基于硅纳米线波导的平面集成光器件的设计,制作与检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的光通信器件中,基于平面光集成(Planar Lightwave Circuit)工艺的光器件由于其具有低成本,适合大规模制造等方面的优势,在近年来已经逐渐脱颖而出,成为构建未来光网络不可或缺的重要组成部分。而在各种材料中,硅绝缘体(Silicon-On-Insulator)集成器件具有高折射率差,高集成度等众多优点,是当前研究的一个热点。本文主要针对基于硅纳米波导平台的几种光集成器件进行了研究,提出一些新的设计或改进,并对部分设计完成了试验制作以及光学性能检测。
     本文介绍了几种数值模拟方法,包括:标量衍射法(Scalar IntegrationMethod),束传播法(Beam Prooagation Method),时域有限差分法(Finite-differenceTime-domain Method),并将它们应用于各种光器件的设计当中。对于一些特殊情况,比如器件尺寸较大,同时需要分析器件的双向性能(比如反射特性),本文提出一种近似方法,将束传播法和时域有限差分法相结合,仅对其中存在反射界面的局部区域使用时域有限差分法,计算出相应的透射及反射场分布,然后再将这些光场分别作为正向和反向传播光场的源,利用束传播办法计算透射波及反射波在器件其他区域中的传播特性。该方法避免了直接对大尺寸器件进行FDTD模拟,大大降低了内存需要及运算时间,是一种有效的近似方法。
     本文阐述了器件制作中的各个相关工序。本文使用了由等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition)方法沉积的非晶硅(Amorohous Silicon)及二氧化硅构成的SOI平台,来代替通常商用的SOI硅片。该办法的优点在于能灵活选择参数如各层薄膜厚度、折射率等,方便器件的设计与优化。缺点是非晶硅比单晶硅(Crystalline Silicon)具有更大的损耗。我们沉积的非晶硅经过测量,其材料损耗最好情况约为1.5dB/cm,完全可以接受。器件图案的形成使用了电子束曝光(Electronic Beam Lithography)来代替传统的光刻,以达到更高的分辨率(~100纳米)。刻蚀方法采用电感耦合等离子体—反应离子刻蚀(Inductively Coupled Plasma-Reactive Ion Etching)工艺,以获得较好的方向性和分辨率。
     器件的光学性能测试采用了两种方法:端面耦合法(End-fire Method)和垂直耦合法(Vertical Coupling Method)。垂直耦合法是在输入波导和输出波导表面上利用套刻的办法,做上一系列浅刻蚀光栅,然后将光线从垂直方向上进行耦合。该方法比端面耦合法具有较高的耦合效率,但是并不适合于器件的最后封装。
     本文首先对基于硅纳米波导平台的蚀刻衍射光栅波分复用器(EtchedDiffraction Grating Multi/Demultiplexer)进行了一系列的研究。设计并制作了基于全内反射(Total Internal Reflection)齿面的EDG,测量结果显示,与相同器件参数但未采用TIR齿面设计的EDG相比,衍射效率增加超过3dB。本文提出了一种基于交叉衍射级次(Cross-order)的EDG,仅用单一的EDG实现了对1310纳米、1490纳米及1550纳米三个信道的单纤三向器件(Triplexer),并进行了制作和检测,该器件可以应用于无源全光网络(Passive Optical Networks)的接入网方案中,用以实现三网合一服务(Triple Play Service)。文中还对硅纳米波导EDG的偏振特性进行了分析,讨论了两种偏振补偿的办法。
     本文也在硅纳米波导平台上制作了一种基于柱状光子晶体的谐振腔结构。该谐振腔的理论品质因素(Q value)在10~4量级,实际测得最高的Q值在20000以上。该结构由于是基于柱状而非孔状光子晶体,更适合于传感方面的应用,并且测量显示这种谐振腔的峰值波长对光子晶体半径及背景介质折射率极为敏感,具有很高的灵敏度。
Optical devices based on Planar Lightwave Circuit (PLC) technology have well been studied due to their inherited advantages from Integrated Circuits (IC), such as: small size, high reliability, mass production and potential integration with microelectronics. Among all the materials, silicon nanowire platform gains more and more interests. The large refractive index difference between core and cladding allows tremendous reduction of the component size. This thesis studies theoretically and experimentally some integrated optical devices based on silicon nanophotonic platform, including echelle grating demultiplexers and photonic crystals.
     Some of the numerical methods are introduced first. Scalar integral diffraction method is efficient for calculating the diffraction efficiency of gratings. Beam propagation method and finite-difference time-domain method are also introduced, for simulating the light propagation along the devices. A combined method based on BPM and FDTD method is introduced, which can save the memory and time for simulation to a large extent.
     The fabrication technology and characterization methods are described. The fabrication steps involve: plasma assisted film deposition, E-beam lithography, RIE-etching. All these steps are proceeded under cleanroom environment. The characterization is mainly based on two methods: end-fire coupling and vertical grating coupling. The grating coupler is more efficient compared with the butt-coupling between fiber and nanowires, but is worse solution for final packaging. Several types of components have been realized and characterized with the above technology. The echelle grating demultiplexer is one of the key components in WDM networks. A method for increasing the diffraction efficiency based on total internal reflection is applied, which increases the efficiency by more than 3dB. A cross-order echelle grating-based triplexer, a bidirectional transceiver for application in the Passive Optical Networks (PON), has been designed and fabricated, which can multi/demultiplex three channels located at 1310nm, 1490nm and 1550nm. Photonic crystal devices are also addressed in the thesis. A silicon pillar type photonic crystal cavity has been fabricated with the measured Q value as high as about 2.5×10~4. It can be used for some bio-sensing applications and has an extremely high sensitivity for the changing of the background material.
引文
1.解奕鹏,解金山.光纤通信网向全光网络的演进[J].世界网络与多媒体,10(2),49-51,2002.
    2.黄勇宁.WDM与TDM技术的比较.光纤与电缆及其应用技术[J],(4),6-9,2002.
    3.江建平.半导体集成光电子学.电子工业出版社.1993.
    4.L.Thylen,S.He,L.Wosinski,and D.Dai.Moore's law for photonic integrated circuits,J.Zhejiang Univ.SCI.,7(12),1961-1967,2006.
    5.B.E.A.Saleh,and M.C.Teich.Fundamentals of Photonics,Wiley,New York,2nd edition,1991.
    6.R.Ramponi,M.Marangoni,and R.Osellame.Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO_3 waveguide,Appl.Phys.Lett.,78(15),2098-2100,2001.
    7.M.Takenaka and Y.Nakano.InP photonic wire waveguide using InAlAs oxide cladding layer,Opt.Express,15(13),8422-8427,2007.
    8.Y.Li,and C.Henry.Silica-based optical integrated circuits,IEE proceedings in Optoelectronics,143(5),263-280,1996.
    9.P.D.Trinh,S.Yegnanarayanan,F.Coppinger,and B.Jalali.Silicon-on-insulator (SOI) phased-array wavelength multi/multiplexer with extremely low-polarization sensitivity,IEEE Photon.Technol.Lett.,9(7),940-942,1997.
    10.G.Roelkens,D.V.Thourhout,and R.Baets.Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,Opt.Express,15(16),10091-10096,2007.
    11.Yang,Q.Zhou,and R.T.Chen.Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,Appl.Phys.Lett.,81(16),2947-2949,2002.
    12.A.Liu,H.Rong,R.Jones,O.Cohen,D.Hak,and M.Paniccia.Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,J.Lightwave Technol.,24(3),1440-1455,2006.
    13.C.Manolatou,and M.Lipson.All-optical silicon modulators based on carrier injection by two-photon absorption,J.Lightwave Technol.,24(3),1433-1439,2006.
    14.L.Pavesi,and G.Guillot.Optical interconnects:the silicon approach,Springer,New York,2006.
    15.E.Gini,W.Hunziker,and H.Melchior.Polarization independent InP WDM multiplexer/demultiplexer module,IEEE J.Lightwave Technol.,16(4),625-630,1998.
    16. Z. Shi, J.-J. He, and S. He. Waveguide echelle grating with low polarization-dependent loss using single-side metal-coated grooves, IEEE Photon.Tech. Lett., 16(8), 1885-1887,2004.
    
    17. M. S. D. Smith, and K. A. McGreer. Diffraction gratings utilizing total internal reflection facets in Littrow configuration, IEEE Photon. Tech. Lett., 11(1), 84-86,1999.
    
    18. S. Y. Sadov, and K. A. McGreer. Polarization dependence of diffraction gratings that have total internal reflection facets, J. Opt. Soc. Amer. A, 17(9), 1590-1594,2002.
    19.盛钟延.光通信中集成蚀刻衍射光栅波分复用器的研究,博士论文,浙江大学,2004.
    
    20. J.J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. Koteles.Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP, IEEE J. Lightwave Technol., 16(4), 631-638,1998.
    
    21. E. Koteles. Integrated planar waveguide demultiplexers for high-density WDM applications, Fiber and Integrated Optics, 18,211-244, 1999.
    
    22. W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, and M. Liu. Silicon-on-Insulator-based compact optical demultiplexer employing etched diffraction grating, CHN. Phys. Lett., 21(7), 1265-1267, 2004.
    
    23. J. Brouckaert, W. Bogaerts, P. Dumon, V. Thourhout, and R. Baets. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform.
    
    24. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58(20), 2059-2062,1987.
    
    25. S. John. Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58(23), 2486-2489, 1987.
    
    26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic crystals:Molding the flow of light, second edition, Princeton university press, New Jersey,2008.
    
    27. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science, 289, 604-606,2000.
    
    28. Y. Vlasov, X. Bo, J. Sturm, and D. Norris. On-chip natural assembly of silicon photonic bandgap crystals, Nature, 414, 289-293,2001.
    
    29. T. F. Krauss, R. M. De La Rue, and S. Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383, 699-702, 1996.
    
    30. G. Johnson, S. Fan, P. R. Villeneuve, J.D. Joannopoulos, and L.A. Kolodziejski.Guided modes in photonic crystal slabs, Phys. Rev. B, 60(8), 5751-5758, 1999.
    
    31. E. Chow, S. Lin, S. Johnson, P. Villeneuve, J. Joannopoulos, J. Wendt, G. Vawter,W. Zubrzycki, H. Hou, and A. Alleman. Three-dimensional control of light in a two-dimensional photonic crystal slab, Nature, 407,983-986,2000.
    
    32. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R.M. De La Rue, U. Oesterle, and R. Houdre. Low-loss channel waveguides with two-dimensional photonic crystal boundaries, Appl.Phys. Lett., 77(18), 2813-2815,2000.
    
    33. X. Ao, L. Liu, L. Wosinski, and S. He. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type, Appl. Phys. Lett., 89(17), 171115,2006.
    
    34. V. Zabelin, L. Dunbar, N. Thomas, and R. Houdre. Self-collimating photonic crystal polarization beam splitter, Optics Lett., 32(5), 530-532, 2007.
    
    35. M. Tekeste, and J. Yarrison-Rice. High efficiency photonic crystal based wavelength demultiplexer, Optics Exp., 14(17), 7931-7942, 2006.
    
    36. T. Niem, L.H. Frandsen, K.K. Hede, A. Harpoth, P.I. Borel, and M. Kristensen. Wavelength-division demultiplexing using photonic crystal waveguides, IEEE Photon.Technol. Lett., 18(1), 226-228,2006.
    
    37. Z. Zhang, and M. Qiu. Small-volume wavelength-section high Q microcavities in 2D photonic crystal slabs, Optics Exp., 12(17), 3988-3995,2004.
    
    38. Y. Akahane, T. Asano, B. Song, and S. Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 425,944-947,2003.
    
    39. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl.Experimental demonstration of a high quality factor photonic crystal microcavity,Appl. Phys. Lett., 83(10), 1915-1917,2003.
    
    40. J.J. Burke, and G. I. Stegeman. Surface-polariton-like waves guided by thin, lossy metal films, Phys. Rev. B, 33(8), 5186-5201,1986.
    
    41. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma. Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A, 21(12),2442-2446,2004.
    
    42. F. Yang, J. Sambles, and G W. Bradberry. Long-range surface modes supported by thin films, Phys. Rev. B, 44(11), 5855-5872, 1991.
    
    43. M. Noginov, V. Podolskiy, G Zhu, M. Mayy, M. Bahoura, J. Adegoke, B. Ritzo,and K. Reynolds. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium, Optics Exp., 16(2), 1385-1932, 2008.
    
    44. M. Nezhad, K. Tetz, and Y. Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides, Optics Exp., 12(17), 2004.
    
    45. P. Kumar, V. Tripathi, and C. Liu. A surface plasmon laser, J. Appl. Phys., 104,033306, 2008.
    46. M. J. Adams. An introduction to optical waveguides, NewYork, Vail-Ballou Press Inc.
    
    47. K. Okanoto. Fundamentals of optical waveguides, New York. Academic Press,1981.
    
    48. K. Chiang. Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides, IEEE Transactions on Microwave Theory and Tech., 44(5), 692-700,1996.
    
    49. A. M. Zaghloul, and A. El-Fadl. A simple analytical approach to optical rib waveguides, NRSC'99, B9,1-8,1999.
    
    50. http://www.comsol.com.
    
    51. R. Ulrich. Light-propagation and imaging in planar optical waveguides, Nouv.Rev. Optique, 6(5), 253-264, 1975.
    
    52. R. Ulrich and G. Ankele. Self-imaging in homogeneous planar optical waveguides,Appl.Phys.Lett., 27(6), 337-339,1975.
    
    53. J. A. Ogilvy, Theory of wave scattering from random rough surfaces, IOP,London, 1992.
    
    54. J. V. Roy, J. V. der Donk, and P. E. Lagasse. Beam propagation method: Analysis and assessment, J. Opt. Soc. Amer., 71(7), 803-810, 1983.
    
    55. R. Scarmozzino, A. Gopinath, R. pregla and S. Helfert. Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE J. Sel. Top. Quantum Electron., 6(1),150-162,2000.
    
    56. H. Deng, G H. Jin, J. Harari, J. P. Vilcot, and D. Decoster. Investigation of 3D semivectorial finite-difference beampropagation method for bent waveguides, J.Lightw. Technol., 16(5), 915-922,1998.
    
    57. R. Scarmozzino, and R. M. Osgood. Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications, J. Opt. Soc. Am. A, 8(5), 724-731,1991.
    
    58. P. Pantelakis, and E. E. Kriezis. Modified two-dimensional fast Fourier transform beam propagation method for media with random variations of refractive index, J. Opt.Soc. Am. A, 13(9), 1884-1890,1996.
    
    59. S. Selleri, L. Vincetti, and M. Zoboli. Full-vector finite-element beam propagation method for anisotropic optical device analysis, IEEE J. Quan. Electron., 36(12),1392-1401,2000.
    
    60. Y. C. Chuang, and N. Dagli. An assessment of finite difference beam propagation method, IEEE J. Quan. Electron., 26(8), 1335-1339, 1990.
    
    61. J. Yamauchi, J. Shibayama, O. Sairo, O. Uchiyama, and H. Nakano. Improved finite-difference beam-propagation method based on the generalized Douglas scheme and its application to semivectorial analysis, J. Lightw. Technol., 14(10), 2401-2406,1996.
    
    62. G. R. Hadley. Wide-angle beam propagation using Pade approximant operators,Opt. Lett., 17(20),1426-1428, 1992.
    
    63. H. L. Rao, R. Scarmozzino, and R. M. Osgood. A bi-directional beam propagation method for multiple dielectric interfaces, IEEE Photon. Tech. Lett., 11(7), 830-832,1999.
    
    64. M. D. Feit and J. A. Fleck, Jr. Analysis of rib waveguides and couplers by the propagating beam method, J. Opt. Soc. Am. A, 7(1), 73-79,1990.
    
    65. W. P. Huang, C. L. Xu, and S. K. Chaudhuri. A finite-difference vector beam propgation method for three-dimensional waveguide structures, IEEE Photon. Tech.Lett., 4(2), 148-151,1992.
    
    66. F. Ma. Slowly varying envelope simulation of optical waves in time domain with transparent and absorbing boundary conditions, J. Lightwave.Technol., 15(10),1974-1985,1997.
    
    67. Y. Hsueh, M. Yang, and H. Chang. Three-dimensional noniterative full-vectorial beam propagation method based on the alternating direction implicit method, J.Lightw. Technol., 17(11), 2389-2397,1999.
    
    68. A. Taflove. Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.
    
    69. A. Taflove. Review of the formulation and application of the finite-difference time-domain method for numerical modeling of electromagnetic wave infractions with arbitrary structures, Wave Motion, 10(6), 547-582,1988.
    
    70. R. M. Joseph and A. Taflove. FDTD Maxwell's equations models for nonlinear electrodynamics and optics, IEEE Trans. Antennas Propagat., 45(3), 364-374,1997.
    
    71. K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Ant. Propag., 14(3), 302-307,1966.
    
    72. G. R. Hadley. Transparent Boundary Condition for the Beam Propagation Method,IEEE J. Quantum Electron., 28(1), 363-370, 1992.
    
    73. J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves, J.Comput. Phys., 114(2), 185-200,1994.
    
    74. R. Mittra, and U. Pekel. A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of elelctromagnetic waves, IEEE Microwave and Guidedwave Lett., 5(3), 84-86,1995.
    
    75. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama. The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations, IEEE Photon. Tech. Lett., 8(5), 652-654,1996.
    
    76. L. Soldano, F. Veerman, M. Srnit, B. Verbeek, A. Dubost, and E. Pennings. Planar monomode optical couplers based on multimode interference effects, IEEE J.Lightwave Tech., 10(12), 1843-1850,1992.
    
    77. Y. Shi, D. Dai, and S. He. Improved performance of a silicon-on-insulator-based multimode interference coupler by using taper structures, Opt. Comm., 253(4),276-282,2005.
    
    78. L. Wosinski, L. Liu, M. Dainese, and D. Dai. Amorphous silicon in nanophotonic technology, Proceedings of the 13~(th) European Conference on Integrated Optics, ECIO 2007, Copenhagen, Denmark, April 25-27, 2007.
    
    79. H. Fernando. Fabrication and characterization of photonic integrated circuits,doctoral thesis, ISSN 0348-4467, KTH, 2004.
    
    80. M. Dainese. Plasma assisted technology for Si-based photonic integrated circuits,doctoral thesis, 0348-4467, KTH, 2005.
    
    81. L. Liu. Design, fabrication, and characterization of nano-photonic components based on silicon and plasmonic material, doctoral thesis, ISSN 1653-7610, KTH,2006.
    
    82. M. A. Liebermann and A. J. Lichtenberg. Principles of plasma discharges and materials processing, Wiley & Sons, 1994.
    
    83. R.J. Shul, S.J Pearton. Handbook of Advanced Plasma Processing Techniques,Springer, 2000
    
    84. M. J. Madou. Fundamentals of microfabrication: the science of miniaturization,second edition, CRC press, 2002.
    
    85. R. G Hunsperger. Integrated Optics: Theory and Technology, New York, Springer Verlag, third edition, 1991.
    
    86. P. Rai-Choudhury. Handbook of Microlithography, Micromachining, and Micrafabrication, volume 1 Microlithography, SPIE, 1997.
    
    87. M. Peckerar, D. Sander, and A. Srivastava. Electron beam and optical proximity effect reduction for nanolithography: New results, J. Vac. Sci. Technol. B, 25(6),2288-2294, 2007.
    
    88. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma. Electron Beam Lithography in Nanoscale Fabrication: Recent Development, IEEE Transactions on Electronics Packaging Manufacturing, 26(2), 141-149,2003.
    
    89. G. Subramania, and S. Lin. Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography, Appl. Phys. Lett., 85(21), 5037-5039,2004.
    
    90. D. Kyser, and N. Viswanathan. Monte Carlo simulation of spatially distributed beams in electron-beam lithography, J. Vac. Sci. Tech., 12(6), 1305-1308,1975.
    
    91. D. Taillaert. Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides, doctoral thesis, Ghent University, 2004.
    
    92. D. Taillaert, P. Bienstman, and R. Baets. Compact efficient broadband grating coupler for silicon-on-insulator waveguides, Opt. Lett., 29(23), 2749-2751,2004.
    
    93. P. Bienstman and R. Baets. Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers, Opt.and Quantum Electron.,33,327-341,2001.
    
    94. M. K. Smit, and C. Van Dam. Phasar-based WDM-devices: Principles, design, and application, IEEE J. Select. Top. Quan. Elec., 2(2), 236-250,1996.
    
    95. T. Fukazawa, F. Ohno, and T. Baba, Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides, Jpn. J. Appl. Phys., 43(5B),L673-L675,2004.
    
    96. C. Cremer, G. Ebbinghaus, G. Heise, R. Muller, M. Schienle, and L. Stoll. Grating Spectrograph in InGaAsP/InP for Dense Wavelength Division Multiplexing, Appl.Phys. Lett. 59, 627-629,1991.
    
    97. M. Hutley, Diffraction Gratings, New York, Academic, 1982.
    
    98. 梁诠廷,物理光学,机械工业出版社,北京, 1987.
    
    99. R. Peitit. Electromagnetic theory of gratings, Springer Verlag, Berlin, 1980.
    
    100. N. Zhu, J. Song, and L. Shao. Effects of shaded facets on the performance of metal-coated etched diffraction grating demultiplexer, Opt. Comm., 266, 117-121,2006.
    
    101. R. F. Harrington. Field computation by Moment Methods, IEEE Press, New York,1993.
    
    102. C. M. Butler, and D. R. Wilton. Analysis of various numerical techniques applied to thin-wire scatterers, IEEE Trans. Ant. Prop., 23, 534-540, 1975.
    
    103. J. Song. Electromagnetic simulation and design of etched diffraction grating demultiplexers, doctoral thesis, ISSN 1653-5146, KTH, 2008.
    
    104. D. W. Prather, M. S. Mirotznik, and J. N. Mait. Boundary integral methods applied to the analysis of diffractive optical elements, J. Opt. Soc. Am. A, 14(1),34-43, 1997.
    
    105. P. K. Banerjee, and R. Butterfield. Boundary element methods in engineering science, New York, McGraw-Hill, 1981.
    
    106. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V.Thourhout. Planar concave grating demultiplexer with high reflective Bragg reflector facets, IEEE Photon. Tech. Lett., 20(4), 309-311,2008.
    107. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song.Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network, IEEE J. Lightwave Technol., 22(11), 2582-2591,2004.
    
    108. H. Imam, J. P. Rasmussen, and M. Pearson. Integrated bi-directional transceivers for access applications based on a cost-effective PLC hybridized platform, Optoelectronic Integrated Circuits VIII, Proc. of SPIE, 6124, 612412,2006.
    
    109. E. H. Lee, S. G. Lee, B. H. O, S. G. Park, and K. H. Kim. Fabrication and integration of micro/nano-scale optical waveguides and photonic devices for application-specific planar optical integrated circuit board, Optoelectronic Integrated Circuits VIII, Proc. of SPIE, 6124, 612408,2006.
    
    110. J. K. Hong, and S. S. Lee. PLC-based novel triplexer with a simple structure for optical transceiver module applications, IEEE Photon. Tech. Lett., 20(1), 21-23,2008.
    
    111. T. Lang, J.-J. He, and S. He. Cross-order arrayed waveguide grating design for triplexers in fiber access networks, IEEE Photon. Tech. Lett., 18(1), 232-234, 2006.
    
    112. X. Li, G. R. Zhou, N. N. Feng, and W. Huang. A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver, IEEE Photon. Tech. Lett., 17(6), 1214-1216,2005.
    
    113. Y. Shi, D. Dai, and S. He. Novel ultracompact triplexer based on photonic crystal waveguides, IEEE Photon. Tech. Lett., 18(21), 2293-2295,2006.
    
    114. S. Bidnyk, D. Feng, A. Balakrishnan, M. Pearson, M. Gao, H. Liang, W. Qian, C.Kung, J. Fong, J. Yin, and M. Asghari. Silicon-on-insulator-based planar circuit for passive optical network applications, IEEE Photon. Tech. Lett., 18(22), 2392-2394,2006.
    
    115. X. Hong, and W. Huang. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit, Opt. Express, 14(11), 4675-4686, 2006.
    
    116. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Wantanabe, H. Shinojima, and S.Itabashi. Silicon photonic circuit with polarization diversity, Opt. Exp., 16(7),4872-4880,2008.
    
    117. W. Bogaerts, D. Taillaert, P. Dumon, D. Thourhout, R. Baets, and E. Pluk. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires, Opt. Exp., 15(4), 1567-1578,2007.
    
    118. H. Takahashi, Y. Hibino, and I. Nishi. Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon, Opt. Lett., 17(7), 499-501,1992.
    
    119. M. Zirngibl, C. H. Joyner, L. W. Stulz, T. Gaiffe, and C. Dragone. Polarization independent 8*8 waveguide grating multiplexer on InP, Electron. Lett., 29(2),201-202,1993.
    
    120. S. Suzuki, Y. Inoue, and Y. Ohmori. Polarization-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure, Electron. Lett., 30(8), 642-643, 1994.
    
    121. L. H. Spiekman, and M. R. Amersfoort. Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM, IEEE J. Lightwave Technol., 14,991-995,1996.
    
    122. C. K. Nadler, E. K. Wildermuth, M. Lanker, W. Hunziker, and H. Melchior.Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,IEEE J. Selected topics in Quan. Electron., 5(5), 1407-1412,1999.
    
    123. J-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delage, and M. Davies,Integrated polarization compensator for WDM waveguide demultiplexers, IEEE Photon. Technol. Lett., 11(2), 224-226,1999.
    
    124. T. Lang, J-J. He, J. Kuang, and S. He. Birefringence compensated AWG demultiplexer with angled star couplers, Optics Exp., 15(23), 15022-15028,2007.
    
    125. E. Yablonovitch. Photonic band-gap structures, J. Opt. Soc. Am. B, 10, 283-296,1993.
    
    126. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos. Linear waveguides in photonic-crystal slabs, Phys. Rev. B, 62(12), 8212-8222, 2000.
    
    127. J. Vuckovic, and Y. Yamamoto. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot, Applied Phys. Lett., 82(15),2374-2376,2003.
    
    128. X. Ao, L. Liu, L. Wosinski, and S. He. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type, Applied Phys. Lett., 89(17), 171115,2006.
    
    129. A. Bakhtazad, and A. G. Kirk. First-band S-Vector photonic-crystal superprism demultiplexer design and optimization, IEEE J. Lightwave Technol., 25(5),1322-1333,2007.
    
    130. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, and I.Kim. Two-dimensional photonic band-gap defect mode laser, Science, 284,1819-1821,1999.
    
    131. K. Sakoda, K. Ohtaka, and T. Ueta. Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,Optics Exp., 4(12), 481-489,1999.
    
    132. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda. Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations, Phys. Rev. B, 75, 125104,2007.
    
    133. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers. Hybrid Silicon Evanescent Laser Fabricated with a Silicon Waveguide and III-V Offset Quantum Wells, Optics Exp., 13(23), 9460-9464, 2005.
    134. G. Roelkens, D. V. Thourhout, and R. Baets. Laser Emission and Photodetection in an InP/InGaAsP Layer Integrated on and Coupled to a Silicon-on-Insulator Waveguide Circuit, Optics Exp., 14(18), 8154-8159,2006.
    
    135. F. Olsson, A. Aubert, M. Avella, J. Jimenez, C. A. Barrios, J. Berggren, and S.Lourdudoss. Heteroepitaxy of InP on Silicon-on-Insulator for Optoelectronic Integratin, ECS Transactions, 3(39), 23-29,2007.
    
    136. A. Lankinen, T. Tuomi, M. Karilahti, Z. R. Zytkiewicz, J. Z. Domagala, Y. Sun, F.Olsson, and S. Lourdudoss. Crystal Defects and Strain of Epitaxial InP Layers Laterally Overgrowth on Si, Crystal Growth & Design, 6(5), 1096-1100,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700