金属表面等离子体增强硅基半导体材料发光
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建立在硅材料基础上的大规模集成电路的不断发展,过高的互连和集成度带来了信号延迟和器件过热的问题,给以大规模集成电路为代表的微电子工业的持续发展带来了很大的困难,而硅基光电子集成则是解决这一难题的理想途径。但是,高效率的硅基发光材料和器件国际上依然没有解决。而将金属表面等离子体用于增强发光材料和器件量子效率,则是研究的热点。本文将表面等离子体用于提高硅基发光材料和器件的发光效率,不仅在表面等离子耦合发光的机理研究上有重要的理论探索意义,而且在硅基光电子领域有良好的应用前景。
     本文制备了金属岛膜和核-壳阵列结构,研究了影响其形貌和表面等离子体共振特性的因素,在此基础上将金属银岛膜用于增强硅基ZnO薄膜和富硅氮化硅薄膜的发光强度,并且详细研究了影响材料与表面等离子体耦合发光的因素以及耦合作用机理。取得如下有创新意义的结果:
     (1)利用磁控溅射法制备了Ag岛膜,掌握了调节其表面等离子体共振特性的各种参数。研究通过不同热处理工艺,改变银岛膜的形貌,进而调节其表面等离子共振波长。研究发现:200℃的快速热处理可使共振波长有较大蓝移,在不同温度下的常规热处理可以连续调节银岛膜的表面等离子共振波长。
     (2)利用聚苯乙烯球(PS)为模板,制备了Ag和Au的核-壳结构阵列,掌握了调节其表面等离子体共振特性的各种参数。实验发现,随着溅射时间增加,壳层变厚,其偶极表面等离子体共振频率蓝移。在利用热处理的方法去除PS球模板后,金属核-壳的介电环境发生变化,进而偶极等离子共振频率发生蓝移,实验还确定了热处理去除模板的适宜温度和所需时间。
     (3)利用Ag岛膜增强了ZnO薄膜的带间发光,确定了能量传递-散射的表面等离子体耦合机理。ZnO带间发光和缺陷发光分别与Ag岛膜的面外和面内局域表面等离子体共振模式耦合,导致了带间和缺陷发光荧光强度变化的不同,并且发现可以通过调节表面等离子共振达到控制耦合发光强度的目的。研究了Ag颗粒大小、探测方向、ZnO薄膜的厚度以及温度等因素对Ag岛膜耦合增强ZnO薄膜发光的影响,并且分析了不同条件下耦合发光的机理。
     (4)发现了Ag岛膜耦合增强ZnO薄膜发光对衬底折射率的依赖。通过理论计算,指出其原因主要是由于高折射率衬底会给体系引入衬底模式,该模式会对耦合进入表面等离子体模式的能量造成竞争,进而影响表面等离子体经散射作用而辐射出去的能量。近一步地,实验设计了四层结构,避免了衬底模式对能量的损耗,达到了表面等离子体耦合增强硅基ZnO薄膜发光的目的。
     (5)利用Ag岛膜的局域表面等离子体增强了富硅氮化硅薄膜的发光。研究结果表明,相对于银岛散射的辐射增强作用,表面等离子体增强激发效率对富硅氮化硅薄膜的荧光增强起到了决定作用。通过研究不同发光波长的氮化硅薄膜与Ag岛膜的耦合发光,指出:其荧光的增强因子不但与银岛的尺寸有关,还与发光波长与Ag岛膜的表面等离子共振带的光谱位置有关,其中后者还会影响耦合增强后的富硅氮化硅薄膜的荧光峰位。
With the rapid development of large scale integrated electronic circuit based on the silicon materials, signal delay induced by over-high interconnect and over-heat of device is becoming serious problems. It poses a dramatic difficulty to the continuous development of the microelectronic industry represented by integrated electronic circuit. Optoelctronic system is a potential solution to this problem, but silicon makes a poor material for light emitter due to its indirect band structure which limits the application in optoelctronics. So obtaining high-efficiency silicon-based light emitting mateials and devices is very important. Suface Plasmon at the metal interface can increase the rediative decay rates of the light emitter thanks to the high localized electromagnetic field at resonance. Moreove, by matching the wavevector of surface plasmon and light radiation using scattering, the energy lost at the metal electrode can be recovered which will improve the efficiency of the light emitting devices. Then using suface plasmon to increase the light emission has become a hot topic in recent years. Evidentsly, using surface plasmon to enhance the light emission is expected to find wide potential applications in silicon-based light emitters.
     In this dissertation, metal island films and core-shell structure were produced and the factors that affect its morphology and suface palsmon resonance properties were investigated. Then the light emission of ZnO and silicon rich silicon nitride films was enhanced by coupling with Ag island films. The coupling mechanism and the factors affecting the coupling were analyzed. The primary significant results were summarized as follows:
     (1) Ag island films were prepared by sputtering, and the morphology and surface plasmon were found dependent on the sputtering time and temperature. Thermal processing changed the morphology of Ag island films and then tuned the surface plasmon resonance wavelength. Large blueshift can be obtained by rapid thermal processing at 200℃, and conventional thermal processing at different temperature can tune the resonance wavelength continuously.
     (2) Ag and Au core-shell arrays were prepared by sputtering using PS sphere as templates. The core-shell morphology and surface palsmon resonance were changed by sputtering time. With the increases of sputtering time, the shell thickness increased and the dipole surface Plasmon blueshifed. The PS template can be removed by thermal processing. The dielectric environment was changed by PS removal which led to the blueshift of the dipole resonance.
     (3) The band gap emission of ZnO films was enhanced and the defect emission was quenched by coupling with the surface Plasmon of Ag island films. It was found that the band emission and defect emission were coupled with out-of-plane and in-plane surface plasmon resonance mode of Ag island films respectively. The absorption of the in-plane surface plasmon mode induced the quenching of the defect emission and it can be recovered by tuning the in-plane resonance mode using thermal processing. The influence of Ag island size, detection directions, the thickness of ZnO films and the temperature on the surface plasmon coupled emission enhancement was investigated, and the coupling mechanisms under different conditions were elucidated.
     (4) The Ag island films coupled emission enhancement of ZnO films was found dependent on the substrate. Theoretical computation results shows that when using high refractive index substrate, the substrate mode has a competition with the surface palsmon mode in energy, which then affect the energy of surface plasmon radiative scattering, leading to the emission quenching. The four-layer structure which avoided the energy lost to substrate mode was designed to enhance the emission of silicon based ZnO film.
     (5) The photoluminescence of silicon rich silicon nitride films was enhanced by coupling with surface plasmon of the Ag island films and the coupling mechanism of the excitation and radiative process was investigated. The results show that the surface plasmon enhanced emission was more decided by excitation efficiency enhancement than radiative scattering enhancement. It was found that the photoluminescne enhancement was not only dependent on the Ag island size, but also on the relative spectral position between the emitting wavelength and the surface plasmon resonance band, and the latter also influenced the emission band position of the silicon rich silicon nitride.
引文
1.Raether,H.,in Surface plasmons on smooth and rough surfaces and on gratings.1986,Springer-Verlag.
    2.Anatoly V.Zayats,I.I.S.,Alexei A.Maradudin,Nano-optics of surface plasmon polaritons.Physics Reports,2005.408:p.131-314.
    3.Pines,D.B.,D.A.Collective,Description of Electron interactions:Ⅱ.Collective vs individual particle aspects of the interactions.Physics Review,1952.85:p.338-.
    4.L.,B.W.,Surface plasmon-polariton length scales:a route to sub-wavelength optics.J.Opt.A:Pure Appl Opt.,2006.8:p.S81-S93.
    5.B.Hecht,H.B.,L.Novotny,Y.Inouye,and D.W.Pohl,local excitation,scattering,and interference of surface plasmons.Physics Review Letters,1996.77:p.1889-1892.
    6.W.H.Weber,G.W.F.,Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation.Optics Letters,1981.6(122-124).
    7.L.Salomon,G.B.,H.Aourag,J.P.Dufour,and F.de Fornel,Local excitation of surface plasmon polaritons at discoutinuities of a metal film:Theoretical analysis and optical near-field measurements.Physics Review B,2002.65:p.125409-125414.
    8.Liu,W.-C.,Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resoance.Physics Review B,2002.65:p.155423-155429.
    9.Zhao,Z.-Y.Z.a.Y.-P.,Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes.J.App.Phys.,2007.102:p.113308-113322.
    10.Tiberiu-Dan Onuta,M.W.,Christopher C.Dufort,William L.Schaich,and Bogdan Dragnea,Optical field enhancement at cusps between adjacent nanapertures.Nano Lett.,2007.7:p.557-564.
    11.Ewold Verhagen,J.A.D.,K.(Kobus) Kuipers,Harry A.Atwater,and Albert Polman,Near-field visualization of strongle confined surface plasmon polaritons in metal-insulator-metal waveguides.Nano Lett.,2008.8:p.2925-2929.
    12.Bogdam Drgnea,J.M.S.,Stefan Kowarik,Thomas Weimann,Jochen Feld mann,and Stephen R.Leone,Near-field surface plasmon excitation on structured gold films.Nano Lett.,2003.3:p.3-7.
    13.Uwe Kreibig,M.V.,Optical properties of metal clusters.1995,Berlin Heidlberg:Springer-Verlag.
    14.K.Lance Kelly,E.C.,Lin Lin Zhao,and George C.Schatz,The optical properties of metal nanoparticle:the influence of size,shape,and dielectric enviroment.J.Phys.Chem,2003.107(668-677).
    15.Andreas Hohenau,A.L.a.F.R.A.,Near-field and far-field properties of nanoparticle arrays,in Surface Plasmon Nanophotonics.2007,Springer:Netherlands.
    16.Hill,P.W.B.a.S.C.,Light scattering by paritcles:computational methods.1990,Singapire:World Scientific.
    17.K.Kolwas,S.D.a.M.K.,Optical excitation of radium-dependent plasmon resonance in large metal cluster.J.Phys.B:At.Mol.Opt.Phys,1996.29:p.4761-4770.
    18.Evgeny Popov,N.B.,Michel Neviere,Herve Rigneault,Pierre-Francois Lenne and patrick Chaumet,Surface plasmon excitation on a single subwavelength hole in metallic sheet.Appl. Opt.,2005.44:p.2332-2338.
    19.Prashant K.Jain,K.S.L.,Ivan H.EI-Sayed,and Mostafa A.EI-Sayed,Calculated absorption and scattering properties of gold nanoparticles of different size,shape,and composition:Applications in biological imaging and biomedicine.J.Phys.Chem.B,2006.110:p.7238-7248.
    20.Ivan O.Sosa,C.N.,and Ruben G.Barrera,Optical properties of metal nanoparticles with arbitrary shapes.J.Phys.Chem.B,2003.107:p.6269-6275.
    21.Encai Hao,S.L.,Ryan C.Bailey,Shengli Zou,George C.Schatz,and Joseph T.Hupp,Optical properties of metal nanoshells.J.Phys.Chem.B,2004.108:p.1224-1229.
    22.Halas,C.R.a.N.J.,Plasmonic properties of concentric nanoshells.Nano Lett.,2004.4:p.1323-1327.
    23.Benjamin J.Wiley,S.H.I.,Zhi-Yuan Li,Joeseph Mclellan,Andrew Siekkinen,and Younan Xia,Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis.J.Phys.Chem.B,2006.110:p.15666-15675.
    24.David D.Evanoff,J.a.G.C.,Size-controlled synthesis of nanoparticles.2.Measurement of extinction,scattering,and absorption cross sections.J.Phys.Chem.B,2004.108:p.13957-13962.
    25.EI-Sayed,S.L.a.M.A.,Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles.J.Phys.Chem.B,1999.103:p.4212-4217.
    26.Bohren,C.F.,Huffman,D.R.,Absorption and scttering of light radiation.1983,New York:Wiley.
    27.Dongbai Zhang,L.Q.,Jiming Ma,and Humin Cheng,Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer.Chem.Mater.,2001.13:p.2753-2755.
    28.K.K.Caswell,C.M.B.,and Catherine J.Murphy,Seedless,surfactantless wet chemical synthesis of silver nanowires.Nono Lett.,2003.3:p.667-669.
    29.Chaoying Ni,P.A.H.,and Eric W.Kaler,Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method.Langmuir,2005.21:p.3334-3337.
    30.YiYing Wu,T.L.,You Xiang Zhang,Guosheng Cheng,Jianfang Wang,JIng Tang,Martin Moskovits,and Galen D.Stucky,Templated synthesis of highly ordered mesostructured nanowires and nanowire arrys.Nano Lett.,2004.4:p.2337-2342.
    31.Yugan Sun,B.M.,Thurston Herricks,and Younan Xia,Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence.Nano Lett.,2003.3:p.955-960.
    32.Qiaobing Xu,J.B.,Federico Capasso,and George M.Whitesides,Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving.Angew.Chem.Int.Ed.,2006.45:p.3631-3635.
    33.Ahmadi,O.R.M.a.T.S.,Effects of intensity and energy of CW UV light on the growth of gold nanorods.J.Phys.Chem.B,2005.109:p.15724-15734.
    34.Zhengquan Li,J.T.,Xianmao Lu,Yimei Zhu,and Younan Xia,Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform.Nano Lett.,2008.8:p.3052-3055.
    35.J.Aizpurua,P.H.,D.S.Sutherland,M.Kall,Garnett W.Bryant,and F.J.Garcia de Abajo,Optical properties of gold nanorings.Phys.Rev.Lett.,2003.90:p.057401-1-4.
    36.JIngyi Chen,B.W.,Zhi-Yuan Li,Dean Campbell,Fusayo Saeki,Hu Cang,Leslie Au,Jennifer Lee,Xingde Li,and Younan Xia,Gold nanocages:Engineering their structure for biomedical applications.Adv.Mater.17:p.2255-2261.
    37.Leif J.Sherry,S.-H.C.,George C.Schatz,and Richard P.Van Duyne,Localized surface plasmon resonance spectroscopy of single silver nanocubes.Nano Lett.,2005.5:p.2034-2038.
    38.Murphy,T.K.S.a.C.J.,Room temperature,high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution.J.Am.Chem.Soc.,2004.126:p.8648-8649.
    39.Xia,Y.S.a.Y.,Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium.J.Am.Chem.Soc.,2004.126:p.3892-3901.
    40.Xia,Y.S.a.Y.,Shape-controlled suthesis of gold and silver nanoparticles.Science,2002.298:p.2176-2179.
    41.Andrea Tao,P.S.S.,and Peidong Yang,Polyhedral silver nanocrystals with distinct scattering signatures.Angew.Chem.Int.Ed.,2006.45:p.1-5.
    42.Yam,D.Y.a.V.W.-W.,Controlled synthesis of monodisperse silver nanocubes in water.J.Am.Chem.Soc.,2004.126:p.13200-13201.
    43.Jianhui Zhang,J.L.,Sizhen Wang,Peng Zhan,Zhenlin Wang,and Naiben Ming,Facile methods to coat polystyrene and silica colloids with metal Adv.Funct.Mater.,2004.14:p.1089-1096.
    44.Hua Tan,S.L.,and Wai Yip Fan,Core-shell and hollow nanocrystal formation via small molecule surface photodissociation;Ag@Ag_2Se as an example.J,Phys.Chem.B,2006.110:p.15812-15816.
    45.Hui Wang,F.T.,Nathaniel K.Grady,and Naomi J.Halas,Cu nanoshells:effects of interband transitions on the nanoparticle plasmon resoance.J,Phys.Chem.B,2005.109:p.18218-18222.
    46.Halas,J.B.J.a.N.J.,Silver nanoshells:Variations in morphologies and optical properties.J,Phys.Chem.B,2001.105:p.2743-2746.
    47.Hui Wang,J.K.,and Naomi J.Halas,Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate.Angew.Chem.Int.Ed.,2007.46:p.9040-9044.
    48.Wen Dong,H.D.,Zhenlin Wang,Peng Zhan,Ziqin Yu,Xiaoning Zhao,Yongyuan Zhu,and Maiben Ming,Ordered arrsys of gold nanoshells interconnected with gold nanotubes fabricated by double templating.Adv.Mater.,2005.18:p.755-759.
    49.Brian G.Prevo,S.A.E.,Alexander Mikhailovsky,and Joseph A.Zasadzinski,Scalable routes to gold nanoshells with tunable sizeds and response to near-infrared pulsed laser irradiation.Small,2008.8:p.1183-1195.
    50.Halas,N.,Playing with plasmons:Tuning the optical resonant properties of metallic nanoshells.MRS Bulletin,2005.30:p.362-367.
    51.E.Prodan,C.R.,N.J.Halas,P.Nordlander,A hybridization model for theplasmon response of complex nanostructures.Science,2003.302:p.419-423.
    52.Pavel A.Kossyrev,A.Y.,Sylvain G.Cloutier,David A.Cardimona,Danghong huang,Paul M.Alsing,and Jimmy M.Xu,Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix.Nano Lett.,2005.5:p.1978-1981.
    53.P.Jin,M.T.a.G.X.,Reversible tuning of surface plasmon resonance of silver naoparticles using a thermochromic matrix.J.App.Phys.,2006.99:p.096106.
    54.G.Xu,M.T.,P.Jin,S.Nakao,and K.Yoshimura,Wavelength tuning of surface plasmon resoance using dielectric layers on silver island films.Appl.Phys.Lett.,2003.82:p.3811-3813.
    55.H.Mertens,J.V.,and A.Polman,Infrared surface plasmons in two-dimensional silver nanoparicle arrays in silicon.Appl.Phys.Lett.,2004.85:p.1317-1319.
    56.Tolga Atay,J.-H.S.,and Arto V.Nurmikko,Strongly interacting plasmon nanoparticle pairs:From dipole-dipole interaction to conductively coupled regime.Nano Lett.,2004.4:p.1627-1631.
    57.Andreas Hohenau,A.L.a.F.R.A.,Near-field and far-field properties of nanparticle arrays,in Surface plasmon photonics.2007,Springer:The Netherlands.
    58.A.Wokaun,J.P.G.,P.F.Liao,Radiation damping in surface-enhanced raman scattering.Phys.Rev.Lett,1982.48:p.957-960.
    59.Bozhevolnyi,T.S.a.S.I.,Surface plasmon polariton guiding in phtonic bandgap structrues,in Surface plasmon nanophotonics,M.L.B.a.P.G.Kik,Editor.2007,Springer:The netherlands.
    60.Harry A.Atwater,J.A.D.a.L.A.S.,Subwavelength-scale plasmon waveguides,in Surface plasmon nanophotonics,M.L.B.a.P.G.Kik,Editor.2007,Springer:The Netherlands.
    61.Barnes,P.T.W.a.W.L.,Efficient coupling of surface plasmon polaritons to radiation using a bigrating.Appl.Phys.Lett.,2001.79:p.3037-3037.
    62.Mirnmoy De,P.S.G.,and Vincent M.Rotello,Applications of nanoparticles.Adv.Mater.,2007.20:p.1-17.
    63.Arup Neogi,H.M.,Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons.Optics Letters,2005.30(1):p.93.
    64.I.Gontijo,M.B.,and E.Yablonovitch,Coupling of the InGaN quantum-well photoluminescence to silver surface plasmons.Physical Review B,1999.60(16):p.11564.
    65.Yen-Cheng Lu,C.-Y.C.,Kun- Ching Shen,Dong-Ming Yeh,Tsung-Yi Tang,and C.C.Yang,Enhanced photoluminescence excitaion in surface plasmon coupling with an InGaN/GaN quantum well.Applied Physics Letters,2007.91:p.183107.
    66.Arup Neogi,C.-W.L.,and Henry O.Everitt,Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling.Physical Review B,2002.66:p.153305.
    67.Michael A.Mastro,J.A.F.J.,Mark Twigg,R.T.Holm,Charles R.Eddy Jr,,Fritz kub,Hong-Yeol Kim,Jaehui Ahn,and Jihyun Kim,Experimental study of plasmonically enhanced GaN nanowire light emitters.Phys.star.sol.,2008.205:p.378.
    68.S.Gianordoli,R.H.,A.Kock,N.Finger,E.Gornik,C.Hanke and L.Korte,Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes.Applied Physics Letters,2000.77(15):p.2295.
    69.Morkoc,A.N.a.H.,Resonant surface plasmon-induced modification of photoluminescence from GaN/AlN quantum dots.Nanotechnology,2004.15:p.1252.
    70.Koichi Okamoto,I.N.,Alexander Shvartser,Yukio Narukawa,Takashi Mukai,and Yoichi Kawakami,Surface plasmon enhanced sponteneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy.Applied Physics Letters,2005.87:p.071102.
    71.Koichi Okamoto,I.N.,Alexander Shvartser,Yukio Narukawa,Takashi Mukai and Axel Scherer,Surface plasmon enhanced super bright InGaN light emitter.Phys.stat.sol.,2005.2(7):p.2841.
    72.P.A.Porta,M.H.,and H.D.Summers,Surface plasmon mediated emission in resonant-cavity light-emitting diodes.Applied Physics Letters,2006.89:p.121120.
    73.N.E.Hecker,R.A.H.,N.Sawaki,T.Maier and G.Strasser,Surface plasmon-enhanced photoluminescence from a single quantum well.Applied Physics Letters,1999.75(11):p.1577.
    74.Koichi Okamoto,I.N.,Alexander Shvartser,Yukio Narukawa,Takashi Mukai and Axel Scherer,Surface-plasmon-enhanced light emitters based on InGaN quantum wells.Nature materials,2004.3:p.601.
    75.Yen-Cheng Lu,C.-Y.C.,Dong-Ming Yeh,Chi-Feng Huang,Tsung-Yi Tang,Jeng-Jie Huang,and C.C.Yang,Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well.Applied Physics Letters,2007.90:p.193103.
    76.Barnes,W.L.,Turning the tables on surface plasmons.Nature materials,2004.3:p.588.
    77.A.P.Abiyasa,S.F.Y.,S.P.Lau,Eunice S.P.Leong,and H.Y.Yang,Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance.Applied Physics Letters,2007.90:p.231106.
    78.C.W.Lai,J.A.,and H.C.Ong,Surface-plasmon-mediated emission from metal-capped ZnO thin films.Applied Physics Letters,2005.86:p.251105.
    79.D.Y.Ler,J.L.,and H.C.Ong,Tunable surface plasmon mediated emission from semiconductors by using metal alloys.Applied Physics Letters,2007.91:p.021112.
    80.H.Y.Lin,C.L.C.,Y.Y.Chou,L.L.Huang,and Y.E Chen,Enhancement of band gap emission stimulated by defect loss.Optics express,2006.14(6):p.2372.
    81.J.B.You,X.W.Z.,Y.M.Fan,S.Qu,and N.F.Chen,Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si(001) by magnetron sputtering.Applied Physics Letters,2007.91:p.231907.
    82.Jian Ming Lin,H.Y.L.,Chung Liang Cheng,and Yang Fang Cheng,Giant enhancement of bandgap emission of ZnO nanorods by platium nanoparticles.Nanotechnology,2006.17:p.4391.
    83.Li Duan,B.L.,Weiying Zhang,Sheng Zhong,and Zhuxi Fu,Enhancement of ultraviolet emissions from ZnO films by Ag doping.Applied Physics Letters,2006.88:p.232110.
    84.Peihong Cheng,D.L.,Zhizhong Yuan,Peiliang Chen,and Deren Yang,Enhancement of ZnO lighr emission via coupling with localized surface plasmon of Ag island films.Appl.Phys.Lett.,2008.92:p.041119.
    85.Ong,D.Y.L.a.H.C.,Enhanced forward emission from ZnO via surface plasmons.Applied Physics Letters,2007.91:p.211107.
    86.Eiji Takeda,T.N.,Minoru Fujii,Satoru Miura,and Shinji Hayashi,Surface plasmon polariton mediated photoluminescence from excitons in silicon nanocrystals.Applied Physics Letters,2006.89:p.101907.
    87.Eiji Takeda,M.F.,Toshihiro Nakamura,Yugo Mochizuki,and Shinji Hayashi,Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons.Journal of Applied Physics,2007.102:p.023506.
    88.Hans Mertens,J.S.B.,Harry A.Atwater,and Albert Polman,Polarization-selective plasmon-enhanced silicon quantum-dot luminescence.Nano Letters,2006.6(11):p.2622.
    89.Julie S.Biteen,D.P.,Nathan S.Lewis,and Harry A.Atwater,Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters.Nano Letters,2005.5(9):p.1768.
    90.S.Pillai,K.R.C.,T.Trupke,G.Zhang,J.Zhao,and M.A.Green,Enhanced emission from Si-based light-emitting diodes using surface plasmons.Applied Physics Letters,2006.88:p.161102.
    91.Xuan Tang,Y.H.,Yuxuan Wang,Wei Zhang,and Jiangde Peng,Tunable surface plasmons for emission enhancement of silicon nanocrystals using Ag-poor cermet layer.Applied Physics Letters,2008.92:p.251116.
    92.Aoxiang Lin,S.B.,Dae Seung Moon,Hye Jeong,Youngjoo Chung,and Won-Tack Han,Luminescence enhancement by Au nanoparticles in Er~(3+)-doped germano-silicate optical fiber.Optics Express,2007.15(14):p.8603.
    93.E.Verhagen,A.L.T.,and A.Polman,Erbium luminescence imaging of infrared surface plasmon polaritons.Applied Physics Letters,2006.88:p.121121.
    94.J.Kalkman,L.K.,and A.Polman,Coupling of Er ions to surface plasmons on Ag.Applied Physics Letters,2005.86:p.041113.
    95.Masanori Fukushima,N.M.,Minoru Fujii,Hisao Yanagi,and Shinji Hayashi,Enhancement of 1.54-um emission from Er-doped sol-gel SiO_2 films by Au nanoparticles doping.Journal of applied physics,2005.98:p.024316.
    96.Polman,H.M.a.A.,Plasmon-enhanced erbium luminescence.Applied Physics Letters,2006.89:p.211107.
    97.Takeho Aisaka,M.F.,and Shinji Hayashi,Enhancement of upconversion luminescence of Er doped Al_2O_3 films by Ag island films.Applied Physics Letters,2008.92:p.132105-1.
    98.Zhou,Y.W.a.Z.,Strong enhancement of erbium ion emission by a metallic double grating.Applied Physics Letters,2006.89:p.253122.
    99.Sebastian Gerber,F.R.,Ulrich Hohenester,Thomas Schlagenhaufen,Joachim R.Krenn,and Alfred Leitner,Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures.Physical Review B,2007.75:p.073404.
    100.Tomokatsu Hayakawa,S.T.S.,and Masayuki Nogami,Field enhancement effect of small Ag particles on the flluorescence from Eu~(3+) doped SiO_2 glass.Appl.Phys.Lett.,1999.74(11):p.1513-1515.
    101.Barnes,S.W.a.W.L.,Surface plasmon-polariton mediated light emission through thin metal films.Optics Express,2004.12(16):p.3673.
    102.D.M.Koller,A.H.,H.Ditlbacher,N.Galler,F.R.Aussenegg,A.Leitner,J.R.Krenn,S.Sax,and E.J.W.List,Srface plasmon coupled electroluminescent emission.Advanced Functional Materials,2008.92:p.103304.
    103.J.Bellessa,C.B.,and J.C.Plenet,Strong coupling between surface plasmons and excitons in an organic semiconductor.Physical Review Letters,2004.93(3):p.036404.
    104.Jean Cesarion,M.U.G.,Stephanie Cheylan,William.L.Barnes,Stefan Enoch,and Romain Quidant,Coupling localized and extended plasmons to improve the light extraction through metal films.Optics Express,2007.15(17):p.10533.
    105.Peter A.Hobson,S.W.,Jon A.E.Wasey,fan Sage,and William L.Barnes,Surface plasmon mediated emission from organic light-emitting diodes.Advanced Materials,2002.14(19):p.1393.
    106.Ziyao Wang,Z.C.,Zhihao Lan,Xiaofeng Zhai,Weimin Du,and Qihuang Gong,Enhancement of Alq_3 fluorescence by nanotextured silver films deposited on porous alumina substrates.Applied Physics Letters,2007.90:p.151119.
    107.Barry P.Rand,P.P.,and Stephen R.Forrest,Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters.J.Appl.Phys.,2004.96:p.7519-7526.
    108.S.H.Lim,W.M.,P.Matheu,D.Derkacs,and E.T.Yu,Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles.J.Appl.Phys.,2007.101:p.104309-104315.
    109.S.Pillai,K.R.C.,T.Trupke,and M.A.Green,Surface plasmon enhanced silicon solar cells.J.Appl.Phys.,2007.101:p.093105-093112.
    110.D.Derkacs,S.H.L.,P.Matheu,W.Mar,and E.T.Yu,Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles.Appl.Phys.Lett.,2006.89:p.093103-1-3.
    111.Howard R.Stuart,a.D.G.H.,Island sized effects in nanoparticle-enhanced photodetectors.Appl.Phys.Lett.,1998.73:p.3816-3817.
    112.Keisuke Nakayama,K.T.,and Harry A.Atwater,Plasmonic nanoparicle enhanced ligth absorption in GaAs solar cells.Appl.Phys.Lett.,2008.93:p.121904-1-3.
    113.P.Matheu,S.H.L.,D.Derkacs,C.McPheeters,and E.T.Yu,Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices.Appl.Phys.Lett.,2008.93:p.113108-1-3.
    114.Sri Prya Sundararajan,N.K.G.,Nikolay Mirin,and Naomi J.Halas,Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode.Nano Lett.,2008.8:p.624-630.
    115.Stefan A.Maier,M.L.B.,Pieter G.Kik,Sheffer Meltzer,Ari A.G.Requicha,and Harry A.Atwater,Plasmonics-A route to nanoscale optical devices.Adv.Mater,2001.13:p.1501-1505.
    116.Ozbay,E.,Plasmonics:Merging photonics and electronics at nanoscale dimensions.Science,2006.311:p.189-193.
    117.P.Berini,R.C.,N.Lahoud,and G.Mattiussi,Characterization of long-range surface-plasmon-polariton waveguides.J.Appl.Phys.,2005.98:p.043109-1-3.
    118.Stefan A.Maier,M.D.F.,Paul E.Barclay,and oskar Painter,Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing.Appl.Phys.Lett.,2005.86:p.071103-1-3.
    119.Wataru Nomura,M.O.,and Takashi Yatsui,Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion.Appl.Phys.Lett.,2005.86:p.181108-1-3.
    120.Leilei Yin,V.K.V.-V.,John Pearson,Joh M.Hiller,Jiong Hua,Ultich Welp,Dennis E.Brown,and Clyde W.Kimball,Subwavelenght focusing and guiding of surface plasmons.Nano Lett.,2005.5:p.1399-1402.
    121.Sergey I.Bozhevolnyi,a.V.M.S.,Nanophotonics with surfaceplasmons—Part Ⅰ.Photonics Spectra,2006:p.58-66.
    122.Vladimir M.Shalaev,a.S.I.B.,Nanophotonics with surface plasmons—Part Ⅱ.Photonics Spectra,2006:p.66-72.
    123.EI-Sayed,S.E.a.M.A.,Why gold nanoparticles are more precious than pretty gold:Boble metal surface plasmon resoance and its enhancement of the raiative and nonradiative properties of nanocrystals of different shapes.Chem.Soc.Rev.,2006.35:p.209-217.
    124.Fendler,E.H.a.J.H.,Exploitation of localized surface plasmon resonance.Adv.Mat.,2004.16:p.1685-1706.
    125.N.Felidj,J.A.,and G.Levi,Controlling the optical response of regular arrays of gold particles for surface-enhanced raman scttering.Phys.Rev.B,2002.65:p.075419-1-9.
    126.W.Gotschy,K.V.,A.Leitner,F.R.Aussenegg,Thin films by regular patterns of metal nanoparticles.Appl.Phys.B,1996.63:p.381-385.
    127.Wenyu Huang,W.Q.a.M.A.E.-S.,Optically detected coherent picosecond lattice oscillations in two dimensioanl arrays of gold nanocrystals of different sized and shaped induced by femtosecond laser pulses.Proc.SPIE,2005.5927:p.592701-1-9.
    128.Amanda J.Haes,P.H.,Lei Chang,William L.Klein,and richard P.Van Duyne,A localized surface plasmon resonance biosensor:First steps toward an assay for alzheimer's disease.Nano Lett.,2004.4:p.1029-1034.
    129.Amanda J.Haes,J.Z.,Shengli Zou,Christopher S.Own,Laurence D.Marks,George C.Schatz,and Richard P.Van Duyne,Solution-phase,triangular Ag nanotriangles fabricated by nanosphere lithography.J.Phys.Chem.B,2005.109:p.11158-11162.
    130.Caixia Kan,X.Z.,and Guanghou Wang,Single-crystalline gold microplates:syntheis,characterization,and thermal stability.J.Phys.Chem.B,2006.110:p.4651-4656.
    131.Jian Yang,J.-C.W.,Yi-Chou Wu,Juen-Kai Wang,Chia-Chun Chen,Organic solvent dependence of plasmon resonance of gold nanorods:A simple relationship.Chem.Phys.Lett,2005.416:p.215-219.
    132.Moskovits,M.,Surface-enhanced spectroscopy.Rev.Mod.Phys,1985.57:p.783.
    133.Krishanu Ray,R.B.,and Joseph R.Lakowicz,Distance-dependent metal-enhanced fluorescence from langmuir-blodgett monolayer of Alkyl-NBD derivatives on silver island films.Langmuir,2006.22:p.8374.
    134.Olga Kulakovich,N.S.,Alexandr Yaroshevish,Sergey Maskevich,Sergey Gaponenko,Igor Nabiev,Ulrike Woggon,and Mikhail Artemyev,Enhanced luminescence of CdSe quantum dots on gold colloids.Nano Letters,2002.2(2):p.1449.
    135.Joseph R.Lakowicz,Y.S.,Sabato D'Auria,Joanna Makicka,Jiyu Fang,Zygmunt Grycznski,and Ignacy Gryczynski,Radiative decay engineering 2.Effect of silver island films on fluorescence intensity,lifetimes,and resonance energy transfer.Anal.BioChem.,2002.301:p.261-277.
    136.D.A.Weitz,S.G.,C.D.Hanson,and T.J.Gramila,Flurescent lifetimes of molecules on silver-island films.Optics Letters,1982.7:p.89.
    137.Saito,K.,Quenching of excited J aggregates on metalls by surface plasmon excitation.J.Phys.Chem.,1999.103:p.6579-6582.
    138.Jose Dintinger,S.K.,and Thomas W.Ebbesen,Molecule-surface plamon interactions in hole arrays:enhanced absorption,refractive index changes,and all-optical switching.Adv.Mater.,2005.18:p.1267-1271.
    139.Jung-Hong Song,T.A.,Sufei Shi,Hayato Urabe,and Arto V.Nurmikko,Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons.Nano Letters,2005.5(8):p.1557.
    140.Alpan Bek,R.J.,Moritz Ringler,Sergiy Mayilo,Thomas A.Klar,and Jochen Feldmann, Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches.Nnao Lett.,2008.8:p.485-490.
    141.Yeechi Chen,K.M.,and David S.Ginger,Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resoant singel silver nanoparticles.Nano Lett.,2007.7:p.690-696.
    142.Zygmunt gryczynski,E.G.M.,Nils Calander,Jian Zhang,Joseph R.Lakowicz and Grycaynski,Surface plasmon coupled emission,in Surface plasmon nanophotonics,a.P.G.K.Mark L.Brongersma,Editor.2007,Springer:The Netherland.
    143.Ignacy Grycaynski,J.M.,Zygmunt Grycaynski,and Joseph R.Lakowicz,Surface plasmon-coupled emission with gold films.J.Phys.Chem.B,2004.108:p.12568-12574.
    144.Joanna Malicka,I.G.,Zygmunt Grycznski,and Joseph R.Lakowicz,DNA hybridization usin surface plasmon-coupled emission.Anal.Chem.,2003.75:p.6629-6633.
    145.Joanna Malicka,I.G.,Zygmunt Grycznski,and Joseph R.Lakowicz,Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole.J.Phys.Chem.B,2004.108:p.19114-19118.
    146.Lucy H.Smith,J.A.E.W.,Ifor D.W.Samuel,and William L.Barnes,Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield.Advanced Functional Materials,2005.15:p.1839.
    147.L.H.Smith,J.A.E.W.,and W.L.Barnes,Light outcoulpling efficiency of top-emitting organic light-emitting diodes.Applied Physics Letters,2004.84(16):p.2986.
    148.P.A.Hobson,J.A.E.W.,I.Sage,and W.L.Barnes,The role of surface plasmons in organic light-emitting diodes.IEEE Journal on selected topics in quantum electronics,2002.8(2):p.378.
    149.A.Wokaun,H.-P.L.,A.P.King,U.P.Wild,and R.R.Ernst,Energy transfer in surface enhanced luminescence.J.Chem.Phys.,1983.79:p.509.
    150.A.Campion,A.R.G.,C.B.Harris,H.J.Robota,P.M.Whitemore,Electronic energy transfer to metal surfaces:a test of classical image dipole theory at short distances.Chem.Phys.Lett.,1980.73:p.447-450.
    151.Lakowicz,J.R.,Radiative decay engineering:Biophysical and biomedical applications.Anal.BioChem.,2001.298:p.1-24.
    152.S.Tamil Selvan,T.H.,and Masayuki Nogami,Remarkable influence of silver islands on the enhancement of fluorescence from Eu~(3+) ion doped silica gels.J.Phys.Chem.,1999.103:p.7064-7067.
    153.Joel Gersten,A.N.,Spectroscopic properties of molevules interacting with small dielectric particles.J.Chem.Phys,1981.75:p.1139-1151.
    154.Chew,H.,Transition rates of atoms near spherical surfaces.J.Chem.Phys,1987.87:p.1355-1360.
    155.E.Dulkeith,M.R.,T.A.Klar,and J.Feldmann,Gold nanoparticles quench flurescence by phase induced radiative rate suppression.Nano Lett.,2005.5:p.585-589.
    156.Jaebeom Lee,T.J.,Timur Skeini,Alexander O.Govorov,Garnett W.Bryant,and Nicholas A.Kotov,Bioconjugated Ag nanoparticles and CdTe nanowires:metamaterials with field-enhanced light absorption.Angew.Chem.Int.Ed.,2006.45:p.1.
    157.Jaebeom Lee,A.O.G.,John Dulka,and Nicholas A.Kotov,Bioconjugates of CdTe nanowires and Au nanoparticles:plasmon-exciton interactions,luminescence enhancement,and collective effects.Nano Letters,2004.4(12):p.2323.
    158.Aroca,R.,Fluorescence enhancement from langmuir-blodgett monolayers on silver island films.Langmuir,1988.4:p.518.
    159.Lakowicz,J.R.,Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission.Anal.BioChem.,2005.337:p.171-179.
    160.Felicia Tam,G.P.G.,Bruce R.Johnson,and Naomi J.Halas,Plasmonic enhancement of molecular fluorescence.Nano Letters,2007.7(2):p.496.
    161.N.E.Hecker,R.A.H.,N.Sawaki,Enhanced light emission from a single quantum well located near a metal coated surface.Physca E,1998.2:p.98-101.
    162.Jelena Vuckovic,M.L.,and Axel Scherer,Surface plasmon enhanced light-emitting diode.IEEE Journal of Quantum Electronics,2000.36(10):p.1131.
    163.Shen,K.-C.,Polarization dependent coupling of surface plasmon on a one-dimensinal Ag grating with an InGaN/GaN dual-quantum-well structure.Appl.Phys.Lett.,2008.92:p.013108-1-3.
    164.Cheng-Yen Chen,D.-M.Y.,Yen-Cheng Lu,and C.C.Yang,Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure.Applied Physics Letters,2006.89:p.203113.
    165.Zhou,Y.W.a.Z.,Silicon optical amplifier based on surface-plasmon-polariton enhancement.Applied Physics Letters,2007.91:p.053504.
    166.Okulbo,K.I.a.T.,Spectral narrowing of the emission from rhodamine 6G infiltrated in synthetis opals enhanced by the surface plasmon resonance.Applied Physics Letters,2003.83(13):p.2536.
    167.Takayuki Okamoto,F.H.D.,and Satoshi Kawata,Towards plasmonic band gap laser.Applied Physics Letters,2004.85(18):p.3968.
    168.G.D.Dice,S.M.,and A.Y.Elezzabi,Plasmonically enhanced diffusive and subdiffusice metal nanoparticle-dye random laser.Applied Physics Letters,2005.86:p.131105.
    169.O.Popov,A.Z.,and D.Davidov,Random lasing from dye-gold nanoparticles in polymer films:enhanced gain at the surface-plasmon-resonance wavelength.Applied Physics Letters,2006.89:p.191116.
    170.Mine,M.K.a.S.,Novel lasing action in dye-doped polymer films coated on large pseudotabular Ag islands.J.Phys.Chem.B,2006.110:p.15052-15054.
    171.A.Kock,W.B.,K.Berthold,and E.Gornik,Surface plasmon polariton enhanced light emission from schottky diodes.Appl.Phys.Lett,1987.52:p.1164-1166.
    172.A.Kock,E.G.,Strongly directional emission from AlGaAs/GaAs light-emitting diodes.Appl.Phys.Lett,1990.57:p.2327-2327.
    173.Barnes,P.T.W.a.W.L.,Efficient coupling of surface plasmon polaritons to radiation using a bi-grating.Appl.Phys.Lett,2001.79:p.3035-3037.
    174.Dawn K.Gifford,a.D.G.H.,Extraordinary transmission of organic photoluminescence through an otherwise opaque jmetal layer via surface plasmon cross coupling.Appl.Phys.Lett,2002.80:p.3679-3681.
    175.P.A.porta,M.H.,and H.D.Summers,Surface plasmon mediated emission in resonant-cavity light-emitting doides.Appl.Phys.Lett,2006.89:p.121120-121122.
    176.Dong-Ming Yeh,C.-F.H.,Cheng-Yen Chen,Yen-Cheng Lu,and C.C.Yang,Surface plasmon coupling effect in an InGaN/GaN sigle-quantum-well.Appl.Phys.Lett,2007.91:p. 171103-1-3.
    177.Beak-Hyun Kim,C.-H.C.,Jin-Soo Mun,Min-Ki Kwon,Tae-Young Park,Jong Su Kim,Clare Chisu Byeon,Jongmin Lee,and Seong-Ju Park,Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons.Adv.Mat.,2008.20:p.1253-1267.
    178.Min-Ki Kwon,J.-Y.K.,Baek-Hyun Kim,Il-Kyu Park,Chu-Young Cho,Clare Chisu Byeon,and Seong-Ju Park,Surface-plasmon-enhanced light-emitting diodes.Adv.Mat.,2008.20:p.1253-1257.
    179.Mike Salib,L.L.,Richard Jones,Mike Morse,Ansheng Liu,Dean Samara-Rubio,Drew Alduino,and Mario Paniccia,Silicon Photonics.Intel Technology Journal,2004.8:p.143-160.
    180.Vilson R.Almeida,C.A.B.,Roberto R.Panepucci,and Michal Lipson,All-optical control of light on a silicon chip.Nature,2004.431:p.1081-1084.
    181.Ning,T.H.,Osbum,C.M.and Yu H.N.,Effect of electron trapping on IGFET characeristics.J.Electron.Mater.,1977.6:p.65-76.
    182.Robertson J.,a,P.M.J.,Gap states in silicon nitride.Appl.Phys.Lett.,1984.44:p.415-417.
    183.W.A.P.Classen,W.G.J.N.V.,M.F.C.Willemsen,Influence of depostion teperature,gas pressure,gas composition,and RF frequency on composition and mechanical stress of plasma silicon nitride layers.J.Electrochem.Soc.,1985.132:p.893-898.
    184.C.M.Mo,L.Z.,C.Xie,Luminescence of nanometer-sized amorphous silicon nitride solids.J.Appl.Phys.,1993.73:p.5185-5188.
    185.Gulari,S.V.D.a.E.,Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition.J.Appl.Phys.,1995.77:p.6534-6541.
    186.T.Y.Kim,N.m.P.,K.H.Kim,Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films.Appl.Phys.Lett.,2004.85:p.5355-5357.
    187.Y.Q.Wang,Y.G.W.,L.Cao,High-efficiency visible photoluminescence from amorphous silicon nanoparticles embeded in silicon nitride.Appl.Phys.Lett.,2003.83:p.3474-3476.
    188.L.D.Negro,J.H.Y.,L.C.Kimerling,Light emission from silicon-rich nitride nanostructures.Appl.Phys.Lett.,2006.88:p.183103-1-3.
    189.L.D.Negro,J.H.Y.,J.Michel,Light emission efficiency and dynamics in silicon-rich silicon nitride films.Appl.Phys.Lett.,2006.88:p.233109-233111.
    190.M.H.Wang,D.S.L.,Z.Z.Yuan,and D.R.Yang,Photoluminescence of si-rich silicon nitride defect-ralated states and silicon nanoclusters.Appl.Phys.Lett.,2007.90:p.131903-1-3.
    191.H.L.Hao,L.K.W.,W.Z.Shen,Origin of visible luminescence in hydrogenated amorphous silicon nitride.Appl.Phys.Lett.,2007.91:p.201922-1-3.
    192.B.-Y.Oh,M.-C.J.,T.-H.Moon,W.Lee,J.-M.Myoung,,J.-Y.Hwang,and D.-S.Seo,Transparent conductive Al-doped ZnO films for liquid crystal displays.J.Appl.Phys.,2006.99:p.124505-1-3.
    193.N.Izyumskaya,V.A.,U.Ozg 黵,Y.I.Alivov,and H.Morkoc,,Preparation and properties of ZnO and devices.Phys.Sta.Sol.B,2007.244:p.946-956.
    194.Owen,T.L.T.a.S.J.T.,Conductivity of Si-ZnO p-n and n-n heterojunctions".J.Appl.Phys.,1984.55:p.454-459.
    195.Cho,D.G.B.a.S.M.,Application of sol-gel derived films for ZnO/n-Si junction solar cells.Thin Solid Films,1999.354:p.227-231.
    196.H.Y.Kim,J.H.K.,Y.J.Kim,K.H.Chae,C.N.Whang,J.H.Song,and S.Im,Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures.Opt.Mat.,2001.17:p.141-144.
    197.Basak,S.M.a.D.,Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction.J.Appl.Phys.,2007.143:p.083102.
    198.H.Sun,Q.F.Z.,and J.L.Wu,Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure.Nanotechnology,2006.17:p.2271-2274.
    199.J.D.Ye,S.L.G.,S.M.Zhu,W.Liu,S.M.Liu,R.Zhang,Y.Shi,and Y.D.Zheng,Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions.Appl.Phys.Lett.,2006.88:p.182116-1-3.
    200.Z.Z.Ye,J.G.L.,Y.Z.Zhang,Y.J.Zeng,L.L.Chen,F.Zhuge,G.D.Yuan,H.P.He,L.P.Zhu,J.Y.Huang,and B.H.Zhao,ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers.Appl.Phys.Lett.,2007.91:p.113503-1-3.
    201.Peiliang Chen,X.M.,and Deren Yang,Fairlypure ultraviolet electroluminescence from ZnO-based light-emitting devices.Appl.Phys.Lett.,2006.89:p.111112-1-3.
    202.Xiangyang Ma,P.C.,Dongsheng Li,Yuanyuan Zhang,and Deren Yang,Electrically pumped ZnO films ultraviolet random laser on silicon substrate.Appl.Phys.Lett.,2007.91:p.251109-1-3.
    203.Akio Kobori,S.H.,Hitoshi Suda,Isao Saito,and Kazuhiko Nakatani,The SPR sensor detecting cytosine-cytosine mismatches.J.Am.Chem.Soc.,2004.126:p.557-562.
    204.Kruszewski,S.,Surface enhanced raman scattering phenomenon.Cryst.Res.Technol,2006.41:p.562-569.
    205.G.Xu,M.T.,P.Jin,S.Nakao,Surface plasmon resonance of sputtered Ag films:substrate and mass thickness dependence.Appl.Phys.A,2005.80:p.1535-1540.
    206.P.Royer,J.P.G.,R.J.Warmack,and T.L.Ferrell,Substrate effects on surface-plasmon spectra in metal-island films.Phys.Rev.B,1987.35:p.3753-3562.
    207.R.Guipta,M.J.D.,and W.A.Weimer,Preparation and characterization of surface plasmon resonance tunable gold and silver films.J.Appl.Phys.,2002.92:p.5264-5271.
    208.Granqvist,T.A.a.C.G.,Morphology and size distributions of islands in discontinuous films.J.Appl.Phys.,1976.48:p.1673-1679.
    209.S.W.Kennerly,J.W.L.,R.J.Warmack,and T.L.Ferrell,Optical properties of heated Ag films.Phys.Rev.B,1984.29:p.2926-2929.
    210.Barnes,W.A.M.a.W.L.,Plasmonic materials.Adv.Mater.,2007.19:p.3771-3782.
    211.Kwan Kim,H.S.K.,and Hyoung Kun Park,Facile method to prepare surface-enhanced-raman-scttering-active Ag nanostructures on silica spheres.Langmuir,2006.22:p.8083-8088.
    212.Paula A.Schueler,J.T.I.,Fern.Delacrocix,William B.Lacy,Physical structure,optical resonance,and surface-enhanced raman scattering of silver-island films on suspended polymer latex paticles.Anal.Chem.,1993.65:p.3177-3186.
    213.Wen Dong,H.D.,Zhenlin Wang,Peng Zhan,Ziqin Yu,Xiaoming Zhao,Yongyuan Zhu,and Naiben Ming,Ordered arrays of gold nanoshells interconnected with golc nanotubes fabricated by double templating.Adv.Mater.,2005.18:p.755-759.
    214.Fei Le,D.W.B.,Yaroslav A.Urzhumov,Hui Wang,Janardan Kundu,Naomi J.Halas,Javier Aizpurua,and Peter Nordlander,Metallic nanoparticle arrays:A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption.ACS NANO,2008.4:p.707-718.
    215.Felicia Tam,C.M.a.N.H.,Geometrical parameters controlling sensitivity of nanoshell plasmon responces to changes in dielectric enviroment.J.Phys.Chem.B,2004.108:p.17290-17294.
    216.Jack J.Mock,D.R.S.,and Sheldon Schultz,Local refractive index dependence of plasmon resonance spectra from individual nanoparicles.Nano Lett.,2003.3:p.485-491.
    217.B.Lin,Z.F.,and Y.Jia,Green luminescent center in undoped zinc oxide films deposited on silicon substrates.Appl.Phys.Lett.,2001.79:p.943-945.
    218.Vamsi K.Komarada,Y.P.R.,A.L.Bradley,Stephen J.Byrne,Yurii K.Gunko,N.Gaponik and A.Eychmuller,Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots.Appl.Phys.Lett.,2006.89:p.253118.
    219.Armando Giannattasio,I.R.H.,and William L.Barnes,Transmission of light through thin silver films via surface plasmon-polaritons.Optics Express,2004.12(24):p.5881.
    220.Wen-Hung Chuang,J.-Y.W.,C.C.Yang,and Yean-Woei Kiang,Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter.Appl.Phys.Lett.,2008.92:p.133115-1-3.
    221.Ong,J.L.a.H.C.,Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films.Appl.Phys.Letters,2008.92:p.121107.
    222.Eun-Hyun Park,J.J.,Shalini Gupta,Ianf Ferguson,Cheol-Hoi Kim,Soo-Kun Jeon,and Joong-Seo Park,Air-voids embeded high efficiency InGaN-light emitting diode.Appl.Phys.Lett.,2008.93:p.191103.
    223.Z.Wu,Z.,Mi,P.Bhattachaya,Enhanced spontaneous emission at 1.55um from colloidal PbSe quantum dots in a Si photonic crystal microcavity.Appl.Phys.Lett.,2007.90:p.171105.
    224.Rooman,R.W.a.C.,Impact of texture-enhanced transmission on high-efficiency surface-textured light-emittingdiodes.Appl.Phys.Lett.,2001.79:p.2315-2317.
    225.R.R.Chance,A.P.,and R.Silbery,Decay of an emitting dipole between two parallel mirrors.J.Chem.Phys.,1974.62:p.771-772.
    226.R.R.Chance,A.P.,and R.Silbery,Comments on the classical theory of energy transfer.J.Chem.Phys.,1975.62:p.2245-2253.
    227.Hall,W.R.H.a.D.G.,Frequency shifts of an electric-dipole resoance near a conducting surface.Phys.Rev.Lett.,1984.52:p.1041-1044.
    228.Sipe,J.M.W.a.J.E.,Quantum electrodynamics near an interface.Phys.Rev.A,1984.30:p.1185-1193.
    229.Hall,K.G.S.a.D.G.,Enhancement and inhibition of electromagnetic radiation in plane-layered media.J.Opt.Soc.Am.B,1997.14:p.1149-1159.
    230.Palik,E.D.,Handbook of optical constant of solid.1985:Academic.
    231.S.Kawabata,K.I.,Y.Hoshi,and T.Fukazawa,Observation of silver growth using an in situ ultra-high vaccum spectroscopic ellipsometer.Thin solid Films,1998.313-314:p.516-521.
    232.T.Nakamura,M.F.,K.Imakita,and S.Hayashi,Modification of energy transfer from si nanocrystals to Er3~+ near a Au thin film.Phys.Rev.B,2005.72:p.235412-1-6.
    233.Hall,B.J.S.a.D.G.,Energy transfer at optical frequency to silicon based waveguiding structures.J.Opt.Soc.Am.A,2001.18:p.2577-2584.
    234.Barnes,R.M.A.a.W.L.,Modification of the spontaneous emission rate of Eu3~+ ions close to a thin metal mirror.Phys.Rev.B,1997.55:p.7249-7254.
    235.J.Kalkan,H.G.,L.Kuipers,and A.polman,Excitation of surface plasmons at SiO2/Ag interface by silicon quantum dots:experiment and theory.Phys.Rev.B,2006.73:p.075317-1-8.
    236.M.Wang,M.X.,L.Ferraioli,Z.Yuan,D.Yang,and L.Pavesi,Light emission properties and mechnism of low-temperature prepared amorphous SiNx films.I.Room-temperature band tail states photoluminescnece.J.Appl.Phys.,2008.104:p.083504.
    237.Mustafa H.Chowdhury,K.R.,Kadir Aslan,Joseph R.Lakowicz,and Chris D.Geddes,Metal-enhanced fluorescence of phycobiliproteins from heterogeneous plasmonic nanostructures.J.Phys.Chem.C,2007.111:p.18856-18863.
    238.Sebastian Mackowski,S.W.,Andreas J.Maier,Tatas H.P.Brotosudarmo,,Metal-enhanced fluorescence of chlorophylls in single light-havesting complexes.Nano Lett.,2008.8:p.558-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700