甘油生物转化为1,3-丙二醇过程的代谢通量分析与动态模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物炼制或白色生物技术近几年受石油价格不断攀升的影响而越发受到人们的关注,作为可再生的石油替代品,生物柴油的产量近两年增长迅猛。而生物柴油副产10%的甘油,以甘油为原料生产高附加值的产品成为生物柴油行业的迫切愿望,其中用生物法将甘油转化为1,3-丙二醇是最受人们关注的方法之一。本文对克雷伯氏杆菌转化甘油为1,3-丙二醇的代谢网络进行了通量分析,并建立了基于代谢网络的动力学模型,对生物转化过程的动态行为进行了模拟,主要研究内容如下:
     首先,对简化的克雷伯氏杆菌代谢网络进行了代谢通量平衡分析与优化。依据甘油生物歧化为1,3-丙二醇的简化代谢网络建立了通量平衡方程,以1,3-丙二醇通量最大为目标,通过线性规划对其进行了优化分析,得到最优代谢通量分布和目标产物的最大理论得率,并分析了比生长速率、氧气消耗速率、呼吸商对1,3-丙二醇得率的影响以及各通量对1,3-丙二醇得率的限制潜能。在此基础上,利用通量平衡分析方法对连续厌氧发酵实验数据进行甘油代谢系统目标函数的识别,发现其目标函数对不同操作条件基本保持不变。细胞生长通量在目标函数中的权重系数最大,是驱动代谢的主要动力,其次是1,3-丙二醇和2,3-丁二醇通量。通过对不同目标函数下得到的通量值与实验值进行比较,发现本目标函数得到的通量值与实验值最为接近,验证了该目标函数的合理性。
     其次,对扩展的克雷伯氏杆菌厌氧发酵甘油代谢网络进行了代谢通量分析。利用不同操作条件下的甘油厌氧代谢的稳态数据得到胞内代谢通量分布,分析了不同操作条件对胞内通量的影响以及代谢网络中的分支点的鲁棒性。结果表明当初始甘油浓度低时,生物量随着NADH_2与NAD~+之比的降低而增加,当甘油初始浓度高时二者变化却相反。胞内通量分布表明网络中甘油和二羟丙酮节点对不同操作条件的变化显示刚性,而丙酮酸和乙酰辅酶A节点则显示柔性,是调节细胞代谢的关键分支点。另外,在高甘油消耗速率下,乙醇途径和丙酮酸脱氢酶途径随着甘油消耗速率的变化波动比较明显。
     再次,对甘油兼性生物歧化代谢网络进行了基元通量分析。将氧气传感调控系统加入甘油代谢网络,运用基元模式分析了厌氧和有氧条件下甘油生物转化过程中各途径的通量分布、灵敏性和1,3-丙二醇的生产潜能。结果发现,厌氧条件下,1,3-丙二醇最大理论得率为0.844 mol/mol,此时磷酸戊糖途径和转氢酶途径是提供1,3-丙二醇生产所需NADH_2的主要途径。有氧条件下1,3-丙二醇最大理论得率为0.875 mol/mol,此时磷酸戊糖途径或三羧酸循环对提高1,3-丙二醇的得率具有重要作用。另外,分析了不同氧气水平对1,3-丙二醇和生物量产率的影响。
     最后,对甘油生物转化为1,3-丙二醇的动态过程进行了模拟。依据甘油代谢网络,确定了胞内代谢的基元模式,在此基础上建立了宏观反应和微观代谢的综合模型。采用经典细胞生长模型描述各基元宏观反应动力学时,根据实测的胞外代谢物流量和生物量情况识别的动力学模型能够较好地反映甘油厌氧间歇发酵的指数生长期。采用神经网络与第一工程原理结合的基于基元模式的混杂模型既能模拟甘油生物转化为1,3-丙二醇的间歇过程,又能模拟批式流加动态过程,而且还能够模拟连续振荡动态过程。由测量数据识别出的代谢网络中各基元模式动力学得到的甘油消耗速率计算值与实验值吻合较好。
     上述研究工作对深入理解克雷伯氏杆菌的甘油代谢途径、菌种的基因工程改造以及甘油生物转化为1,3-丙二醇过程的在线控制具有重要的参考价值和指导作用。
Bio-refinery or white-biotechnology has been paid much attention due to the high price of petroleum.As an alternative fuel,biodiesel is increasedly produced and 10 percent of glycerol is accompanied as a by-product.Much attention has been paid on the bioconversion of glycerol into a high valuable chemical such as 1,3-propanediol(1,3-PD).In this paper,the process of glycerol bioconversion into 1,3-PD in Klebsiella pneumoniae was analyzed by metabolic flux analysis,and the dynamic process was simulated by a hybrid model based on metabolic elementary modes.The main work of this paper was summarized as followed:
     Firstly,simplifed metabolic network was constructed according to the glycerol metabolism in K.pneumoniae.A model of metabolic flux balance was developed for 1,3-PD production by K.pneumoniae under anaerobic and microaerobic conditions based on the metabolic network.The maximum theoretical yield of 1,3-PD to glycerol and the optimal flux distributions were obtained by flux balance analysis(FBA) with the maximum flux of 1,3-PD as the objective function.Furthermore,the influences of the specific growth rates,the molar fraction of NADH_2 oxidized by molecular oxygen in TCA(tricarboxylic acid ) cycle and the respiratory quotient(RQ) on the maximum theoretical yield of 1,3-PD to glycerol were analyzed.The limitation potential of various fluxes,such as ethanol,acetic,lactic,H_2, 2,3-butanediol,for the maximum theoretical yield of 1,3-PD were calculated.Additionally, the objective function driving the cellular metabolism was identified by a nonlinear bilevel programming(NBP) model.The results showed that the almost same objective functions in term of different experimental data were obtained and the important coefficient of biomass growth flux which was the main power of driving the cellular metabolism was the largest in the fitness function and then was 1,3-PD and 2,3-butaniol in turn.
     Secondly,the metabolic network of glycerol metabolism in K.pneumoniae under anaerobic conditions was improved and extended according to the KEGG database and related references.The measured fluxes obtained under steady-state conditions were used to estimate intracellular fluxes and identify the robustness of branch points of the anaerobic glycerol metabolism in K.pneumoniae for the production of 1,3-PD by metabolic flux analysis(MFA). The biomass concentration increased as NADH_2/NAD~+ decreased at low initial glycerol concentrations but inversed at high initial glycerol concentrations.The absolute flux distribution revealed that the branch points of glycerol and dihydroxyacetonephosphate (DHAP) were rigid to the environmental conditions.However,the pyruvate and acetyl coenzyme A(ACCOA) metabolisms gave cells the flexibility to regulate the energy and intermediate fluxes under various environmental conditions.Additionally,it was found that the fluxes of ethanol and pyruvate formate lyase(PFL) appeared visible fluctuations at high glycerol uptake rates.
     Thirdly,a model that utilized existing knowledge of oxygen and redox sensing/regulatory system to assist elementary flux modes(EFMs),was developed and was carried out to predict the metabolic potential of K.pneumoniae for the production of 1,3-propanediol(1,3-PD) under anaerobic and aerobic conditions.It was found that the theoretical optimal 1,3-PD yield could reach to 0.844 mol mol~(-1) if the pentose phosphate pathway(PPP) and transhydrogenase had a high flux under anaerobic conditions.However,PPP had little influence on the theoretical 1,3-PD yield and the flux through tricarboxylic acid(TCA) cycle was high under aerobic conditions.Both conditions exhibited a different distribution of NADH_2 supplied during maximum 1,3-PD production.Under anaerobic conditions,66.67%of NADH_2 was generated via the PPP.Whereas,NADH2 supply relied on the TCA-cycle in addition to the PPP under aerobic conditions.Additionally,the effect of oxygen level on the 1,3-PD and biomass was further analyzed.
     Finally,on the basis of glycerol metabolic network in K.penumoniae,the elementary flux modes were computed and translated into a set of macro-reactions connecting the extracellular substrates and products.A model combining macroscopical with microcosmic metabolic network was developed.As the elementary macroscopical dynamics were described by a classical dynamic model under balanced growth conditions,the model was suitable for describing the dynamic process during the exponential growth phase in batch fermentations. As the elementary macroscopical dynamics were described by a bioreactor dynamical hybrid model which combined first principles modeling with artificial neural networks(ANNs),the results showed that the model could describe the dynamic processes of batch,fed-batch and oscillation simultaneously.This approach allowed the quantification of fluxes carried by individual elementary modes which was of great help to understand the dynamics properties.
引文
[1] Hermann BG, Patel M. Today' s and tomorrow' s bio-based bulk chemicals from white biotechnology: A techno-economic analysis. Applied Biochemistry and Biotechnology, 2007, 136(3):361-388.
    [2] Yazdani S S, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 2007, 18(3):213~219.
    [3] Kurian J V. A new polymer platform for the future-Sorona from corn derived 1,3-propanediol. Journal of Polymers and the Environment 2005, 13(2):159-167.
    [4] Nakamura C E, Whited G M. Metabolic engineering for the microbial production of 1,3-propanediol. Current Opinion in Biotechnology, 2003, 14(5):454-459.
    [5] Laffend L A, Nagarajan V, Nakamura C E. Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism, United States Patent Application, 20070048849A1. 2007.
    [6] Zeng A P, Biebl H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in biochemical engineering/biotechnology, 2002, 74:239-259
    [7] Zeng A P, Biebl H, deckwer W D. Microbial conversion of glycerol to 1, 3-propanediol: recent progress. ACS Symposium Series, 1997, 666:264-279.
    [8] Dale B E, Biobased industrial products- bioprocess engineering when cost really counts, Biotechnology Progress, 1999, 15(5):775-776.
    [9] Wang F S, Cheng W M, Simultaneous optimization of feeding rate and operation parameters for Fed-Batch fermentation processes, Biotechnology Progress, 1999, 15(5): 949-952.
    [10] Kookos I K. Optimization of Batch and Fed-Batch bioreactors using simulated annealing. Biotechnology Progress, 2004, 20(4):1285-1288.
    
    [11] Zhang S L, Chu J, Zhuang Y P. A multi-scale study of industrial fermentation processes and their optimization. Advances in biochemical engineering/biotechnology, 2004, 87:97-150.
    
    [12] Goudar C, Biener R, Zhang C et al. Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture. Advances in biochemical engineering/biotechnology, 2006, 101:99-118.
    [13] Provost A, Bastin G, Agathos S N et al. Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess and Biosystems Engineering, 2006, 29(5-6):349-366.
    [14] Teixeira A P, Carinhas N, Dias J M L et al. Hybrid semi-parametric mathematical systems:Bridging the gap between systems biology and process engineering. Journal of Biotechnology, 2007, 132:418-425.
    [15]Teixeira A P,Alves C,Alves P M et al.Hybrid elementary flux analysis/nonparametric modeling:application for bioprocess control.BMC Bioinformatics.2007,8:30.
    [16]黄志华,杜晨宇,张延平等.1,3-丙二醇合成工艺的研究进展.三明学院学报.2006,23(2):177-181.
    [17]Streekstra H,Teixeira de Mattos M J,Neijaxl O M et al.Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC418 on glycerol and dihydroxyacetone in chemostat culture.Archives of Microbiology,1987,147(3):268-275.
    [18]Barbirato F,Camarasca-Claret C,Grivet J P et al.Glycerol fermentation by a new 1,3-propanediol-producing microorganism:Enterobacter agglomerans.Applied Microbiology and Biotechnology,1995,43(5):786-793.
    [19]Homann T,Tag C,Biebl H et al.Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobscter strains.Applied Microbiology and Biotechnology,1990,33(2):121-126.
    [20]苑广志,田晶,徐龙权等.曲霉发酵甘油生产1,3-丙二醇的研究.食品与发酵工业,2006,32(1):49-52.
    [21]Biebl H,Menzel K,Zeng A.P et al.Microbial production of 1,3-propanediol.Applied Microbiology and Biotechnology,1999,52(3):289-297.
    [22]Chen X,Xiu Z L,Wang J F et al.Stoichiometrc analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions.Enzyme and Microbial Technology,2003,33:386-394
    [23]Cheng K K,Liu D H,Sun Y et al.1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies.Biotechnology Letter,2004,26(11):911-915.
    [24]Forage R G,Lin E C C.dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumonise NCIB418.Journal of Bacteriology,1982,151(2):591-599.
    [25]Johnson E A,Burke S K,Forage R G et al.Purification and properties of dihydroxyacetone kinase from Klebsiella pneumoniae.Journal of Bacteriology,1984,160(1):55-60.
    [26]Sawers G.The aerobic/anaerobic interface.Current Opinion in Microbiology,1999,2(2):181-187.
    [27]Guest J,Green J,Irvine A et al.The FNR modulon and FNR-regulated gene expression.In:Lin E C C,Lynch A S,Ed.Regulation of Gene Expression in Escherichia coli.Austin Texas:RG Landes Company,1996:317-342.
    [28]Luchi S,Lin E C C.Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes.In:Hoch J A,Sihavy T J,Ed.Two-component signal transduction.Washington,DC:American Society for Microbiology,1995:223-231.
    [29]Khoroshilova N,Popescu C,Munck E et al.Iron-sulphur cluster disassembly in the FNR protein of Escherichia coli by 02:[4Fe-4S]conversion with loss of biological activity.Proceedings of the National Academy of Sciences of the United States of America,1997,94(12):6087-6092.
    [30]Salmon K,Hung S P,Mekjian K et al.Global gene expression profiling in Escherichia coli K12.The effects of oxygen availability and FNR.Journal of Biological Chemistry,2003,278(32):29837-29855.
    [31]Zhu J,Shalel-Levanon S,Bennett G,San KY.Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments.Metabolic Engineering,2006,8(6):619-627.
    [32]Grabbe R,Kuhn A,Schmitz R A.Cloning,sequencing and characterization of Fnr from Klebsiella pneumoniae.Antonie van Leeuwenhoek,2001,79(3-4):319-26.
    [33]Grabbe R,Klopprogge K,Schmitz R A.FNR Is required for NifL-dependent oxygen control of nif gene expression in Klebsiella pneumoniae.Journal of Bacteriology,2001,183(4):1385-1393.
    [34]Schmitz R A,Klopprogge K,Grabbe R.Regulation of nitrogen fixation in klebsiella pneumoniae and Azotobacter vinelandii:Nif1,transducing two environmental signals to the nif transcriptional activator NifA.Journal of Molecular Microbiology and Biotechnology,2002,4(3):235-242.
    [35]俞俊棠,唐孝宣.生物工艺学.上海:华东化工学院出版社,1991.
    [36]Monod J.The growth of bacterial cultures.Annual Review Microbiology,1949,3:371-394.
    [37]Luedeking R,Piret E L.A kinetic study of the lactic acid fermentation.Journal of Biochemical and Micobiological Technology and Engineering,1959,1(4):393-412.
    [38]戚以政,夏杰.生物反应工程.北京:化学工业出版社,2004.
    [39]Tsuchiya H M,Fredrickson A G,Aris R.Dynamics of microbial cell populations.Advances in Chemical Engineering,1966,6(6):125-206.
    [40]Fredrickson A,Megee R D,Tsuchiya H M.Mathematical models for fermentation processes.Advances in Applied Microbiology,1970,3:419-465.
    [41]Dhurjati P,Ramkrishna D,Flickinger M C,Tsao G T.A Cybernetic view of Microbial growth:Modeling cells as optimal strategists.Biotechnology and Bioengineering,1985,27(1):1-9.
    [42]Kompala D S,Ramkrishna D,Tsao G T.Cybernetic modelling of microbial growth on multiple substrates.Biotechnology and Bioengineering,1984,26(11):1272-1281.
    [43]Cameron D C,Chaplen F W R.Developments in metabolic engineering.Current Opinion in Biotechnology,1997,8(2):175-180..
    [44]Stephanopoulos G,Vallino J J.Network rigidity and metabolic engineering in metabolite overproduction.Science,1991,252(5013):1675-1681.
    [45]Bailey J E.Mathematical modeling and analysis in biochemical engineering:Past accomplishments and future opportunities.Biotechnology Progress 1998,14(1):8-20.
    [46]Granstrom T,Aristidou A A,Leisola M.Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat.Metabolic Engineering,2002,4(3):248-256.
    [47] Zhao J, Shimizu K. Metabolic flux analysis of Escherichia coli K12 grown on ~(13)Clabeled acetate and glucose using GC-MS and powerful flux calculation method. Journal of Biotechnology, 2003, 101(2):101-117.
    [48] Psichogios D C, Ungar L H. A hybrid neural network-first principles approach to process modeling. AIChE Journal, 1992, 38(10):1499-1511.
    [49] Montague G, Morris J. Neural network contribution in biotechnology. Trends in Biotechnology, 1994, 12(8):312-324.
    [50] Preusting H, Noordover J, Simutis R et al. The use of hybrid modelling for the optimization of the penicillin fermentation process. Chimia 1996, 50(9):416-417.
    [51] Feyo de Azevedo S, Dahm B, Oliveira F R. Hybrid modelling of biochemical processes: a comparison with the conventional approach. Compututers and Chemical Engineering, 1997, 21 (Suppl.1)751-756.
    [52] Simutis R, Oliveira R, Manikowski M et al. How to increase the performance of models for process optimization and control. Journal of Biotechnology, 1997, 59(1-2):73-89.
    [53] van Can H J, te Braake H A B, Bijman A et al. An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances. Part II. Biotechnology and Bioengineering, 1999, 62(6):666-680.
    [54] Thompson M L, Kramer M A. Modeling chemical processes using prior knowledge and neural networks. AIChE Journal, 1994, 40(8):1328-1338.
    [55] Braake H A, van Can H J, Verbruggen H B. Semi-mechanistic modeling of chemical processes with neural networks. Engineering Applications of Artificial Intelligence, 1998, 11(4):507-515.
    [56] Chen L, Bernard O, Bastin G et al. Hybrid modelling of biotechnological processes using neural networks. Control Engineering Practice, 2000, 8(7):821-827.
    [57] Eikens B, Karim M N. Process identification with multiple neural network models. International Journal of Control, 1999, 72(7):576-590.
    [58] Baffi G, Martin E, Morris A. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Computers and Chemical Engineering, 1999, 23(3):395-411.
    [59] Schubert J, Simutis R, Doors M et al. Hybrid modelling of yeast production processes-combination of a priori knowledge on different levels of sophistication. Chemical Engineering and Technology, 1994, 17(1):10-20.
    [60] Teixeira A, Cunha A E, Clemente J J et al. Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems. Journal of Biotechnology, 2005, 118(3): 290-303.
    [61] Wu Z Y, Shi X M. Optimization for high density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology, 2007, 44(1): 13-18.
    [62]Oliveira R.Combining first principles modeling and artificial neural networks:a general framework.Computers and Chemical Engineering,2004,28(5):755-766.
    [63]Zeng A P,Rose A,Biebl H et al.Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation.Biotechnology and Bioengineering,1994,44(8):902-911.
    [64]Zeng A P.A kinetic model for product formation of microbial and mammalian cells.Biotechnology and Bioengineering,1995,46(4):314-324.
    [65]Zeng A P,Deckwer W D.A kinetic model for substrateand energy consumption of microbial growth under substrate-sufficient conditions.Biotechnology Progress,1995,11(1):71-79.
    [66]孙丽华,郭庆广,修志龙.一类具有时滞的生化模型的Hopf分叉研究.生物数学学报,2002,17(3):286-292.
    [67]修志龙,曾安平,安利佳.甘油生物连续歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14(1):53-58.
    [68]马永峰.微生物连续培养模型中非线性行为的分析与模拟:(博士学位论文).大连:大连理工大学,2004.
    [69]Sun Y Q,Qi W T,Teng H et al.Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane.Biochemical engineering Journal,2008,38(1):22-32.
    [70]Bailey J E.Towards a science of metabolic engineering.Science,1991,252:6682-6741.
    [71]Gombert A K,Nielsen J.Mathematical modeling of metabolism.Current Opinion in Biotechnol,2000,11(2):180-186.
    [72]Varner J,Ramkrishna D.Mathematical models of metabolic pathways.Current Opinion in Biotechnol,1999,10(2):146-150.
    [73]Liao J C,Delgado J.Advances in metabolic control analysis.Biotechnology Progress,1993,9(3):221-233.
    [74]Fell D A.Metabolic control analysis:a survey of its theoretical and experimental development.Biochemical Journal,1992,286(2):313-330.
    [75]Torres N V,Voit E O,Alcon C G.Optimization of nonlinear biotechnological processes with linear programming:application to citric acid production by A.niger,Biotechnology and Bioengineering,1996,49(3):247-258.
    [76]Nestor V Torres,Eberhard O Voit.代谢工程的途径分析与优化.修志龙,滕虎译.北京:化学工业出版社,2005.
    [77]Simpson T W,Shimizu H,Stephanopoulos G.Experimental determination of group flux control coefficients in metabolic networks.Biotechnology and Bioengineering,1998,58(2):149-154.
    [78]Brand M D.Top down metabolic control analysis.Journal of Theoretical Biology,1996,182(3):351-360.
    [79]Hatzimanikatis V,Emmerling M,Sauer U.Application of mathematical tools for metabolic design of microbial ethanol production.Biotechnology and Bioengineering,1998,58(2):154-161.
    [80]Hatzimanikatis V,Floudas C A,Bailey J E.Optimizaiton of regulatory architectures in metabolic reaction networks.Biotechnology and Bioengineering,1996,52(4):485-500.
    [81]Gombert A K,Nielsen J.Mathematical modelling of metabolism.Current Opinion in Biotechnology,2000,11(2):180-186.
    [82]Edwards J S,Covert M,Palsson B O.Metabolic modelling of microbes:the flux-balance approach.Environmental Microbiology,2002,4(3):133-140.
    [83]Price N D,Papin J A,Schilling C H et al.Genome-scale microbial in silico models:the constraints-based approach.Trends in Biotechnology,2003,21(4):162-169.
    [84]Stephanopoulos G.Metabolic fluxes and metabolic engineering.Metabolic Engineering,1999,1(1):1-11.
    [85]Varma A,Palsson B O.Metabolic Flux Balancing:Basic concepts,Scientific and Practical Use.Bio/Technology 1994,12(10):994-998.
    [86]Stephanopoulos G N,Aristidou A A,Nielsen J.代谢工程-原理与方法.赵学明,白冬梅译.北京:化学工业出版社,2003.
    [87]Jorgensen H,Nielsen J,Villadsen Jet al.Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations.Biotechnology and Bioengineering,1995,46(2):117-131.
    [88]Henriksen C M,Christensen L H,Nielsen J et al.Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum.Journal of Biotechnology,1996,45(2):149-164.
    [89]Sissen T L,Schulze U,Nielsen J et al.Flux distributions in anaerobic,glucose-limited continuous cultures of Saccharomyces cerevisiae.Microbiology,1997,143(1):203-218.
    [90]赵学明,马红武,唐寅杰.应用代谢通量法分析黄原胶发酵实验数据.高校化学工程学报,1997,11(4):394-399.
    [91]高嵩,欧阳平凯.1,6-二磷酸果糖合成中细胞代谢的流量分配及调节机理初探.南京化工大学学报,1999,21(6):54-59.
    [92]马红武,赵学明,郭晓峰等.结合元素组成数据进行细胞生长过程代谢通量分析.化工学报,2002,53(8):847-852.
    [93]何宁,李寅,陈坚.新型生物絮凝剂REA-11的代谢模型建立与代谢网络分析.化工学报,2005.56(4):681-688.
    [94]Wiechert W,de Graaf A A.In vivo stationary flux analysis by ~(13)C labeling experiments.Advances in biochemical engineering/biotechnology,1996,54:109-154.
    [95] Pramanik J, Keasling J D. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass. Biotechnology and Bioengineering, 1997, 56(4): 398-421.
    [96] Bonarius H P J, Schmid G, Tramper J. Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends in Biotechnology, 1997, 15(8):308-314.
    [97] Edwards J S, Palsson B O. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics, 2000, 1(1):1.
    [98] Edwards J S, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnology, 2001, 19(2): 125-130.
    [99] Kauffman K J, Prakash P, Edwards J S. Advances in flux balance analysis, Current Opinion in Biotechnology, 2003, 14(5):491-496.
    [100] Lee J M, Gianchandani E P, Papin J A. Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics, 2006, 7(2):140-150.
    [101] Covert M W, Schilling C H, Palsson B. Regulation of gene expression in flux balance models of metabolism. Journal of Theoretical Biology, 2001, 213(1):73-88.
    [102] Covert M W, Palsson B O. Transcriptional regulation in constraintsbased metabolic models of Escherichia coli. Journal of Biological Chemistry. 2002, 277(31):28058-28064.
    [103] Covert M W, Palsson B O. Constraints-based models: regulation of gene expression reduces the steady-state solution space. Journal of Theoretical Biology, 2003, 221(3):309-325.
    [104] Beard D A, Liang S D, Qian H. Energy balance for analysis of complex metabolic networks. Biophysical Journal, 2002, 83(1):79-86.
    [105] Yang L, MahadevanR, CluettWR. A bilevel optimization algorithm to identify enzymatic capacity constraints in metabolic networks. Computers and Chemical Engineering, 2008, 32:2072-2085.
    [106] Edwards J S, Palsson B O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10):5528-5533.
    [107] Ramakrishna R, Edwards J S, Mcculloch A et al. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2001, 280(349-3):695-704.
    [108] Varma A, Boesch B W, Palsson B O. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Applied and Environmental Microbiology, 1993, 59(8):2465-2473.
    [109] Segre D, Vitkup D, Chruch G M. Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(23):15112-15117.
    [110] Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(21):7695-7700.
    [111] Burgard A P, Maranas C D. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnology and Bioengineering, 2003, 82(6):670-677.
    [112] Burgard A P, Pharkya P, Maranas C D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 2003, 84(6):647-657.
    [113] Nolan R P, Fenley A P, Lee K. Identification of distributed metabolic objectives in the hypermetabolic liver by flux and energy balance analysis. Metabolic Engineering, 2006, 8(1): 30-45.
    [114] Mahadevan R, Edwards J S, Doyle F J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical Journal, 2002, 83(3):1331-1340.
    [115] Burgard A P, Nikolaev E V, Schilling C H et al. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Research, 2004, 14(2):301-312.
    [116] Segre D, Deluna A, Church G M et al. Modular epistasis in yeast metabolism. Nature Genetics, 2005, 37(1):77-83.
    [117] Lee D Y, Fan L T, Park S et al. Complementary identification of multiple flux distributions and multiple metabolic pathways. Metabolic Engineering, 2005, 7(3):182-200.
    [118] Papp B, Pal C, Hurst L D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature, 2004, 429(6992):661-664.
    [119] Fong S S, Brugard A P, Herring C D et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnology and Bioengineering. 2005, 91(5):643-648.
    [120] Reed J L, Patel T R, Chen K H et al. Systems approach to refining genome annotation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46):17480-17484.
    [121] Forster J, Famili I, Fu P et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Research, 2003, 13(2): 244-253.
    [122] Schilling C H, Covert M W, Famili I et al. Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology, 2002, 184(16):4582-4593.
    [123] Reed J L, Palsson B O. Thirteen years of building constraint-based in silico models of Escherichia coli. Journal of Bacteriology, 2003, 185(9):2692-2699.
    [124] Papoutsakis E T. Equations and calculations for fermentations of butyric acid bacteria. Biotechnology and Bioengineering, 1984, 26(2):174-187.
    [125] Fell D A, Small J A. Fat synthesis in adipose tissue: An examination of stoichiometric constraints. Biochemical Journal, 1986, 238(3):781-786.
    [126] Majewski R A, Domach M M. Simple constrained optimization view of acetate overflow in E. coli. Biotechnology and Bioengineering, 1990, 35(7):731-738.
    [127] Savinell J M, Palsson B O. Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. Journal of Theoretical Biology, 1992, 155(2):201-214.
    [128] Savinell J M, Palsson B O. Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. Journal of Theoretical Biology, 1992, 155(2):215-242.
    [129] Varma A, Palsson B O. Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. Journal of Theoretical Biology, 1993, 165(4):477-502.
    [130] Varma A, Palsson B. Metabolic capabilities of Escherichia coli. II. Optimal-growth patterns. Journal of Theoretical Biology, 1993, 165(4):503-522.
    [131] Pramanik J, Keasling J D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnology and Bioengineering 1998, 60(2):230-238.
    [132] Edwards J S, Palsson B O. Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress, 2000, 16(6):927-939.
    [133] Lee S, Phalakornkule C, Domach M M et al. Recursive MILP model for finding all alternate optima in LP models for metabolic networks. Computers and Chemical Engineering, 2000, 24(2-7): 711-716.
    [134] Schilling C H, Edwards J S, Letscher D et al. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and Bioengineering, 2000, 71(4): 286-306.
    [135] Burgard A P, Maranas C D. Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnology and Bioengineering, 2001, 74(5):364-375.
    [136] Papin J A, Price N D, Edwards J S et al. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. Journal of Theoretical Biology, 2002, 215(1):67~82.
    [137] Ibarra R U, Edwards J S, Palsson B O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 2002, 420(6912):186-189.
    [138] Beard D A, Babson E, Curtis E et al. Thermodynamic constraints for biochemical networks. Journal of Theoretical Biology, 2004, 228(3):327-333.
    
    [139] 何锋,马红武,赵学明等. 生物信息学用于代谢网络研究的进展与展望.化工学报, 2004,55(10):1593-1601.
    [140] Seressiotis A, Bailey J E. MPS: an Artificaially intelligent software system for the analyses and sysnthesis of metabolic pathways. Biotechnology and Bioengineering, 1988, 31(6):587-602.
    [141] Mavrovouniotis M L, Stephanopoulos G, Stephanopoulos G. Computer-aided synthesis of biochemical pathways. Biotechnology and Bioengineering, 1990, 36(11):1119-1132.
    [142] Reder C. Metabolic control theory: a structural approach. Journal of Theoretical Biology, 1988, 135(2): 175-201.
    [143] Schuster S , Hilgetag C. On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems, 1994, 2(2):165-182.
    [144] Schuster S, Dandekar T, Fell D A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends in Biotechnology, 1999, 17(2):53-60.
    [145] Schuster S, Fell D A, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology, 2000, 18(3):326-332.
    [146] Schilling C H, Schuster S, Palsson B O et al. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnology Progress, 1999, 15(3):296-303.
    [147] Schilling C H, Letscher D, Palsson B O. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology, 2000, 203(3)229-248.
    [148] Von Kamp A, Schuster S. Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics. 2006, 15:1930-1931.
    [149] Klamt S, Stelling J, Ginkel M et al. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics, 2003, 19(2): 261-269.
    [150] Urbanczik R. SNA - A toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinformatics, 2006, 7:129.
    [151] Cakir T, Kirdar B, Ulgen K O. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnology and Bioengineering, 2004, 86(3):251-260.
    [152] Kromer J O, Wittmann C, Schroder H et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metabolic Engineering, 2006, 8(4):353-369.
    [153] Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy production: Creation of overall flux states. Biotechnology and Bioengineering, 2004, 86(2):149-162.
    [154] Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnology and Bioengineering, 2004, 85(1): 1-19.
    [155] Chilling C H, Letscher D, Palsson B O. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology, 2000, 203(3):229-248.
    [156] Bell S L, Palsson B O. Expa: a program for calculating extreme pathays in biochemical reaction networks. Bioinformatics, 2005, 21(8):1739-1740.
    [157] Klamt S, Stelling J. Two approaches for metabolic pathways analysis. Trends in Biotechnology, 2003, 21(2):64-69.
    [158] Papin J A, Price N D, Wiback S J et al. Metabolic pathways in the post-genome era. Trends in Biochemical Sciences, 2003, 28(5):250-258.
    [159] Schuster S, Klamt S, Weckwerth W et al. Use of network analysis of metabolic systems in bioengineering. Bioprocess and Biosystems Engineering, 2002, 24(6):363-372.
    [160] Price N D, Papin J A, Pallson B O. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Reaearch, 2002, 12(5):760-769.
    [161] Morohashi M, Winn A E, Borisuk M T et al. Robustness as a measure of plausibility in models of biochemical networks. Journal of Theoretical Biology, 2002, 216(1): 19-30.
    [162] Stelling J, Klamt S, Bettenbrock K et al. Metabolic network structure determines key aspects of functionality and regulation. Nature, 2002, 420(6912):190-193.
    [163] Wilhelm T, Behre J, Schuster S. Analysis of structural robustness of metabolic networks. Systems Biology, 2004, 1(1):114-120.
    [164] Cakir T, Kirdar B, Onsan Z I et al. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Systems Biology, 2007, 1:18.
    [165] Cox S J, Levanon S S, Sanchez A et al. Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study. Metabolic Engineering, 2006, 8(1):46—57.
    [166] Klamt S, Gilles E D. Minimal cut sets in biochemical reaction network. Bioinformatics, 2004, 20(2):226-234.
    [167] Papin J A, Price N D, Palsson B O. Extreme pathway lengths and reactions participation in genome-scale metabolic networks. Genome Research, 2002, 12(12):1889-1900.
    [168]王宝光,刘铭,杜晨宇等.微生物法生产1,3-丙二醇过程的代谢工程研究进展.过程工程学报,2006,6(1):144-148.
    [169]Zheng P,Wereath K,Sun J et al.Overexpression of genes of the dha regulon and its effects on cell growth,glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae.Process Biochemistry,2006,41(10):2160-2169.
    [170]Sun J B,Heuvel J V D,Soucaille P et al.Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria.Biotechnology Progress,2003,19(2):263-272.
    [171]Wang W,Sun J B,Hartlep M et al.Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by klebsiella pneumonae.Biotechnology and Bioengineering,2003,80(5):525-536.
    [172]Zhang X M,Li Y,Zhuge B et al.Construction of a novel recombinant Escherichia coli strain capable of producing 1,3-propanediol and optimization of fermentation parameters by statistical design.World Journal of Microbiology and Biotechnology,2006,22(9):945-952.
    [173]Zhang Y P,Li Y,Du C Y et al.Inactivation of aldehyde dehydrogenase:A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae.Metabolic Engineering,2006,8(6):578-586.
    [174]Yang G,Tian J,Li J.Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions.Applied Microbiology and Biotechnology,2007,73(5):1017-1024.
    [175]Gonzalez-Pajuelo M,Meynial-Salles I,Mendes F et al.Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol.Metabolic Engineering,2005,7(5-6):329-336.
    [176]Antoniewicz M R,Kraynie D F,Laffend L A et al.Metabolic flux analysis in a nonstationary system:fed-batch fermentation of a high yielding strain of E.coli producing 1,3-propanediol.Metabolic Engineering,2007,9(3):277-292.
    [177]Nie L,Wu G,Guley D E et al.Integrative analysis of transcriptomic and proteomic data:challenges,solutions and applications.Critical Reviews in Biotechnology,2007,27(2):63-75.
    [178]Ideker T,Thorsson V,Ranish J A et al.Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science,2001,292(5518):929-934.
    [179]Yoon S H,Han M J,Lee S Y et al.Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture.Biotechnology and Bioengineering,2003,81(7):753-767.
    [180]Kromer J O,Sorgenfrei O,Klopprogge K et al.In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome,metabolome,and fluxome.Journal of Bacteriology,2004,186(6):1769-1784.
    [181]Villas-Boas S G,Moxley J F,Akesson M et al.High-throughput metabolic state analysis:the missing link in integrated functional genomics of yeasts.Biochemical Journal,2005,388(2):669-677.
    [182]Stephanopoulos G,Alper H,Moxley J.Exploiting biological complexity for strain improvement through systems biology,Nature Biotechnology,2004,22(10):1261-1267.
    [183]Gao J,Gorenflo V M,Scharer J M et al.Dynamic metabolic modeling for a MAB bioprocess.Biotechnology Progress,2007,23(1):168-181.
    [184]Provost A,Bastin,G.Dynamic metabolic modelling under the balanced growth condition.Journal of Process Control,2004,14(7):717-728.
    [185]修志龙.微生物法生产1,3-丙二醇研究进展,微生物学通报,2000,27(4):300-302
    [186]Zhu M M,Lawman P D,Cameron D C.Improving 1,3-Propanediol Production from Glycerol in a Metabolically Engineered Escherichia coli by Reducing Accumulation of sn-glycerol-3- phosphate,Biotechnology Progress,2002,18:694-699
    [187]Zeng A P,Biebl H,Schlieker H,Deckwer W D.Pathway Analysis of Glycerol Fermentation by Klebsiella pneumoniae:Regulation of Reducing Equivalent Balance and Product Formation,Enzyme and Microbial Technology,1993,15(9):770-779
    [188]Herbert D,Phipps P J,Strange R E.Chemical analysis of microbial cells.In:Norris J M,ribbons D W,ed.Methods in microbiology.V.5b.London and New York:Academic Press,1971:209-344.
    [189]张延平,饶治,杜晨宇,李春,曹竹安.能量驱动对Klebsiella pneumoniae发酵甘油合成1,3-丙二醇的影响,过程工程学报,2004,4(6):567-571
    [190]Tsai,SP,Lee,YH.Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data.Biotechnology and Bioengineering,1988,32:713-715.
    [191]Madron F,Veverka V,Vanecek V.Statistical analysis of material balance of a chemical reactor.AIChE Journal 1977,23(4):482-486.
    [192]Menzel K,Zeng A P,Biebl H et al.Kinetic Dynamic and Pathway Studies of Glycerol Metabolism by Klebsiella pneumoniae in Anaerobic Continuous Culture:Ⅰ.The Phenomena and Characterization of Oscillation and Hysteresis.Biotechnology and bioengineering,1996,52:549-560.
    [193]Xiu Z L,Song B H,Wang Z T et al.Optimization of Dissimilation of Glycerol to 1,3-Propanediol by Klebsiella pneumoniae in One- and Two-stage Anaerobic Cultures.Biochemical Engineering Journal,2004,19(3):189-197.
    [194]Ramkrishna D.Are microbes optimal strategists? Biotechnology,1987,3(3):121-126.
    [195]Edwards J S,Palsson B O.How will bioinformatics influence metabolic engineering?Biotechnology and Bioengineering,1998,58(2-3):162-169.
    [196] Sauer U, Cameron D C, Bailey J E. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnology and Bioengineering, 1998, 59 (2):227-238.
    [197] Pons A, Dussap C G, Pequignot C et al. Metabolic flux distribution in Corynebacterium melassecola ATCC 17965 for various carbon sources. Biotechnology and Bioengineering, 1996, 51(2):177-189.
    [198] Burgard A P, vaidyaraman S, maranas C D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnology Progress, 2001, 17(5):791-797.
    [199] Dien S V, Lidstrom M. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnology and Bioengineering, 2002, 78(3): 296-312.
    [200] Tarantola A. Inverse problem theory: methods for data fitting and model parameter estimation. Amsterdam:Elsevier, 1987
    [201] Papanikolaou S, Ruiz-Sanchez P, Pariset B et al. High production of 1, 3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 2000, 77(2-3):191-208.
    [202] Ahrens K, Menzel K, Zeng AP et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnology and Bioengineering, 1998, 59 (5):544-552.
    [203] Tobimatsu T, AzumaM, Matsubara H et al. Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. Journal of Biological Chemistry, 1996, 271:22352-22357.
    [204] Zeng AP, Menzel K, Deckwer TO. Kinetic, Dynamic, and Pathway Studies of Glycerol Metabolism by Klebsiella pneumoniae in Anaerobic Continuous Culture: II. Analysis of Metabolic Rates and Pathways under Oscillation and Steady-State Conditions. Biotechnology and Bioengineering, 1996, 52(5):561-571.
    [205] Wiechert W, Mollney M, Petersen S et al. A universal framework for ~(13)C metabolic flux analysis. Metabolic Engineering, 2001, 3:265-283.
    [206] Sauer U. High-throughput phenomics: experimental methods for mapping fluxomes. Current Opinion in Biotechnology, 2004, 15:58-63.
    [207] Franzen, C. J., Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast, 2003, 20:117-132.
    [208] Shirai T, Nakato A, Izutani N et al. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metabolic Engineering, 2005, 7(2):59-69.
    [209]Ozkan P,sariyar B,Utkur FO et al.Metabolic flux analysis of recombinant protein overproduction in Escherichia coli.Biochemical Engineering Journal,2005,22(2):167-195.
    [210]Maczek J,Junne S,Nowak P et al.Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.Bioprocess and Biosystems Engineering,2006,29(4):241-252.
    [211]Sanchez A M,Bennett GN,San KY.Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.Metabolic Engineering,2006,8(3):209-226.
    [212]Sun J B,Zeng A P.IdentiCS-Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence.BMC Bioinformatics,2004,5:112-124.
    [213]Neidhardt.Escherichia coli and Salmonella.Cellular and molecular biology.Washington:ASM Press,1987.
    [214]Ingraham J L,Maaloe O,Neidhardt F C.Growth of the bacterial cell.Sunderland:Sinnauer Associated.1983.
    [215]马红武.由发酵实验数据和基因组信息基于计量关系分析代谢网络:(博士论文).天津:天津大学,2001.
    [216]Roels J A,Energetics and kinetics in biotechnology,Amsterdam:Elsevier Biomedical Press,1983.
    [217]Menzel K,Ahrens K,Zeng A P et al.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅳ.Enzymes and fluxes of pyruvate metabolism.Biotechnology and Bioengineering,1998,60(5):617-626.
    [218]DuC Y,Yan H,Zhang Y P et al.Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae Applied Microbiology and Biotechnology,2006,69(5):554-563
    [219]Daniel R,Boenigk R,Gottschalk G.Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning,sequencing,and overexpression of the corresponding gene in Escherichia coli.Journal of Bacteriology,1995,177(8):2151-2156.
    [220]Barbirato F,Larguier A,Conte T et al.Sensitivity to pH,product inhibition,and inhibition by NAD~+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans,CNCM 1210.Archives of Microbiology,1997,168(2):160-163.
    [221]Menzel,K.Analyse der Stofffluesse und Metabolic Engineering der Glycerinvergaerung zu 1,3-Propandiol durch Klebsiella pneumoniae:[Ph.D.Thesis].Braunschweig:German Research Center for Biotechnology(GBF),1999.
    [222]Chen X,Zhang D J,Qi W T et al.Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions.Applied Microbiology and Biotechnology,2003,63(2):143-146.
    [223]Fristedt U,Rydstrom J,Persson B.Evidence for a nicotinamide nucleotide transhydrogenase in Klebsiella pneumoniae.Biochemical and Biophysical Research Communications,1994,198:928-932.
    [224]Crack J,Green J,Thomson A J.Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction(FNR).Journal of Biological Chemistry.2004,279(10):9278-9286.
    [225]Chandresh T,Bhosale S,Ranade D.Formation of succinic acid by Klebsiella pneumoniae MCM B-325 under aerobic and anaerobic conditions.Journal of Microbiology and Biotechnology,2006,16(6):870-879.
    [226]林日辉,刘宏娟,孙燕等.氧对Klebsiella pneumoniae产1,3-丙二醇代谢的影响.过程工程学报,2006,6(1):96-99.
    [227]Kato Y.植物制造的通用塑料.生物技术产业,2006,79-83.
    [228]Wada M,Narita K,Yokota A.Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase.Applied Microbiology and Biotechnology,2007,76(4):819-825.
    [229]Liu L M,Li Y,Du G C et al.Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production.Applied Microbiology and Biotechnology,2006,72(2):377-385.
    [230]修志龙,曾安平,安利佳.甘油歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [231]史仲平,潘丰.发酵过程解析、控制与检测技术.北京:化学工业出版社,2005.
    [232]Xiu Z L,Song B H,Sun L H et al.Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process.Biochemical Engineering Journal,2002,11(2-3):101-109.
    [233]Gao C X,Feng E M,Wang Z T et al.Nonlinear dynamical systems of biodissimilation of glycerol to 1,3-propanediol and their optimal controls.Journal of Industrial and Management Optimization,2005,1(3):377-388.
    [234]Bastin G,Dochain D.On-line estimation and adaptive control of bioreactors.Amsterdam:Elsevier,1990.
    [235]Leonard J,Kramer M A.Improvement of the backpropagation algorithm for training neural network.Compututers and Chemical Engineering,1990,14(3):337-341.
    [236]Pollard J F,Broussard M R,Garrison D B et al.Process identification using neural networks.Compututers and Chemical Engineering,1992,16(4):253-270.
    [237]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors.Nature,1986,323(6088):533-536.
    [238]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计,北京:清华大学出版社,2006.
    [239]MacKay D J C.Bayesian interpolation.Neural Computation,1992,4(3):415-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700