HJW, Visser RJW, Arrigoa KR (2010) Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnol Oceanogr 55:1248-1264.
    Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. PNAS 105:10438-10443.
    Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27:789-813.
    Andersson B, Aro EM (2001) Photodamage and D1 protein turnover in photosystem II. In:Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 377-393.
    Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215-237.
    Angerer A, Klupp B, Braun V (1992) Iron transport systems of Serratia marcescens. J Bacteriol 174:1378-1387.
    Apel K, Hirt H (2004) Reactive oxygen species:Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399.
    Ardelan MV, Holm-Hansen O, Hewes CD, Reiss CS, Silva NS, Dulaiova H, Steinnes E, Sakshaug E (2010) Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences 7:11-25.
    Armstrong JE, Van Baalen C (1979) Iron transport in microalgae:The isolation and biological activity of a hydroxamate siderophore from the blue-green alga Agmenellum quadruplicatum. J Gen Microbiol 111:253-262.
    Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II:inactivation, protein damage and turnover. BBA1143:113-134.
    Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349-355.
    Babin M, Morel A, Claustre H, Bricaud C, Kolber Z, Falkowski PG (1996) Nitrogen-and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Res 43:1241-1272.
    Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471-5477.
    Bailey S, Grossman A (2008) Photoprotection in cyanobacteria:regulation of light harvesting. Photochem. Photobiol 84:1410-1420.
    Bailey S, Mann NH, Robinson C, Scanlan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579: 275-280.
    Bailey S, Melis A, Mackey KR, Cardol P, Finazzi G, van Dijken, G, Berg GM, Arrigo K, Shrager J, Grossman AR (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. BBA1777:269-276.
    Baker NR (2008) Chlorophyll fluorescence:a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89-113.
    Barbeau K (2006) Photochemistry of organic Iron(III) complexing ligands in oceanic systems. Photochem Photobiol 82:1505-1516.
    Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(Ⅲ)-binding ligands. Nature 413:409-413.
    Barber J, Andersson B (1992) Too much of a good thing:light can be bad for photosynthesis. Trends Biochem Sci 17:61-66.
    Bass, DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils:a graded response to membrane stimulation. J Immunol 130:1910-1917.
    Beer S, Bjork M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquatic Botany 66:69-76.
    Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508-511.
    Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J, Falkowski PG (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508-511.
    Behrenfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283:840-843.
    Bell T, Kalff J (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol Oceanogr 46:1243-1248.
    Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. BBA 1229: 23-38.
    Berman-Frank I, Cullen JT, Shaked Y, Sherrell R, Falkowski PG (2001) Iron availability, cellular quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46:1249-1260.
    Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260-2269.
    Berman-Frank I, Rosenberg G, Levitan O, Haramaty L, Mari X (2007) Coupling between autocatalytic cell death and transparent exopolymeric particles production in the marine cyanobacterium Trichodesmium. Environ Microbiol 9:1415-1422. Berman-Frank, I, Bidle KD, Haramaty L, Falkowski PG (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol Oceanogr 49: 997-1005.
    Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323-326.
    Bibby TS, Zhang Y, Chen M (2009) Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PLoS ONE 4:e4601.
    Bidle KD, Bender SJ (2008) Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot Cell 7:223-236.
    Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nature Rev Microbiol 2:643-655.
    Binder BJ, Chisholm SW (1990) Relationship between DNA cycle and growth rate in Synechococcus sp. strain PCC 6301. J Bacteriol 172:2313-2319.
    Binder BJ, Chisholm SW (1995) Cell cycle regulation in marine Synechococcus sp. strains. Appl Environ Microbial 61:708-717.
    Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493-495.
    Borer P, Sulzberger B, Hug SJ, Sm K, Kretzschmar R (2009) Photoreductive dissolution of iron(Ⅲ) (hydro) oxides in the absence and presence of organic ligands:experimental studies and kinetic modeling. Environ Sci Technol 43:1864-1870.
    Borman CJ, Sullivan BP, Eggleston CM, Colberg PJS (2010) Is iron redox cycling in a high altitude watershed photochemically or thermally driven? Chem Geol 269:33-39.
    Bouchard JN, Roy S, Campbell DA (2006) UVB effects on the photosystem Ⅱ-D1 protein of phytoplankton and natural phytoplankton communities. Photochem Photobiol 82:936-951.
    Boulay C, Abasova L, Six C, Vass I, Kirilovsky D (2008) Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. BBA 1777:1344-1354.
    Boyd PW, Crossley AC, Ditullio GR, Griffiths FB, Hutchins DA, Queguiner B, Sedwick PN, Trull TW. (2001) Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean:Experimental results from the SAZ project. J Geophys Res 106:31573-31583.
    Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993-2005:synthesis and future directions. Science 315:612-617.
    Boyd PW, Law CS, Wong C, Nojiri Y, Tsuda A, Levasseur M, Takeda S, Rivkin R, Harrison PJ, Strzepek R, Gower J, McKay RM, Abraham E, Arychuk M, Barwell-Clarke J, Crawford W, Crawford D, Hale M, Harada K, Johnson K, Kiyosawa H, Kudo I, Marchetti A, Miller W, Needoba J, Nishioka J, Ogawa H, Page J, Robert M, Saito H, Sastri A, Sherry N, Soutar T, Sutherland N, Taira Y, Whitney F, Wong SKE, Yoshimura T (2004) The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428:549-553.
    Boyd PW, Strzepek R, Takeda S, Jackson G, Wong CS, McKay RM, Law C, Kiyosawa H, Saito H, Sherry N, Johnson K, Gower J, Ramaiah N (2005) The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol Oceanogr 50:1872-1886.
    Boyd, PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695-702.
    Brand LE (1991a) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol Oceanogr 36:1756-1771.
    Brand LE (1991b) Review of genetic variation in marine phytoplankton species and the ecological implications. Biol Oceanogr 6:397-409.
    Bruland K W, Donat J R, Hutchins D A (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555-1577.
    Bruland KW, Franks RP, Knauer G, Martin, JH (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel in seawater. Anal Chim Acta 105:233-245.
    Bruland KW, Rue EL (2001) Analytical methods for the determination of concentrations and speciation of iron, biogeochemistry of Fe in Seawater, Turner DR and Hunter KA, SCOR/IUPAC series, J Wiley, Chapter 6,255-290.
    Bruland KW, Rue EL Ditullio GR (2005) Iron, macronutrients and diatom blooms in the Peru Upwelling regime:Brown and blue waters of Peru. Mar Chem 93:81-103.
    Bruland KW, Rue EL, Smith GJ (2001) Iron and macronutrients in California coastal upwelling regimes:Implications for diatom blooms. Limnol Oceangr 46:1661-1674.
    Brussaard CPD (2004) Viral control of phytoplankton populations-a review. J Eur Microbiol 51: 125-138.
    Burnap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron deficient Synechococcus sp. PCC7942 (CP43) is encoded by the isiA gene. Plant Physiol 103: 893-902.
    Cadoret JC, Demouliere R, Lavaud J, Van-gorkom HJ, Houmard J, Etienne AL (2004) Dissipation of excess energy triggered by blue light in cyanobacteria with CP43'(isiA). BBA1659: 100-104.
    Calvo-Diaz A, Moran XAG, Nogueira E, Bode A, Varela M (2004) Picoplankton community structure along the northern Iberian continental margin in late winter-early spring. J Plankton Res 26: 1069-1081.
    Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667-683.
    Campbell L, Carpenter EJ (1986) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus sp. using the seawater dilution and selective inhibitor techniques. Mar Ecol Prog Ser 33:121-129.
    Campbell L, Carpenter EJ (1987) Characterization of phycoerythrin-containing Synechococcus spp. populations by immunofluorescence. J Plankton Res 9:1167-1181.
    Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res I 40:2043-2060.
    Campbell WH (1999) Nitrate reductase structure, function and regulation:bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277-303.
    Canfield DE, Glazer AN, Falkowski PG (2010) The Evolution and Future of Earth's Nitrogen Cycle. Science 330:192-196.
    Capone DG (2000) The marine nitrogen cycle, p.455-493. In Kirchman DL [ed.], Microbial ecology of the oceans. Wiley.
    Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229.
    Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ, Levyll H, Tilbrook B (2007) The southern ocean biological response to aeolian iron deposition. Science 317:1067-1070.
    Castruita M, Shaked Y, Elmegreen LA, Stiefel El, Morel FMN (2008) Availability of iron from iron-storage proteins to marine phytoplankton. Limnol Oceanogr 53:890-899.
    Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111-116.
    Cavender-Bares KK, Mann EL, Chisholm SW, Ondrusek ME, Bidigare RR (1999) Differential response of equatorial Pacific phytoplankton to iron fertilisation. Limnol Oceanogr 44:237-246.
    Chadd HE, Joint IR, Mann NH, Carr NG (1996b) The marine picoplankter Synechococcus sp. WH7803 exhibits an adaptive response to restricted iron availability. FEMS Microbiol Ecol 21: 69-76.
    Chavez FP, Buck KR, Barber RT (1990) Phytoplankton taxa in relation to prima ry production in the equator ial Pacific. Deep-Sea Res 37:1733-1752.
    Chavez FP, Buck KR, Caole KH, Martin JH, DiTullio GR, Welschmeyer NA, Jacobson AC, Barber RT (1991) Growth rates, grazing, sinking and iron limitation of equatorialPacific phytoplankton. Limnol Oceanogr 36:1816-1833.
    Chavez FP, Buck KR, Service SK, Newton J, Barber RT (1996) Phytoplankton variability in the central and eastern tropical Pacific. Deep-Sea Res Ⅱ43:835-870.
    Chavez FP, et al. (1991) Growth rates, grazing, sinking and iron limitation of equatorial Pacific phytoplankton. Limnol Oceanogr 36:1816-1833.
    Chereskin B, Castelfranco P (1982) Effects of iron and oxygen on chlorophyll biosynthesis. II. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol 69:112-116
    Chisholm, SW (1995) Cell cycle regulation in marine Synechococcus sp. strains. Appl Environ Microbial 61:708-17.
    Cloern JE (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont Shelf Res 7:1367-1381.
    Coale KH, and others (1996b) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495-501.
    Coale KH, et al. (1996b) Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379:621-624.
    Coale KH, Johnson KS, Fitzwater SE, Gordon RM, et al. (1996) A massive bloom induced by an ecosystem scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495-500.
    Collen J, Davison I R (1997) In vivo measurement of active oxygen production in the brown alga Fucus evanescens using 2',7'-dichlorohydrofluorescein diacetate. J Phycol 33:643-648.
    Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628-644.
    Collier JL, Palenik B (2003) Phycoerythrin-containing picoplankton in the Southern California Bight. Deep-Sea Res Ⅱ50:2405-2422.
    Cullen JJ (1991) Hypotheses to explain high-nutrient conditions in the open sea. Limnol Oceanogr 36:1578-1599.
    Cullen JJ (1995) Status of the iron hypothesis after the open-ocean enrichment experiment. Limnol Oceanogr 40:1336-1343.
    Cullen JJ, Lewis MR, Davis CO, Barber RT (1992) Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific. J Geophys Res 97:639-654.
    Cullen JT, Chase Z, Coale KH, Fitzwater SE, Sherrell RM (2003) Effect of iron limitation on the cadmium to phosphorus ratio of natural phytoplankton assemblages from the Southern Ocean. Limnol Oceanogr 48:1079-1087.
    Darzynkiewicz Z, Li X, Gong J (1994) Assays of cell viability:Discrimination of cells dying by apoptosis. In Dar zynkiewicz Z, Robinson JP, Crissman HA[eds.], Methods in cell biology. Academic.
    Davey M, Geider RJ (2001) Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros Muelleri (Bacillariophyceae). J Phycol 37:987-1000.
    de Baar HJW et al. (2005) Synthesis of iron fertilisation experiments:from the iron age in the age of enlightenment. J Geophys Res 110, C09S16.
    de Baar HJW, Boyd PM (2000) The role of iron in plankton ecology and carbon dioxide transfer of the global oceans. In:Hanson RB, Ducklow HW, Field JG (eds) The dynamic ocean carbon cycle: a midterm synthesis of the joint global ocean flux study. International Geosphere Biosphere Programme Book Series, Vol 5. Cambridge University Press, Cambridge, p 61-140.
    De Baar HJW, de Jong JTM (2001) Distributions, sources and sinks of iron in seawater, In: Turner D, Hunter, KA (Eds.), The Biogeochemistry of Iron in Seawater. John Wiley, Hoboken, N.J, pp.125-253.
    Demmig B, Winter K, Kruger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218-24.
    Donald KM, Scanlan DJ, Carr NG., Mann NH, Joint I (1997) Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii. J Plankton Res 19:1793-1813.
    Doucette GJ, Harrison PJ (1991a) Aspects of iron and nitrogen nutrition in the red tide dinoflagellate Gymnodinium sanguineum. Mar Biol 110:165-73.
    Douglas SE, Carr NG (1988) Examination of genetic relatedness of marine Synechococcus spp. using restriction fragment length polymorphisms. Appl Environ Microbiol 54:3071-3078.
    Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90.
    Dupont CL, Barbeau K, Palenik B (2008) Ni Uptake and Limitation in Marine Synechococcus Strains. Appl Environ Microbiol 74:23-31.
    DuRand MD, Olson RJ, Chisholm SW (2001) Phytoplankton population dynamics at the Bermuda Atlantic Time-Series station in the Sargasso Sea. Deep Sea Res Ⅱ48:1983-2003.
    El Bissati K, Delphin E, Murata N, Etienne AL, Kirilovsky D (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803:involvement of two different mechanisms. BBA 1457:229-242.
    Eldridge ML, Lagus A, Lehtimaki, Suomela J, Helminen H (2004) Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquat Microb Ecol 35:79-91.
    Erdner DL, Anderson DM (1999) Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol Oceanogr 44:1609-1615.
    Evans JC, Prepas EE (1997) Relative importance of iron and molybdenum in restricting phytoplankton biomass in high phosphorus saline lakes. Limnol Oceanogr 42:461-472.
    Falk S, Samson G, Bruce D,Huner NPA, Laudenbach DE (1995) Functional analysis of the iron-stress induced CP43# polypeptide of PS II in the cyanobacterium Synechococcus sp. PCC 7942. Photosynth Res 45:51-60.
    Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272-275.
    Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-206.
    Falkowski PG, Kolber Z (1995) Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Aust J Plant Physiol 22:341-355.
    Falkowski PG, La Roche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8-14.
    Falkowski PG, Raven JA (2007) Aquatic photosynthesis,2nd edn. Princeton University Press, Princeton, NJ.
    Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady-state photosynthesis to fluorescence in eukaryotic algae. BBA 849:183-92.
    Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55-58.
    Feely RA, Doney SC, Cooley SR (2009) Ocean acidification:Present conditions and future changes in a high-CO2 World. Oceanography 22:36-47.
    Ferreira F, Straus NA (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6:199-210.
    Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr 46:86-94.
    Fitzwater SE, et al. (1996) Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Res 43:995-1015.
    Fitzwater SE, Johnson KS, Elrod VA, Ryan JP, Colettia LJ, Tanner SJ, Gordon RM, Chavez FP (2003) Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system. Cont Shelf Res 23:1523-1544.
    Flores DM, Mazard S, Humily F, Partensky F, Mah6l F, Bariat L, Courties C, Marie D, Ras J, Mauriac R, Jeanthon C, Bendif EM, Ostrowski M, Scanlan DJ, Garczarek L (2011) Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences Discuss 8:4281-4330.
    Flynn KJ, Hipkin CR (1999) Interactions between iron, light, ammonium, and nitrate:insights from the construction of a dynamic model of algal physiology. J Phycol 35:1171-1190.
    Fogg GE (1995) Some comments on picoplankton and its importance in the pelagic ecosystem. Aquat Microb Ecol 9:33-39.
    Forti G, Caldiroli G (2005) State transitions in chlamydomonas reinhardtii. the role of the mehler reaction in state 2-to-state 1 transition. Plant Physiol 137:492-499.
    Francis CA, Beman J M, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial coology of anaerobic and archaeal ammonia oxidation. ISME J 1:19-27.
    Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1-14.
    Frost BW, Franzen NC (1992) Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration:A chemostat analogue of the Pacific equatorial up-welling zone. Mar Ecol Prog Ser 83:291-303.
    Fu FX, Bell PRF (2003) Growth, N2 fixation and photosynthesis in a cyanobacterium, Trichodesmium sp., under Fe stress. Biotechnol Lett 25:645-649.
    Fu FX, Zhang Y, Feng YY, Hutchins DA (2006) Phosphate and ATP uptake and growth kinetics in axenic cultures of the cyanobacterium Synechococcus CCMP 1334. Eur J Phycol 41:15-28.
    Fujiki T, Matsumoto K, Honda MC, Kawakami H, Watanabe S (2009) Phytoplankton composition in the subarctic North Pacific during autumn 2005. J Plank Res 31:179-191.
    Fujishima Y, Ueda K, Maruo M, Nakayama E, Tokutome C, Hasegawa H, Matsui M and Sohrin Y (2001) Distribution of trace bioelements in the subarctic North Pacific Ocean and the Bering Sea (the R/V Hakuho Maru Cruise KH-97-2). J Oceanogr 57:261-273.
    Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803:identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267:5900-5907.
    Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S rDNA oligonucleotides reveal the dominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69:2430-2443.
    Fung IY, Meyn SK, Tegen I, Doney CS, John J, Bishop JKB (2000) Iron supply and demand in the upper ocean. Global Biogeochem Cy 14:281-296.
    Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis and the potential of iron-limitation of primary productivity in the sea. Photosynth Res 39:275-301.
    Geider RJ, La Roche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29:755-766.
    Geider RJ, LaRoche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Baccilariophyceae) to nitrate, phosphate or iron starvation. J Phycol 29:755-766.
    Geiβ U, Vinnemeier J, Kunert A, Lindner I, Gemmer B, Lorenz M, Hagemann M, Schoor A (2001) Detection of the isiA gene across cyanobacterial strains:potential for probing iron deficiency. Appl Environ Microbiol 67:5247-5253.
    Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA 990:87-92.
    Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47:1324-1335.
    Ghassemian M, Straus NA (1996) Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. Microbiology 142:1469-1476.
    Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev Biophys Chem 14:47-77.
    Glibert PM, Ray RT (1990) Different patterns of growth and nitrogen uptake in two clones of marine Synechococcus spp. Mar Biol 107:273-280.
    Glover, H (1977) Effects of iron deficiency on Isochrysis galbana (Chrysophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 13:208-12.
    Gordon RM, Martin JH, Knauer GA (1982) Iron in north-east Pacific waters. Nature 299: 611-612.
    Granger J, Price NM (1999) The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limno Oceanogr 44:541-555.
    Greene RM, Kolber ZS, Swift DG, Tindale NW, Falkowski PG (1994) Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variability in the quantum yield of fluorescence. Limnol Oceanogr 39:1061-1074.
    Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36:1772-1782.
    Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100: 565-575.
    Grossman AR, Mackey KR, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oceans:hypotheses concerning alternate routes of electron flow. J Phycol 46:629-634.
    Grossman, AR, Schaefer MR, Chiang GG, Collier, JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725-749.
    Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293-296.
    Gruber N,Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cy 11:235-266.
    Guikema JA, Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73:250-256.
    Hanelt D, Huppertz K and Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97:31-37.
    Harrison GI, Morel FMN (1986) Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnol Oceanogr 31:989-997.
    Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. PNAS 108:1076-1081.
    Haverkamp T, Acinas SG., Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174-188.
    Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:1621-1626.
    Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729-739.
    Henley WJ, Yin Y (1998) Growth and photosynthesis of marine Synechococcus (cyanophyceae) under iron stress. J Phycol 34:94-103.
    Herdman M, Castenholz RW, Iteman I, Waterbury JB, Rippka R (2001) Subsection I. (Formerly Chroococcales Wettstein 1924, emend. Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In: Boone DR, Castenmholz RW, Garrity GM (ed) Bergey's manual of systematic bacteriology,2nd edn, Vol 1. The archaea and the deeply branching and phototrophic bacteria. Springer Publishers, New York, pp 493-514.
    Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus:insights through comparative genomics. Photosyn Res 70:53-72.
    Hickman AE, Dutkiewicz S, Williams RG, Follows MJ (2010) Modelling the effects of chromatic adaptation on phytoplankton community structure in the oligotrophic ocean. Mar Ecol Prog Ser 406:1-17.
    Hoffmann LJ, Lochte IPK (2008) Iron silicate, and light co-limitation of three Southern Ocean diatom species. Polar Biol 31:1067-108.
    Hoffmann LJ, Peeken I, Lochte K, Assmy P, Veldhuis M (2006) Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol Oceanogr 51:1217-1229.
    Hong SS, Hong T, Jiang H, Xu DQ (1999) Changes in the nonphotochemical quenching of chlorophyll fluorescence during aging of wheat flag leaves. Photosynthetica 36:621-25.
    Hopkinson BM, Mitchell BG, Reynolds RA, Wang H, Selph KE, Measures CI, Hewes CD, Holm-Hansen O, Barbeau KA (2007) Iron limitation across chlorophyll gradients in the southern Drake Passage:Phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnol Oceanogr 52:2540-2554.
    Hopkinson BM, Morel FMM (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals 22:659-669.
    Hopkinson BM. Barbeau KA (2008) Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnol Oceanogr 53: 1303-1318.
    Hudson RJM, Morel FMM (1993) Trace metal transport by marine microorganisms:implications of metal coordination kinetics. Deep-Sea Res 140:129-150.
    Hutchins DA et al. (2002) Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnol Oceanogr 47:997-1011.
    Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastl upwelling regime. Nature 393:561-564.
    Hutchins DA, Ditullio GR, Zhang Y, Bruland KW (1998) An iron limitation mosaic in the California upwelling regime. Limnol Oceanogr 43:1037-1054.
    Hutchins DA, Franck VM, Brzenzinski MA, Bruland KW (1999a) Inducing phytoplankton iron limitation in ironreplete coastal waters with a strong chelating ligand. Limnol Oceanogr 44: 1009-1018.
    Hutchins DA, Hare CE, Weaver RS, Zhang Y, Firme GF, DiTullio GR, Alm MB, Riseman SF, Maucher JM, Geesey ME, Trick CG, Smith GJ, Rue EL, Conn J, Bruland KW (2002) Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limno Oceanogr 47:997-1011.
    Hutchins DA, Witter AE, Butler A, Luther GW (1999b) Competition among marine phytoplankton for different chelated iron species. Nature 400:858-861.
    Hutchins, DA, Ditullio GR, Zhang Y, Bruland KW (1998) An iron limitation mosaic in the California upwelling regime. Limnol Oceanogr 43:1037-1054.
    Ikeya T, Ohki K, Takahashi M, Fujita Y (1997) Study on phosphate uptake of the marine cyanophyte Synechococcus sp. NIBB 1071 in relation to oligotrophic environments in the open ocean. Mar Biol 129:195-202.
    Inoue N, Emi T, Yamane Y, Kashino Y, Koike H, Satoh K (2000) Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiol 41:515-22.
    Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918-1923.
    Ivanov AG, Krol M, Sveshnikov D, Selstam E, Sandstrom S, Koochek M, Park YI, Vasil'ev S, Bruce D, Oquist G, Huner NPA (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem i trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem i in vivo. Plant Physiol 141:1436-1445.
    Ivanov AG, Park Y-I, Miskiewicz E, Raven JA, Huner NPA, Oquist G (2000) Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942. FEBS Lett 485: 173-177.
    Jacquet S, Lennon JF, Vaulot D (1998) Application of a compact automatic sea water sampler to high frequency picoplankton studies. Aquat Microb Ecol 14:309-14.
    Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540-547.
    Jerlov, NG (1976) Marine optics. Elsevier.
    Jimenez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die:cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60:815-828.
    Johnson KS, Chavez FP, Friederich GE (1999) Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398:697-700.
    Johnson KS, Gordon RM, Coale KH (1997):What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137-161.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737-1740.
    Kana TM, Glibert PM (1987) Effects of irradiances up to 2000μE m-2·s-1 on marine Synechococcus WH 7803-I. Growth, pigmentation and cell composition. Deep-Sea Res 34:479-495.
    Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533-538.
    Karl DM (2000) A new source of'new'nitrogen in the sea. Trends Microbiol 8:301.
    Katano T, Kaneda A, Kanzaki N, Obayashi Y, Morimoto A, Onitsuka G, Yasuda H, Mizutani S, Kon Y, Hata Y, Takeoka H, Nakano S (2007) Distribution of prokaryotic picophytoplankton from Seto Inland Sea to the Kuroshio region, with special reference to'Kyucho'events. Aquat Microb Ecol 46:191-201.
    Katoh H, Hagino N, Grossman AR, Ogawa T (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779-2784.
    Keren N, Aurora R, Pakrasi HB (2004) Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666-1673.
    Kerry A, Laudenbach DL, Trick CG (1988) Influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. J Phycol 24:566-571.
    Kim JJ, Jeon YM, Noh JH, Lee MY (2011) Isolation and characterization of a new phycoerythrin from the cyanobacterium Synechococcus sp. ECS-18. J Appl Phycol 23:137-142.
    King DW, Robb AA, Carnecki SE (1993) Photochemical redox cycling of iron in NaCl solutions. Mar Chem 44:105-120.
    Kintake Sonoike (1996) Photoinhibition of Photosystem I:Its Physiological Significance in the Chilling Sensitivity of Plants. Plant Cell Physiol 37:239-247.
    Kirchman DL (1999) Phytoplankton death in the sea. Nature 398:293-294.
    Kirk JTO (1976) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells. New Phytol 77:341-358.
    Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem Ⅱ. Plant physiol 88:923-929.
    Kolber ZS, Barber RT, Coale KH, Fitzwateri SE, Greene RM, Johnson KS, Lindley S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145-148.
    Kolber ZS, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques:defining methodology and experimental protocols. BBA 1367: 88-106.
    Krause, G. H. and Weis, E (1991) Chlorophyll fluorescence and photosynthesis:the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313-49.
    Kropuenske LR, Mills MM, Van Dijken GL, Bailey S, Robinson DH, Welschmeyer NA, Arrigo KR. (2009) Photophysiology in two major Southern Ocean phytoplankton taxa:Photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol Oceanogr 54:1176-196.
    Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525-36.
    Kudela RM, Chavez FP (1996) Bio-optical properties in relation to an algal bloom caused by iron enrichment in the equatorial Pacific. Geophys Res Lett 23:3751-3754.
    Kudo I, Harrison PJ (1997) Effect of iron nutrition on the marine cyanobacterium Synechococcus grown on different N sources and irradiances. J Phycol 33:232-240.
    Kuma K, Isoda Y, Nakabayashi S (2003) Control on dissolved iron concentrations in deep waters in the western North Pacific:Iron(III) hydroxide solubility. J Geophys Res 108(C9):3289.
    Kuma K, Katsumoto A, Kawakami H, Takatori F, Matsunaga K (1998) Spatial variability of Fe(III) hydroxide solubility in the water column of the northern North Pacific Ocean. Deep-Sea Res I 45:91-113.
    Kuma K, Nakabayashi S, Suzuki Y, Kudo I, Matsunaga K (1992) Photo-reduction of Fe(III) by dissolved organic substances and existence of Fe(II) in seawater during spring blooms. Mar Chem 37: 15-27.
    Kuma K, Nishioka J, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnol Oceanogr 41:396-407.
    Kupper H, Setlik I, Seibert S, PraSil O, Setlikova E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I (2008) Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179: 784-798.
    Kursar TA, Swift H, Alberte RS (1981) Morphology of a novel cyanobacterium and characterization of light harvesting complexes from it:Implications for phycobiliprotein evolution. PNAS 78:6888-6892.
    Kustka AB, Sanudo-Wilhelmy SA, Carpenter EJ (2003) Iron requirements for dinitrogen-and ammonium-supported growth in cultures of Trichodesmium (IMS 101):Comparison with nitrogen fixation rates and iron:carbon ratios of field populations. Limnol Oceanogr 48:1869-1884.
    Lam PJ, Bishop JKB, Henning CC, Marcus MA, Waychunas GA, Fung IY (2006) Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochem Cy 20:GB1006.
    Lancelot C, de Montety A, Goosse H, Becquevort S, Schoemann V, Pasquer B, Vancoppenolle M (2009) Spatial distribution of the iron supply to phytoplankton in the Southern Ocean:a model study. Biogeosciences Discuss 6:4919-4962.
    Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Ac 51:29-43.
    Landry MR, Brown SL, Rii YM, Selph KE, Bidigare RR, Yang EJ, Simmons MP (2008) Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy. Deep-Sea Res Ⅱ55:1348-1359.
    Landry MR, Constantinou J, Latasa M, Brown SL, Bidigare RR, Ondrusek ME (2000) Biological response to iron fertilization in the eastern equatorial Pacific (IronEx Ⅱ). Ⅲ.Dynamics of phytoplankton growth and microzooplankton grazing. Mar Ecol Prog Ser 201:57-72.
    Landry MR, et al. (1997) Iron and grazing constraints on primary production in the central equatorial Pacific:An EqPac synthesis. Limnol Oceanogr 42:405-418.
    Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar Ecol Prog Ser 120:53-63.
    Landry MR, Kirshtein J, Constantinou J (1996) Abundances and distributions of Picoplankton pop ulations in the central equatorial Pacific from 12°N to 12°S,140W. Deep-Sea Res Ⅱ43:871-890.
    Lantoine F, Neveux J (1997) Spatial and seasonal variations in abundance and spectral characteristics of phycoerythrins in the tropical northeastern Atlantic Ocean. Deep Sea Res Ⅰ44, 223-246.
    Lantoine F, Neveux J (1999) Phycoerythrins in the sea:Aboundance and spectral diversity. In: Charpy L, et al. (Eds), Marine Cyanobacteria. Institute Oceanographique and ORSTOM, Paris, pp. 443-449.
    Lapointe L, Huner NPA, Carpentier R, Ottander C (1991) Resietance to low temperature photoinhibition is not associated with isolated thylakoid membranes of winter rye. Plant Physiol 97: 804-810.
    Laroche J, Breitbarth E (2005) Importance of the diazotrophs as a source of new nitrogen in the ocean. J Sea Res 53:67-91.
    Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. Strain PCC 7120. J bacteriol 187:6596-6598.
    Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33: 258-78.
    Leist M, Nicotera P (1997) The shape of cell death. Biochem Bioph Res Co 236:1-9.
    Lesser MP (2012) Oxidative stress in tropical marine ecosystems. Oxidative Stress in Aquatic Ecosystems, First Edition. Edited by Abele D, Vazquez-Medina JP, Zenteno-Savin T. Blackwell Publishing Ltd.
    Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton:measurements from flow cytometric sorting. Limnol Oceanogr 39:169-175.
    Li WKW, Dickie PM, Irwin BD, Wood AM (1992) Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in Sargasso Sea. Dee-Sea Res 39:501-519.
    Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids:measurement and characterization by UV-VIS spectroscopy. In Wrolstad RE, Acree TE, An HJ et al. (Eds) Current Protocols in Food Analytical Chemistry. John Wiley and Sons, Inc., New York, pp. F4.3.1-F4.3.8.
    Lindell D, Padan E, Post AF (1998) Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol 180:1878-1886.
    Lindley ST, Bidigare RR, Barber RT (1995) Phytoplankton photosynthesis parameters along 140°W in the equatorial Pacific. Deep-Sea Res 42:441-463.
    Liu H, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39-47.
    Liu X, Millero FJ (1999) The solubility of iron hydroxide in sodium chloride solutions. Geochim Cosmochim Ac 63:3487-3497.
    Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43-54.
    Llabres M, Agusti S (2006) Picophytoplankton cell death induced by UV radiation:Evidence for oceanic Atlantic communities. Limnol Oceanogr 51:21-29.
    Loukos H, Frost B, Harrison DE, Murray JW (1997) An ecosystem model with iron limitation of primary production in the equatorial Pacific at 140°W. Deep-Sea Res 44:2221-2249.
    Lundry MR, Barber RT, Bidgare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing constraints on primary production in the central equatorial Pacific:An EqPac synthesis. Limnol Oceanogr 42: 405-418.
    MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12-17.
    Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53:900-913.
    Maldonado MT, Allen AE, Chong JS, Lin K, Leus D, Karpenko N, Harris SL (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51:1729-1743.
    Maldonado MT, Boyd P, Harrison PJ, Price NM (1999) Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Oean. Deep Sea Res Ⅱ46:475-2485.
    Maldonado MT, Price NM (1996) Influence of N substrate on Fe requirements of marine centric diatoms. Mar Ecol Prog Ser 141:161-172.
    Maldonado MT, Price NM (1999) Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep Sea Res Ⅱ46:2447-2473.
    Maldonado MT, Price NM (1999) Utilization of iron bound to strong organic ligands by phytoplankton communities in the subarctic Pacific Ocean. Deep Sea Res Ⅱ46:2447-2473.
    Maldonado MT, Price NM (2000) Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol Oceanog 45:814-826.
    Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298-309.
    Malone TC (1977) Environmental regulation of phytoplankton productivity in the lower Hudson Bay Estuary. Estuar coast mar Sci 5:157-171.
    Mann EL, Chisholm SW (2000) Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol Oceanogr 45:1067-1076.
    Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microb 63:186-193.
    Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Academic Press, Elsevier, San Diego, California, pp 253-267.
    Marschner H (1995) Mineral nutrition of higher plants,2nd edn. Academic Press, London,889 pp.
    Martin J, Coale KH, et al. (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123-129.
    Martin JH (1990) Glacial interglacial CO2 change:the iron hypothesis. Paleoceanography 5: 12-13.
    Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA Nowick JL, Coley TL, Barber, RT, Lindley S, Watson AJ, Van Coy K, Law CS, Liddicoat MI, Ring R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederick G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hattom A, Liss P, Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123-129.
    Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341-343.
    Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36: 1793-1802.
    Mathis P, Paillotin G (1981) Primary processes of photosynthesis. In Hatch MD, Boardman NK(Eds) The biochemistry of plants, Vol 8. Academic Press, New York, pp.97-161.
    McDonald AE, Vanlerberghe GC (2005) Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349:15-24.
    McKay RM, Ceider RJ, LaRoche J (1997) Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to fe stress. Plant Physiol 114:615-622.
    Michel KP, Berry S, Hifney A, Kruip J, Pistorius EK (2003) Adaptation to iron deficiency:a comparison between the cyanobacterium Synechococcus elongatus PCC 7942 wild-type and a DpsA-free mutant. Photosynth Res 75:71-84.
    Michel KP, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency:the function of IdiA and IsiA. Physiol Plant 120:36-50.
    Michel KP, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency:The function of IdiA and IsiA. Physiol Plantarum 120:36-50.
    Michel KP, Pistorius EK, Golden SS (2001) Unusual regulatory elements for iron deficiency induction of the idiA gene of Synechococcus elongatus PCC 7942. J Bacteriol 183:5015-5024.
    Michel KP, Thole HH, Pistorius EK (1996) IdiA, a 34 kDa protein in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942, is required for growth under iron and manganese limitations. Microbiology 142:2635-2645.
    Miller CB, Frost BW, Wheele PA, Landry MR, Welschmeyer N, Powell TM (1991) Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol Oceanogr 36: 1600-1615.
    Miller WL, King DW, Lin J, Kester DR (1995) Photochemical redox cycling of iron in coastal seawater. Marine Chemistry 50:63-77.
    Millero FJ (1998) Solubility of Fe(III) in seawater. Earth Planet Sci Lett 154:3232-329.
    Milligan AJ, Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 36: 78-86.
    Moffett JW (1995) Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep Sea Res 142:1273-1295.
    Moffett JW, Brand LE (1996) Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol Oceanogr 41:388-395.
    Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217-224.
    Moore CM, Mills MM, Achterberg EP, Geider RJ, LaRoche J, Lucas MI, McDonagh EL, Pan X, Poulton AJ, Rijkenberg MJA, Suggett DJ, Ussher SJ, Malcolm E, Woodward S (2009) Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geosci 2:867-871.
    Moore CM, Mills MM, Milne A, Langlois R, Achterberg EP, Lochte K, Geider RJ, J. La Roche (2006) Iron limits primary productivity during spring bloom development in the central North Atlantic. Glob Change Bio 12:626-634.
    Moore CMark, Seeyave S, Hickman AE, Allen JT, Lucas MI, Planquette H, Pollard RT, Poulton AJ (2007) Iron-light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I:Phytoplankton growth and photophysiology. Deep-Sea Research Ⅱ54:2045-2065.
    Moore JK, Doney SC (2001) Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochem Cy 21:1-12.
    Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989-96.
    Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of co-existing Prochlorococcus ecotypes. Nature 393:464-467.
    Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res 128:1375-1793.
    Morel FMM, Hering JG (1993) Principles and Applications of Aquatic Chemistry (2nd edition) [M]. New York:John Wiley.405-414.
    Morel FMM, Hudson RJ, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742-55.
    Morel FMM, Hudson RJ, Price NM (1991) Trace metal limitation in the sea. Limnol Oceanogr 36:1742-1755.
    Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944-947.
    Morel FMM, Rueter JG, Anderson DM, Guillard RRL (1979) Aquil:a chemically defined phytoplankton culture medium for trace metal studies. J Phycol 15:135-141.
    Muggli DL,Lecourt M, Harrison PJ (1996) Effects of iron and nitrogen-source on the sinking rate, physiology and metal composition of an oceanic diatom from the sub-arctic Pacific. Mar Ecol Prog Ser 132:215-27.
    Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. a response to excess light energy. Plant Physiol 125:1558-1566.
    Mullineaux CW, Allen JF (1990) State 1-state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of the electron carriers between photosystem I and II. Photosynth Res 23:297-311.
    Mullineaux CW, Emlyn-Jones D (2004) State transitions:an example of acclimation to low-light stress. J Exp Bot 56:389-393.
    Mullineaux CW, Emlyn-Jones D (2005) State transitions:an example of acclimation to low-light stress. J Exp Bot 56:389-393.
    Murata N (1969) Control of excitation transfer in photosynthesis. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. BBA 172:242-251.
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. BBA 1767:414-421.
    Murata N, Takahashi S, Nishiyama Y, Suleyman I (2007) Allakhverdiev Photoinhibition of photosystem II under environmental stress. BBA 1767:414-421.
    Murphy LS, Haugen EM (1985) The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol Oceanogr 30:47-58.
    Murphy MJ, Siegel LM, Tove SR, Kamin H (1974) Siroheme:A new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. PNAS 71:612-616.
    Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae:their excretion of iron-selective chelators enables them to dominate other algae. Science 192:900-902.
    Murrell MC, Lores EM (2004) Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary:importance of cyanobacteria. J Plankton Res 26:371-382.
    Nakabayashi S, Kusakabe M, Kuma K, Kudo I (2001) Vertical distributions of iron(III) hydroxide solubility and dissolved iron in the northwestern North Pacific Ocean. Geophys Res Lett 28: 4611-4614.
    Neale PJ, Cullen JJ, Yentsch CAL (1989) Bio-optical inferences from chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry? Limnol Oceanogr 34:1739-1748.
    Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1-7.
    Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BBA 1757:742-749.
    Niyogi KK (1999) Photoprotection revisited:Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333-359.
    Oertal GF, Dunstan WM (1981) Suspended-sediment distrution and certain aspects of phytoplankton production Georgia, USA. Mar Geo 140:171-197.
    Olaizola, M, La Roche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357-370.
    Oliver RL, Whittington J, Lorenz Z, Webster IT (2003) The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis. J Plant Biochem Biot 25:1107-1129.
    Olson RJ, Chisholm SW, Zettler ER, Armbrus EV (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Res 35:425-440.
    Olson RJ, Zettler ER, Armbrust EV, Chisholm SW (1990) Pigment, size and distribution of Synechococcus in the North Atlantic and Pacific oceans. Limnol Oceanogr 35:45-58.
    Ong LJ, Glazer AN, Waterbury JB (1984) An unusual phycoerythrin from a marine cyanobacterium. Science 224:80-83.
    Oquist G (1974a) Iron deficiency in the blue-green alga Anacystis nidulans:changes in pigmentation and photosynthesis. Physiol Plant 30:30-37.
    Oquist G (1974b) Iron deficiency in the blue-green alga Anacystis nidulans:fluorescence and absorption spectra recorded at 77K. Physiol Plant 31:55-58.
    Ozturk M, Croot P L, Bertilsson S, Abrahamsson K, Karlson B, David R, Fransson A, Sakshaug E (2004) Iron enrichment and photoreduction of iron under UV and PAR in the presence of hydroxycarboxylic acid:implications for phytoplankton growth in the Southern Ocean. Deep-Sea Res Ⅱ 51:2841-2856.
    Paerl HW (1991) Ecophysiological and trophic implications of light-stimulated amino acid utilisation in marine picoplankton. Appl Environ Microbiol 57:473-479.
    Paerl HW, Crocker KM, Prufert LE (1987) Limitation of N2 fixation in coastal marine waters relative importance of molybdenum, iron, phosphorus, and organic-matter availability. Limnol Oceanogr 32:525-536.
    Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Miorbiol 67:991-994.
    Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037-1042.
    Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT. (2006) Genome sequence of Synechococcus CC9311:Insights into adaptation to a coastal environment. PNAS 103:13555-13559.
    Pan LA, Zhang LH, Zhang J, Gasol JM, Chao M (2005) On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiol Ecol 52:243-253.
    Pankowski A, McMinn A (2009) Iron availability regulates growth, photosynthesis, and production of ferredoxin and flavodoxin in Antarctic sea ice diatoms. Aquat Biol 4:273-288.
    Park YI, Sandstrom S, Gustafsson P, Oquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation. Mol Microbiol 32:123-129.
    Parker DR, Chaney RL, Norvell WA (1995) Chemical equilibrium models:applications to plant nutrition research. In:Loeppert RH, Schwab AP, Goldberg S (eds) Chemical equilibrium and reaction models. Soil Science Society of America, Madison, WI, pp 163-200.
    Partensky F, Blanchot J, Vaulot D (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters:a review. In Marine Cyanobacteria. No. special 19. Charpy L, Larkum AWD (eds) Monaco:Bulletin de l'Institut oceanographique, pp. 457-475.
    Partensky F, Hess WR, Vaulot D (1999b) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 66:106-127.
    Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341-344.
    Peers G, Quesnel SA, Price NM (2005) Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol Oceanogr 50:1149-1158.
    Pena MA, Varela DE (2007) Seasonal and interannual variability in phytoplankton and nutrient dynamics along Line P in the NE subarctic Pacific. Progr Oceanogr 75:200-222.
    Pennock JR, Sharp JH (1986) Phytoplankton production in the Delaware Estuary:temporal and spatial tial variability. Ecol Prog Ser 34:143-155.
    Perez V, Fernandez E, Maran6n E, Serret P, Varela R, Bode A, Varela M, Varela MM, Moran XAG, Woodward EMS, Kitidis V, Garcia-Soto C (2005) Latitudinal distribution of microbial plankton abundance, production, and respiration in the Equatorial Atlantic in autumn. Deep-Sea Res I 52:861-880.
    Phlips EJ, Lynch TC, Badylak S (1995) Chlorophyll a, tripton, color, and light availability in a shallow tropieal inner-shelf lagoon, Florida Bay, USA.
    Pietsch D, Bernat G, Kahmann U, Staiger D, Pistorius EK, Michel KP (2011) New insights into the function of the iron deficiency-induced protein C from Synechococcus elongatus PCC 7942. Photosynth Res 108:121-132.
    Platt T, Rao DVS, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702-704.
    Pnce NM, Anderson LF, Morel FMM (1991) Iron and nitrogen nutrition of equatorial Pacific plankton. Deep Sea Res 38:1361-1378.
    Pollard RT, Salter I, Sanders RJ, Lucas MI, Moore CK, Mills RA, Statham PJ, Allen JT, Baker AR, Bakker DCE, Charette MA, Fielding S, Fones GR, French M, Hickman AE, Holland RJ, Hughes JA, Jickells TD, Lampitt RS, Morris PJ, Nedelec FH, Nielsd6ttir M, Planquette H, Popova EE, Poulton AJ, Read JF, Seeyave S, Smith T, Stinchcombe M, Taylor S, Thomalla S, Venables HJ, Williamson R, Zubkov MV (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. nature 1457:577-581.
    Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW (2004) Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr 49:1734-1741.
    Price N M, Morel F M M. Biological cycling of iron in the ocean [A]. In:Sigel A, Sigel H (Eds.), Metal ions in biological systems. Vol.35:Iron transport and storage in microorganisms, plants, and animals [C]. New York:Marcel Dekker, Inc..1998,1-36.
    Price NM (2005) The elemental stoichiometry and composition of an iron-limited diatom. Limnol Oceanogr 50:1159-1171.
    Price NM, Andersen LF, Morel FMM (1991) Iron and nitrogen nutrition of equatorial Pacific plankton. Deep Sea Res 38:1361-1378.
    Price NM, Ahner BA, Morel FMM (1994) The equatorial Pacific Ocean:grazer controlled phytoplankton populations in an iron-limited ecosystem. Limnol Oceanogr 39:520-534.
    Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PMV, Palenik B, Morel FMM (1988/89) Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr 6:443-461.
    Price NM, Morel FMM (1998) Biological cycling of iron in the ocean [A]. In:Sigel A, Sigel H (Eds.), Metal ions in biological systems. Vol.35:Iron transport and storage in microorganisms, plants, and animals [C]. New York:Marcel Dekker, Inc..pp 1-36.
    Qiu BS, Price NM (2009) Different responses of four marine Synechococcus strains to nanomolar nickel:the growth, photosynthesis and superoxide dismutase. J Phycol 45:1062-1071.
    Quesnel Sarah-Ann (2009) Effects of Fe limitation on the elemental stoichiometry of marine cyanobacteria. Thesis for the Degree of Masters of Science. McGill University, Quebec, Canada.
    Ragni M, Airs R, Leonardos N, Archer S, Geider RJ (2008) Photoinhibition of PSII in Emiliania huxleyi (Haptophyta) under high light stress:the roles of photoacclimation, photoprotection and photorepair. J Phycol 44:670-683.
    Rakhimberdieva M, Stadnichuk I, Elanskaya I, Karapetyan N (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem Ⅱ-deficient mutant of Synechocystis sp. FEBS Lett 574:85-88.
    Ralph PJ, Durako MJ, Enriquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176-193.
    Ralph PJ, Gademann R, Larkum AWD, Kuhl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol 141:639-646.
    Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881-941.
    Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279-287.
    Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1-18.
    Raven JA (1998) Small is beautiful:the picophytoplankton. Funct Ecol 12:503-513.
    Raven JA (1998) The twelfth Tansley lecture:Small is beautiful:the picophytoplankton. Funct Ecol 12:503-513.
    Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111-49.
    Raven JA, Wollenweber B, Handley LL (1992) A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol 121:19-32.
    Reithman HC, Sherman LA (1988) Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacteriun Anacystis nidulans R2. BBA 935:141-51.
    Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance:an analysis of strategies. New Phytol 93:157-191.
    Richardson TL, Jackson GA (2007) Small phytoplankton and carbon export from the surface ocean. Science 315:838-840.
    Rijkenberg MJA, Fisker AC, Kroon KJ, Gerringa LJA, Timmermans KR, Worltbeek BT, de Baar HJW (2005) The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar Chem 93:119-129.
    Rijkenberg MJA, Gerringa LJA, Carolus VE, Velzeboer I, de Baar HJW (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochim Cosmochim Ac 70:2790-2805.
    Rijkenberg MJA, Gerringa LJA, Neale PJ, Timmermans KR, Buma AGJ, de Baar HJW (2004) UVA variability overrules UVB ozone depletion effects on the photoreduction of iron in the Southern Ocean. Geophys Res Lett 31:L24310.
    Rijkenberg MJA, Loes JA, Timmermans GKR, Fischer AC, Kroon KJ, Buma AGJ, Wolterbeek BT, de Baar HJW (2008) Enhancement of the reactive iron pool by marine diatoms. Mar Chemy 109:29-44.
    Rivers AR, Jakuba RW, Webb EA (2009) Iron stress genes in marine Synechococcus and the development of a flow cytometric iron stress assay. Environ Microbiol 11:382-396.
    Roberts TM, Klotz LC, Loeblich III AA (1977) Characterization of a blue-green algal genome. J Mol Biol 110:341-361.
    Rueter JG, Unsworth NL (1991) Response of marine synechococcus (Cyanophyceae) cultures to iron nutrition. J Phycol 27:173-178.
    Ryther JH, Kramer DD (1961) Relative iron requirement of some coastal and offshore plankton algae. Ecology 42:444-446.
    Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation:Three definitions and the importance of bioavailability. Limnol Oceanogr 53:276-290.
    Saito MA, Moffett JW (2001) Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar Chem 75:49-68.
    Saito MA, Moffett JW (2002) Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochim Cosmochim Ac 66:1943-1953.
    Saito MA, Moffett JW, Chisholm SW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. Limnol Oceanogr 47:1629-1636.
    Saito MA,Rocap G, Moffett JW (2005) Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol Oceanogr 50:279-290.
    Scanlan DJ (2003) Physiological diversity and niche adaptation in marine Synechococcus. Adv Microb Physiol 47:1-64.
    Scanlan DJ, Silman NJ, Donald KM, Wilson WH, Carr NG, Joint I, Mann NH (1997) An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. Appl Environ Microbiol 63:2411-2420.
    Scanlan DJ, West NJ (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40:1-12.
    Schrader PS, Milligan AJ, Behrenfeld MJ (2009) Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium. PLoS ONE 6:e18753.
    Schrader PS, Milligan AJ, Behrenfeld MJ (2011) Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium. PLoS ONE 6:e18753.
    Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In Papageorgiou, G. C. and Govindjee [Eds.] Chlorophyll a fluorescence:a signature of photosynthesis. Springer, Dordecht, The Netherlands, pp.279-319.
    Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. BBA 502:138-51.
    Schreiber U, Bilger W, Hormann H, Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool:basics and some aspects of practical relevance. In Raghavendra, A. S. (Ed) Photosynthesis:A Comprehensive Treatise. Cambridge University Press, Cambridge, UK, pp.320-36.
    Scott M, McCollum C, Vasil'ev S, Crozier C, Espie GS, Krol M, Huner NPA, Bruce D (2006) Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45:8952-8958.
    Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872-882.
    Shcolnick S, Summerfield TC, Reytman L, Sherman LA, Keren N (2009) The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol 150:2045-2056.
    Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:675-679.
    Sidler, WA (1994) In The Molecular Biology of Cyanobacteria (Bryant, DA. ed.), pp 139-216. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    Siegelman HW, Kycia JH (1978) Algal biliproteins. In Hellebust, J. A. and Craigie, J. S. (Eds) Handbook of Phycological Methods:Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp.71-79.
    Singh A, Sherman L (2007) Reflections on the function of IsiA, a cyanobacterial stress-inducible, Chl-binding protein. Photosynth Res 93:17-25.
    Six C, Finkel ZV, Irwin AJ, Campbell DA (2007) Light variability illuminates niche-partitioning among marine picocyanobacteria. PLoS ONE 2:e1341.
    Six C, Thomas JC, Brahamsha B, Lemoine Y, Partensky F (2004) Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat Microb Ecol 35:17-29.
    Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Macintyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion-ultraviolet-radiation and phytoplankton biology in Antarctic waters. Science 255:952-959.
    Soni B, Laetitia H, Cassier-Chauvat C, Chauvat F (2012) Prominent role of the three Synechocystis PchR-like regulators in the defense against metal and oxidative stresses. Open J Biochem 1-1,1-12.
    Sosik, HM, Chisholm, SW, Olson, RJ (1989) Chlorophyll fluorescence from single cells: Interpretation of flow cytometric signals. Limnol Oceanogr 34:1749-1761.
    Spiller S, Terry N (1980) Limiting factors in photosynthesis. Plant Physiol 65:121-125.
    Spiller SC, Castelfranco A, Castelfranco P (1982) Effects of iron and oxygen on chlorophyll biosynthesis. I.In vivo observations of iron and oxygen-deficient plants. Plant Physiol 69:107-111.
    Statham PJ, Hart V (2005) Dissolved iron in the Cretan Sea (eastern Mediterranean). Limnol Oceanogr 50:1142-1148.
    Steglich C, Behrenfled M, Kobliek M, Claustre H, Penno S, Prasil S, Partensky F, Hess WR. (2001) Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus. BBA 1503:341-349.
    Stomp M, Huisman J, Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BM, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107.
    Stomp M, Huisman J, Voros L, Pick FR, Laamanen M, Haverkamp T Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290-298.
    Strzepek RF (2003) Photosynthetic iron requirements of marine diatoms. Ph.D. dissertation, The University of British Columbia, Vancouver,222 pp.
    Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431:689-692.
    Strzepek RF,Maldonado MT, Higgins JL, Hall J, Safi K, Wilhelm SW (2005) Spinning the "Ferrous Wheel":The importance of the microbial community in an iron budget during Fe Cycle experiment. Global Biogeochem Cy.19:GB4S26.
    Strzepek RF, Price NM (2000) Influence of irradiance and temperature on the iron content of the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Mar Ecol Prog Ser 206:107-117.
    Suggett DJ, Macintyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem Ⅱ in phytoplankton. Limnol Oceanogr Methods 2: 316-332.
    Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence:signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1-19.
    Sunda W G, Price N M, Morel F M M (2005) Trace metal ion buffers and their use in culture studies [C]. In:Andersen R A (Ed.), Algal Culturing Techniques [A]. San Diego, California: Academic Press, Elsevier,35-63.
    Sunda WG (2001) Bioavailability and bioaccumulation of iron in the sea:. in Turner DR, Hunter KA, eds., The biogeochemistry of iron in seawater:Chichester, England, John Wiley and Sons, LTD, p.42-42.
    Sunda WG (2010) Iron and the carbon pump. Science 327:654-655.
    Sunda WG, Huntsman SA (1995a) Cobalt and zinc inter-replacement in marine phytoplankton: biological and geochemical implications. Limnol Oceanogr 40:1404-1417.
    Sunda WG, Huntsman SA (1995b) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189-206.
    Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389-392.
    Sunda WG, Price NM, Morel FMM (2005) Trace metal ion buffers and their use in culture studies. In:Andersen RA(ed) Algal culturing techniques. Academic Press, Elsevier, San Diego, California, pp 35-63.
    Sunda WG, Swift DG, Huntsman SA (1991) Low iron requirement for growth in oceanic phytoplankton. Nature 351:55-57.
    Suzuki K, et al. (2002) East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47: 1581-1594.
    Syrett PJ (1981) Nitrogen metabolism in microalgae. In:Platt T(ed) Physiological bases of phytoplankton ecology. Canadian Department of Fisheries and Oceans, Bull 210, Ottawa, Ontario p 182-210.
    Taguchi S, DiTullio GR, Laws EA (1988) Physiological characteristics and production of mixed layer and chlorophyll maximum phytoplankton populations in the Caribbean Sea and western Atlantic Ocean. Deep-Sea Res 35:1363-1377.
    Tai V, Burton RS, Palenik B (2011) Temporal and spatial distributions of marine Synechococcus in the Southern California Bight assessed by hybridization to bead-arrays. Mar Ecol Prog Ser 426: 133-147.
    Tai V, Palenik B (2009) Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 4318:903-915.
    Takeda S, Obata H (1995) Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment. Mar Chem 50:219-227.
    Tani H, Nishioka J, Kuma K, Takata H, Yamashita Y, Tanoue E, Midorikawa T (2003) Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res Ⅰ50:1063-1078.
    Teira E, Mourino B, Maranon E, Perez V, Pazo MJ, Serret P, de Armas D, Escanez J, Woodward EMS, Fernandez E (2005) Variability of chlorophyll and primary production in the eastern North Atlantic Subtropical Gyre:potential factors affecting phytoplankton activity. Deep-Sea Res Ⅰ52: 569-588.
    Thompson PA, Levasseur ME, Harrison PJ (1989) Light-limited growth on ammonium vs. nitrate:what is the advantage for marine phytoplankton? Limnol Oceanogr 34:1014-1024.
    Timmermans KR, Davey MS, van der Wagt B, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA, de Baar HJW (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287-297.
    Timmermans KR, Stolte W, de Baar HJW (1994) Iron mediated effects on nitrate reductase in marine phytoplankton. Mar Biol 121:389-96.
    Timmermans KR, Van Der Wagt B, De Baar HJW (2004) Growth rates, half saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large open-ocean diatoms from the Southern Ocean. Limnol Oceanogr 49:2141-2151.
    Tjus SE, Scheller HV, Andersson B, M(?)ller BL (2001) Active Oxygen Produced during Selective Excitation of Photosystem I Is Damaging Not Only to Photosystem I, But Also to Photosystem Ⅱ. Plant Physiol.125:2007-2015.
    Toledo G, Palenik B (1997) Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63:4298-4303.
    Toledo G, Palenik B (2003) A Synechococcus serotype is found preferentially in surface marine waters. Limnol Oceanogr 48:1744-1755.
    Toledo, G, Palenik B, Brahamsha, B (1999) Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group. Appl Environ Microbiol 65:5247-5251.
    Tolle J, Michel KP, Kruip J, Kahmann U, Preisfeld A, Pistorius EK (2002) Localization and function of the IdiA homologue Slr1295 in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 148:3293-3305.
    Tomo T, Akimoto S, Ito H, Tsuchiya T, Fukuya M, Tanaka A, Mimuro M (2009) Replacement of chlorophyll with divinyl chlorophyll in the antenna and reaction centre complexes of the cyanobacterium Synechocystis sp. PCC 6803:characterisation of spectral and photochemical properties. BBA 1787:191-200.
    Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1-11.
    Trick CG, Kerry A (1992) Isolation and purification of siderophores produced by cyanobacteria, Synechococcus (Anacystis nidulans R2) sp. and Anabaena uariabilis. Curr Microbial 24:241-245.
    Tsuda A, Takeda S, Saito H, Nishioka J, Kudo I, Nojiri Y, Suzuki K, Uematsu M, Wells ML, TsumunE D, Yoshimura T, Aono T, Aramaki T, Cochlan WP, Hayakawa M, Imai K, Isada T, IWamoto Y, Johnson WK (2007) Evidence for the Grazing Hypothesis:Grazing Reduces Phytoplankton Responses of the HNLC Ecosystem to Iron Enrichment in the Western Subarctic Pacific (SEEDS II) J Oceanogr 63:983-994.
    Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Yoshiki S, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300:958-961.
    Tuit C, Waterbury J, Ravizza G (2004) Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol Oceanogr 49:978-990.
    Tyrell T, Law CS (1997) Low nitrate:phosphate ratios in the global ocean. Nature 387:793-796.
    Tyystjarvi E (2008) Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coordin Chem Rev 252 361-376.
    Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188-201.
    Uysal Z (2006) Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, armara, Aegean, and eastern Mediterranean seas. Deep-Sea Res Ⅱ53:1976-1987.
    Van de Poll MA, Van Leeuwe JR, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840-850.
    Van de Poll MA, Van Leeuwe JR, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840-850.
    van de Poll WH, Alderkamp AC, Janknegt PJ, Roggeveld J, Buma AGJ (2006) Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and Antarctic marine diatom. Limnol Oceanogr 51:1239-1248.
    van de Poll WH, Janknegt PJ, van Leeuwe MA, Visser RJW, Buma AGJ (2009) Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance. J Photoch Photobio B 94:32-37.
    Van de Poll WH, Van Leeuwe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840-850.
    van de Poll WH, Visser RJW, Buma AGJ (2007) Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnol Oceanogr 52:1430-1438.
    Van Leeuwe MA, Stefels J (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J Phycol 34: 496-503.
    Van Leeuwe MA, Stefels J (2007) Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions. Biogeochem 83:61-70.
    van Leeuwe MA, van Sikkelerus B, Gieskes WWC, Stefels J (2005) Taxon-specific differences in photoacclimation to fluctuating irradiances in an Antarctic diatom and a green flagellate. Mar Ecol Prog Ser 288:9-19.
    Van Oijen T, van Leeuwe MA, Gieskes WCC, de Baar HJW (2005) Effects of iron limitation and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Eur J Phycol 39161-171.
    Vassiliev IR, Kolber Z, Wyman KD, Mauzerall D, Shukla VK, Falkowski PG (1995) Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. Plant Physiol 109:963-972.
    Vaulot D, Olson RJ, Merkel SM, Chisholm SW (1987) Cell cycle response to nutrient starvation in two marine phytoplankton species. Mar Biol 95:625-630
    Vaulot, D (1995) The cell cycle of phytoplankton:coupling cell growth to population growth, p. 303-322. In I. Joint (ed.), NATO ASI series, G 38. Molecular ecology of aquatic microbes. Springer-Verlag, Berlin.
    Veldhuis M, de Baar HJW (2005) Iron resources and oceanic nutrients:advancement of global environment simulations. J Sea Res 53:1-6.
    Veldhuis MJW, Kraay GW (2004) Phytoplankton in subtropical Atlantic ocean:Towards a better assessment of biomass and composition. Deep-Sea Res 151:507-530.
    Veldhuis MJW, Kraay GW, van Bleijswijk JDL, Baars MA (1997) Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian ocean:the southwest and northeast monsoon.1992-1993. Deep-Sea Res 144:425-449.
    Voelker BM, Sedlak DL (1995) Iron reduction by photoproduced superoxide in seawater. Mar Chem 50:93-102.
    Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst:a comparison study of fluorescent probes. J Immunol Methods 178: 89-97.
    Waite TD (2001) Thermodynamics of the iron system in seawater. In:Turner, DR, and Hunter KA (Eds.), The Biogeochemistry of Iron in Seawater, Wiley, New York,291-342.
    Wang Q, Hall CL, Al-Adami MZ, He Q (2010) IsiA Is Required for the Formation of Photosystem I Supercomplexes and for Efficient State Transition in Synechocystis PCC 6803. PLoS ONE 5:e10432.
    Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181-1191.
    Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In:Photosynthetic picoplankton, Platt T and Li WKW, editors, Canadian Bulletin of Fisheries and Aquatic Sciences,214, 583 pp.
    Waterbury JB, Rippka R (1989) Subsection 1. Order Croococcales Wettsten 1924, emend. Rippka et al.,1979. In Bergey's Manual of Systematic Bacteriology vol 3. (J.T. Staley, M.P. Bryant, N. Pfenning and J.G. Holt, eds), pp 1728-1746. Williams and Wilkins, Baltimore.
    Waterbury JB, Watson SW, Guillard RR, Brand LE (1979) Widespread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature 277:293-294.
    Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterizations of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71-120.
    Watson A, Liss P, Duce R (1991) Design of a small scale in situ iron fertilization experiment. Limnol Oceanogr 36:1960-1965.
    Webb EA, Moffett JW, Waterbury JB (2001) Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.):identification of the IdiA protein. Appl Environ Microbiol 67:5444-5452.
    Weger HG, Middlemiss JK, Petterson CD (2002) Ferric chelate reductase activity as affected by the iron-limited growth rate in four species of unicellular green algae (chlorophyta). J Phycol 38: 513-519.
    Wells ML, Price NM, Bruland KW (1994) Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481-1486.
    Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton:a workshop report. Mar Chem 48:157-182.
    Wells, ML (1989) The availability of iron in seawater:A perspective. Biol Oceanogr 6:463-476.
    Wells, ML, Mayer LM, Donard OFX, et al. (1991) The photolysis of colloidal iron in the oceans. Nature 353:248-250.
    Westall JC, Zachary JL, Morel FMM (1976) MINEQL:A compact program for computation of chemical equilibria in aquatic systems. Technical Note 18, Parsons R M Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA.
    Wetz MS, Hales B, Chase Z, Wheeler PA, Whitney MM (2006) Riverine input of macronutrients, iron, and organic matter to the coastal ocean off Oregon, U.S.A., during the winter. Limnol Oceanogr 51:2221-2231.
    Wheeler PA, Kokkinakis SA (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr 35:1267-1278.
    Wilhelm SW, MacAuley K, Trick CG (1998) Evidence for the importance of catechol-type siderophores in the iron-limited growth of a cyanobacterium. Lmnol Oceanogr 43:992-997.
    Wilhelm SW, Maxwell DP, Trick CG (1996) Growth, iron requirements, and siderophore production in iron-limited Synechococcus PCC 7002. Limnol Oceanogr 41:89-97.
    Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria:multiple siderophore production is a common response. Limnol Oceanogr 39:1979-1984.
    Wilhelm SW, Trick CG (1995) Physiological profiles of Synechococcus (cyanophyceae) in iron-limiting continuous cultures. J Phycol 31:79-85.
    Willey JM, Waterbury JB (1989) Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl Environ Microbiol 55:1888-1894.
    Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. The Plant Cell 18:992-1007.
    Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria:roles of OCP and IsiA proteins. Plant Cell 19:656-672.
    Wilson WH, Carr NG, Mann NH (1996) The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp.WH 7803. J Phycol 32: 506-516.
    Wood AM (1982) Occurrence and ecological significance of different pigment types of marine Synechococcus. Eos 63:960.
    Wood AM (1988) Molecular biology, single cell analysis, and quantitative genetics:New evolutionary approaches in phytoplankton ecology. In Yentsch CM, Mague FC, Horan PK[Eds.] Immunochemical approaches to coastal, estuarine, oceanographic questions. Springer-Verlag, New York, pp.41-71.
    Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In Andersen RA, ed, Algal Culturing Techniques. Academic Press, Elsevier, San Diego, California, pp 269-285.
    Wood AM, Horan PK, Muirhead K, Phinney DA, Yentsch CM, Waterbury JB (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnol Oceanogr 30:1303-1315.
    Wood AM, Leatham T (1992) The species concept in phytoplankton ecology. J Phycol 28: 723-29.
    Wood AM, Townsend D (1990) DNA polymorphism within the WH7803 serogroup of marine Synechococcus spp. (cyanobacteria). J Phycol 26:576-585.
    Xing W, Huang WM, Li DH, Liu YD (2007) Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii. Curr Microbio 55:94-98.
    Yamane Y, Shikanai T, Kashino Y, Koike H, Satoh K (2000) Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth Res 63: 23-34.
    Yamane, Y., Kashino Y., Koike, H. and Satoh, K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57-64.
    Zahit Uysal (2006) Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas. Deep-Sea Res Ⅱ53:1976-1987.
    Zettler ER, Olson RJ, Binder BJ, Chisholm SW, Fitzwaters SE, Gordons RM (1996) Iron-enrichment bottle experiments in the equatorial Pacific:responses of individual phytoplankton cells. Deep-sea Res Ⅱ43:1017-1029.
    Zhang M, Kong FX, Wu XD, Xing P (2008) Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing. Hydrobiologia 603:267-278.
    Zhuang G, Duce RA, Kester DR (1990) The dissolution of atmospheric iron in surface seawater of the open ocean. J Geophys Res 95:16207-16216.
    Zumft WG, Spiller H (1971) Characterization of a flavodoxin from the green alga Chlorella. Biochem Bioph Res Co 45:112-118.
    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700