基于狭缝波导的光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代大容量、高速的光通信网络的发展离不开集成光子器件的应用。同时,光子器件的应用还渗透到如片上系统光互连、光伏、显示、传感等诸多领域。并向小型化、集成化、与节能化方向发展。硅材料以其高折射率差、低成本、有成熟的微电子制作平台等优势,越来越得到广泛关注,并取得了一系列重要的技术突破。然而其在有源器件的制作方面仍受限于本身的物理性质。
     为了利用硅材料卓越的无源特性和与微电子器件的兼容性,并弥补其物理性质的不足,近年来人们尝试通过其他材料与硅的混合集成实现优势互补。如将Ⅲ-Ⅴ族化合物半导体激光器、探测器与硅器件混合集成,或通过狭缝波导这一特殊结构直接在硅波导上实现良好的有源特性。特别是后者,成本更低,实现更为简单。基于此,本论文概括了狭缝波导的基本原理和各项应用。针对目前研究现状,提出了自己的一些分析和实验尝试,主要创新和贡献在于:
     1.基于马赫-曾德干涉仪原理,通过在狭缝波导中填充电光聚合物的方法,提出了一种高速电光硅基光开关,长度几百微米,集总型电极下调制频率可达83GHz,功耗仅为37fJ/bit,均优于目前普遍研究的载流子色散型同类器件。
     2.针对长期以来硅基Y分叉型数字光开关性能不理想、尺寸过大的问题,同样通过聚合物的填充,提出了一种高速的紧凑型狭缝波导数字光开关。并探讨了多狭缝引入带来的性能改进。
     3.针对目前垂直型狭缝波导在刻蚀时工艺要求过高的问题,提出了一种利用反偏p-n结构成的改进电极结构。它能够在刻蚀深度不理想,甚至是脊型狭缝波导的情况下,保证两侧硅电极之间的电绝缘。具有工艺容差大,制作简单的特点。
     4.提出了基于垂直狭缝波导的对称和非对称的马赫-曾德型微流传感器,并采用折叠型波导设计,大大缩短了干涉型传感器的长度,理论上具有较高的传感灵敏度。分别采用欧洲纳电子研究机构IMEC的0.18μm工艺线和上海中芯国际的0.18μm工艺线代工制作,工艺水平居国内前列。
     5.尝试在实验室制作填充聚合物的水平狭缝波导,取得了一些阶段性结果,探讨了经验与不足。
Integrated optical devices plays an important role in the development of modern large-capacity and high-speed optical network,and in the fields of on-chip optical interconnection, photovoltaic,display, sensing,etc. It moves now to be more compact,integrated,and energy-saving.Silicon, as a material with large refractive index difference, low cost and being compatible with the mature micro-electronics platform, is getting more and more attention, and has already achieved lots of technological breakthroughs. However the active devices based on it are still underdeveloped for the limitation of the corresponding physical properties.
     In order to get use of the excellent passive characteristics of silicon and its compatibility with the micro-electronic devices, meanwhile overcoming the physical shortage of it,in recent years people are trying to hybrid integrate silicon with other materials to complement advantages.For example to integrate silicon devices with lasers and photodetectors made byⅢ-Ⅴsemiconductors,or to realize active characters on silicon platform by using slot structure which has a lower cost and is more simple. In this thesis,first the basic principle of the slot structure and its applications are summarized, and then a series of analyses and experimental attempts are proposed. The main innovation and contribution are:
     1.Based on the principle of Mach-Zehnder interference, a high-speed electro-optical silicon optical switch is proposed by filling electro-optical polymer inside the slot structure of the interference arms.The device length is only few hundreds micrometers,the modulation frequency can achieve 83GHz even by using the lumped electrodes,and the power consumption is only 37fJ/bit,much advanced than the carrier dispersion type devices studied till now.
     2.In order to overcome the drawbacks that the performance of the Y-branch digital optical switch is not very good and the device size is large, also by filling electro-optical polymer,a high-speed compact silicon digital optical switch with the slot structure is proposed. Then the performance improvement by introducing the multi-slot structure is discussed.
     3. Since it is hard to etch the slot through for the vertical slot structure, an improved electrode with reverse p-n junction is proposed. It can maintain electrical isolated for the unideally etched case, and even for the rib-type slot structure. The fabrication tolerance of it is large and it is easy to realize.
     4.Symmetric and asymmetric Mach-Zehnder type micro-fluidic sensor based on the slot structure is proposed, also by folded interference arms,the device length can be largely shortened, and the theoretical sensing sensitivity is high. We use the foundry of IMEC in Europe and SMIC in Shanghai for fabrication. The typical width is 0.18μm, which is advanced in domestic.
     5. Tried to fabricate horizontal slot structure filled with polymer in our laboratory. Some phasic achievements are gained, the difficulties and the possible methods for ameliorating are discussed.
引文
[1]G. Roelkens,Heterogeneous Ⅲ-Ⅴ/silicon photonics:bonding technology and integrated devices[比利时根特大学博士学位论文],2007.
    [2]http://mphotonics. mit.edu/2005.
    [3]吴江滨,“2009年度诺贝尔物理学奖得主高锟与光通信”,物理通报,11(2009),1-3.
    [4]T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187: 493-494.
    [5]C. Kao, and G. Hockham, Dielectric-fiber surface waveguide for optical frequency, Proceedings of the institution of electrical engineering(IEE), 1966,133:1151.
    [6]M. Jinno, Y. Miyamoto, and Y. Hibino, Optical-transport networks in 2015,Nature Photon.1(2007),157-159.
    [7]www. corning.com/opticalfiber/news_and-events/news_releases/2007/ 2007032001.aspx.
    [8]周海峰,新型硅基集成光子器件的研究[浙江大学博士学位论文],2009.
    [9]A. Sano, et al.European Conf. on Opt.Comm.2006 Postdeadline paper Th4.1.1 (2006).
    [10]何淑贞,国内外光通信的发展趋势,卫星通信与宽带多媒体,2(2007),32-35.
    [11]A. Jenkins,The road to nanophotonics,Nature Photon.2 (2008), 258-260.
    [12]S. E. Miller,Integrated optics:an introduction, Bell Syst.Tech. J.48(1969),2059-2068.
    [13]西原浩,春名正光,栖原敏明,集成光路,科学出版社,2004年3月第一版.
    [14]G. T. Reed, The optical age of silicon, Nature 427(2004),595-596.
    [15]M. Kosters,B. Sturman, P. Werheit,D. Haertle, and K. Buse, Optical cleaning of congruent lithium niobate crystals,Nature Photon.3 (2009), 510-513.
    [16]佘守宪,导波光学物理基础,北方交通大学出版社,2002年8月第一版.
    [17]A. Guarino, G. Poberaj,D. Rezzonico, R. Degl'Innocenti,P. Gunter, Electro-optically tunable microring resonators in lithium niobate, Nature Photon.1(2007),535-538.
    [18]D. Janner,D. Tulli,M. Granda, M. Belmonte, and V. Pruneri, Micro-structured integrated electro-optic LiNbO3 modulators, Laser&Photon. Rev.3(2009),301-313.
    [19]J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Shi,and D. W. Prather,Development of electro-optic phase modulator for 94GHz imaging system, J. Lightwave Tech.27(2009),5698-5703.
    [20]M. Soljacic, J. D. Joannopoulos,Enhancement of nonlinear effects using photonic crystals,Nature Mater,3(2004),211-219.
    [21]Y. S. Kuz'minov, Lithium niobate crystals,(Cambrige Univ. Press, 1999).
    [22]M. Ferrera, L. Razzari,D. Duchesne, R. Morandotti,Z. Yang, M. Liscidini,J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss,Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,Nature Photon.2(2008),737-740.
    [23]J.-LHong,and S.-S.Lee, Silica-based MMI-MZI thermo-optic switch with large tolerance and low PDL, J. Opt.Soc. Korea,9(2005),119-122.
    [24]T. Goh, M. Yasu, K. Hattori,A. Himeno, M. Okuno, Y. Ohmori,Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology, J. Lightwave Tech.19(2001),371-379.
    [25]M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu,8×8 optical switch matrix in silica-on-silicon,2001 OSA/IPR, IMC2.
    [26]S. Kamei,Y. Inoue, T. Shibata, A. Kaneko, Low-loss and compact silica-based athermal arrayed waveguide grating using resin-filled groove, J.Lightwave Tech.27(2009),3790-3799.
    [27]D. Dai,Subwavelength silica-based optical waveguide with a multilayered buffer for sharp bending, J.Lightwave Tech.27(2009), 2489-2494.
    [28]张昊,有机聚合物数字型热光光开关的研究[浙江大学硕士学位论文],2005.
    [29]M. Hikita,S. Tomaru, K. Enbutsu, Polymeric optical waveguide films for short-distance optical interconnects,IEEE J. Sel.Top. Quantum. Electron.5(1999),1237-1242.
    [30]G. Roelkens,J. Van Campenhout,J. Brouckaert,D. Van Thourhout,R. Baets,P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal,X. Letartre, G. Hollinger, J. M. Fedeli,L. Di Cioccio, and C. Lagahe-Blanchard, III-V/Si photonics by die-to-wafer bonding, Materialstaday,10(2007), 36-43.
    [31]X. Jiang, W. Qi,H. Zhang, et al,Low crosstalk 1×2 thermooptic digital optical switch with integrated S-bend attenuator,IEEE Photon. Technol.Lett.18(2006),610-612.
    [32]李鹰,有机聚合物热光光可变衰减器的研究[浙江大学博士学位论文],2004.
    [33]L. R. Dalton, New organic nonlinear optical materials and their integration into silicon nanophotonic circuits and devices,Proc.of SPIE, 7118(2008),711803.
    [34]E. Murphy, The semiconductor laser:Enabling optical communication, Nature Photon.4(2010),287.
    [35]J. Yoon, S. Jo, I. S. Chun, I.Jung, H.-S. Kim, M. Meitl,E. Menard, X.Li,J. J. Coleman, U. Paik, and J. A. Rogers,GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,Nature, 465(2010),329-334.
    [36]戚伟,砷化镓载流子注入型光开关的研究,[浙江大学博士学位论文],2009.
    [37]T. Tanemura, M. Takenaka, A. Al Amin, et al,InP/InGaAsP integrated 1×5 optical switch using arrayed phase shifters,IEEE Photon. Technol. Lett.20(2008),1063-1065.
    [38]S. Abdalla, S. Ng, P. Barrios,et al.,Carrier injection-based digital optical switch with reconfigurable output waveguide arms,IEEE Photon. Technol.Lett.,2004,16(2004),1038-1040.
    [39]D. J. Richardson, Silicon photonics:Beating the electronics bottleneck,Nature Photon.2(2009),562-564.
    [40]J.Witzens,T. Baehr-Jones,M. Hochberg,Silicon photonics:On-chip OPOs,Nature Photon.4(2010),10-12.
    [41]L. Liu, R. Kumar, K.Huybrechts,T. Spuesens,G. Roelkens,E.-J. Geluk, T. de Vries,P. Regreny, D. Van Thourhout,R. Baets,and G. Morthier, An ultra-small,low-power,all-optical flip-flop memory on a silicon chip, Nature Photon.4(2010),182-187.
    [42]http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund. html.
    [43]李宇波,基于电光效应的偏振调制与检测研究,[浙江大学博士学位论文],2006
    [44]M. Humar,M. Ravnik, S. Pajk, and I.Musevic, Electrically tunable liquid crystal optical microresonators,Nature Photon.3(2009),595-600.
    [45]http://www. intel.com/research/platform/sp/,2005.
    [46]J. D. Meindl.Beyond Moore's Law. The interconnect era. Computing in science and engineering,5(2003),20-24.
    [47]L. Pavesi,Will silicon be the photonic material of the third millenium? J. Phys.:Condens.Matter 15(2003),R1169-R1196
    [48]http://www. intel.com/research/silicon/CMIC-2002-Jose_Maiz.htm.
    [49]Y. Li,J. Yu, S. Chen, Y. Li,and Y. Chen, Submicrosecond rearrangable nonblocking silicon-on-insulator thermooptic 4×4 switch matrix, Opt. Lett.32(2007),603-605.
    [50]S. Sohma,T. Goh, H. Okazaki,M. Okuno, and A. Sugita, Low switching power silica-based super high delta thermo-optic switch with heat insulating grooves,Electron. Lett.38(2002),127-128.
    [51]R. A. Soref, and B. R. Bennett,Kramers-Kronig analysis of electro-optical switching in silicon, SPIE, vol.704,Integrated Optical Circuit Engineering IV,1986,32-36.
    [52]L. C. Kimerling, Appl.Surf. Sci.,8(2000),159-160.
    [53]Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, Low loss(6.45dB/cm) sub-micro polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,Opt.Express,16(2008), 6425-6432.
    [54]K. Preston, and M. Lipson, Polysilicon-on-insulator photonic devices, 2007 OSA/CLEO, CTuG2.
    [55]H. Rong, A. Liu, R. Jones,0. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia,An all-silicon Raman laser,Nature Photon.433(2005), 292-294.
    [56]H. Rong, R. Jones, A. Liu,O. Cohen, D. Hak, A. Fang, A. Fang, and M. Paniccia,A continuous-wave Raman silicon laser,Nature Photon. 433(2005),725-728.
    [57]H. Rong, S. Xu, Y.-H. Kuo, V. Sih,O. Cohen,O. Raday and M. Paniccia, Low-threshold continuous-wave Raman silicon laser,Nature Photon. 1(2007),232-237.
    [58]H. Rong, S. Xu,O. Cohen,O. Raday, M. Lee, V. Sih and M. Paniccia, A cascaded silicon Raman laser,Nature Photon.2(2008),170-174.
    [59]L. Pavesi,L. D. Negro, C. Mazzoleni,G. Franzo, and F. Priolo, Optical gain in silicon nanocrystals,Nature,408(2000),440-444.
    [60]D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, Quantum confined luminescence in Si/SiO2 superlattices,Phy. Rev. Lett.76(1996),539-541.
    [61]H. S. Han, S. Y. Seo, and J. H. Shin, Optical gain at 1.54um in erbium-doped nanocluster sensitized waveguide, Appl.Phys.Lett. 79(2000),4568-4570.
    [62]G. Dehlinger,et al.,Intersubband electroluminescence from silicon-based quantum cascade structures,Science,290(2000),2277-2280.
    [63]Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, Demonstration of wavelength conversion at 40Gb/s data rate in silicon waveguides,Opt. Express,14(2006),11721-11726.
    [64]L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit,H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia,40Gbit/s silicon optical for high speed applications,Electron. Lett.43(2007),No.22.
    [65]H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang, and X. Jiang, Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,Opt.Express,17(2009),7043-7051.
    [66]S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, and J. C. Campbell, J. Lightwave Technol.20(2002),1724.
    [67]F. Xia,L. Sekaric,and Y. Vlasov,Nature Photon.1(2007),65-71.
    [68]The lure of silicon, Nature Photon.4(2007).
    [69]European research programme PICMOS,Photonic interconnect layer on CMOS by waferscale Integration, FP6-2002-IST-1-002131.
    [70]A. W. Fang, H. Park,O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers,Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Opt.Express,14(2006),9203-9210.
    [71]V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt.Lett.29(2004),1209-1211.
    [72]P. Muller, and R. Hainberger, Structural Optimization of silicon-on-insulator slot waveguides,IEEE Photon. Technol.Lett. 18(2006),2557-2559.
    [73]N. N. Feng, J. Michel,and L. C. Kimerling, Optical field concentration in low-index waveguides,IEEE J. Quantum. Electron. 42(2006),885-890.
    [74]P. A. Anderson, B. S. Schmidt,and M. Lipson, High confinement in silicon slot waveguides with sharp bends,Opt.Express,14(2006), 9197-9202.
    [75]C.-Y. Chao, Simple and effective calculation of modal properties of bent slot waveguides,J. Opt.Soc. Am. B,24(2007),2373-2377.
    [76]S.-H. Yang, P. R. Bandaru, M. L. Cooper,J. S. Park, and S. Mookherjea, Multi-slot silicon optical waveguides,2008 OSA/CLEO/QELS,CThTl.
    [77]N.-N. Feng, R. Sun, J. Michel,and L. C. Kimerling, Opt. Lett. 32(2007),2131-2133.
    [78]C. H. Chen, L. Pang, C. H. Tsai,U. Levy, and Y. Fainman, Compact and integrated TM-pass waveguide polarizer,Opt.Express,13(2005), 5347-5352.
    [79]Q. Xu, V. R. Almeida, R. R. Panepucci,and M. Lipson, Experimental demanstration of guiding and confining light in nanometer-size low-refractive-index material,Opt.Lett.29(2004),1626-1628.
    [80]S. Xiao, M. H. Khan, H. Shen, and M. Qi,Compact silicon microring resonators with ultra-low propagation loss in the C band, Opt.Express, 15(2007),14467-14475.
    [81]C. A. Barrios,Q. Xu, J. Shakya, C. Manolatou, and M. Lipson, Compact silicon slot-waveguide disk resonator,2006 OSA/CLEO, CTuCC3.
    [82]F. Riboli,P. Bettotti,and L. Pavesi,Band gap characteriazation and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,Opt.Express,15(2007),11769-11775.
    [83]T. Fujisawa,and M. Koshiba,Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,IEEE Photon. Technol.Lett.18(2006),1246-1248.
    [84]J.Xiao,X. Liu, and X. Sun, Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,Opt.Express,13(2007), 8300-8308.
    [85]T. Fujisawa, and M. Koshiba, All-optical logic gates based on nonlinear slot-waveguide couplers,J.Opt.Soc. Am. B,23(2006),684-691.
    [86]C. A. Barrios,and M. Lipson, Electrically driven silicon resonant light emitting device based on slot-waveguide, Opt.Express,13(2005), 10092-10101.
    [87]Y. C. Jun, R. M. Briggs,H. A. Atwater,and M. L. Brongersma, Broadband enhancement of light emission in silicon slot waveguides,Opt.Express, 17(2009),7479-7490.
    [88]K. K. Mclauchlan, and S. T. Dunham, Anglysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide,IEEE J. Sel.Top. Quan. Electron.,12(2006),1455-1460.
    [89]G. Wang, T. Baehr-Jones,M. Hochberg, and A. Scherer,Design and fabrication of segmented, slotted waveguides for electro-optic modulation, Appl.Phys.Lett.91(2007),143109.
    [90]T. Baehr-Jones,M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, Optical modulation and detection in slotted silicon waveguides,Opt.Express,13(2005), 5216-5226.
    [91]M. Hochberg, T. Baehr-Jones,G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer,Towards a millivolt optical modulator with nano-slot waveguides,Opt.Express,15(2007),8401-8410.
    [92]F. Dell'Olio, and V. M. N. Passaro, Optical sensing by optimized silicon slot waveguides,15(2007),4977-4993.
    [93]C. A. Barrios,M. J. Banuls,V. Gonzalez-pedro, et.al.,Label-free optical biosensing with slot-waveguides,Opt.Lett.33(2008),708-710.
    [94]J. T. Robinson, L. Chen, and M. Lipson, On-chip gas detection in silicon optical microvavities,Opt.Express,16(2008),4296-4301.
    [95]C. A. Barrios,K. B. Gylfason, B. Sanchez, et.al.,Slot-waveguide biochemical sensor, Opt.Lett.32(2007),3080-3082.
    [96]J.-M. Lee,D.-J. Kim,G.-H. Kim,O.-K. Kwon,K.-J. Kim,and G. Kim, Controlling temperature dependence of silicon waveguide using slot structure, Opt.Express,16(2008),1645-1652.
    [97]L. Zhou, K. Okamoto, and S. J. B. Yoo, Towards athermal slotted silicon microring resonators with UV-trimmable PMMA upper-cladding,2009 OSA/CLEO/IQEC,CTuBB3.
    [1]C. A. Barrios,High-performance all-optical silicon microswitch, Electron. Lett.40(2004),No.14.
    [2]M. Hochberg, T. Baehr-Jones,G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer,Towards a millivolt optical modulator with nano-slot waveguides,Opt.Express,15(2007),8401-8410.
    [3]T. R. Ranganath, and S.Wang,Ti-diffused LiNbO3 branched-waveguide modulators:performance and design,IEEE Quantum. Electron. QE-13(1978), 290-295.
    [4]佘守宪,导波光学物理基础,北方交通大学出版社,2002年8月第一版.
    [5]W. M. J. Green, M. J. Rooks,L. Sekaric,and Y. A. Viasov, Ultra-compact, low RF power,10Gb/s silicon Mach-Zehnder modulator,Opt.Express, 15(2007),17106-17113.
    [6]A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit,N. Izhaky, and M. Paniccia,High-speed optical modulation based on carrier depletion in a silicon waveguide, Opt.Express,15(2007),660-668.
    [7]W. N. Ye,D.-X.Xu,S. Janz,P. Waldron,and N. G. Tarr,Broadband silicon-on-insulator passive polarization splitters,Proc. of SPIE, 6477(2007),64770G.
    [8]O. Bryngdahl,Image formation using self-imaging techniques,J.Opt. Soc. Am.,63(1973),416-419.
    [9]R. Ulrich, Image formation by phase coincidences in optical waveguides, Opt.Commun.13(1975),259-264.
    [10]R. Ulrich, Light-propagation and imaging in planar optical waveguides,Nouv. Rev. Optique,6(1975),253-262.
    [11]L. B. Soldano,and E. C. M. Pennings,Optical multi-mode interference devices based on self-imaging:principles and applications,J.Lightwave Technol.13(1995),615-627.
    [12]P. M. Ferm, C. W. Knapp, C. Wu, J. T. Yardley, B. B. Hu, X. C. Zhang, and D. H. Auston, Femtosecond response of electro-optic poled polymers, Appl.Phys. lett.59(1991),2651-2653.
    [13]刘子龙,聚合物电光波导调制器的研究,[华中科技大学博士学位论文],2005.
    [14]L. R. Dalton, A. W. Harper, and B. H. Robinson, The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films,Proc. Natl.Acad. Sci.USA 94(1997),4842-4847.
    [15]L. R. Dalton,B. H. Robinson,R. Nielsen,A. K.-Y. Jen,and W. H. Steier,Organic electro-optics:from molecules to devices,Proc. SPIE-Int. Soc. Opt.Eng.4798(2002),1-10.
    [16]L. R. Dalton, et al.,Organic electro-optic materials,Proc. SPIE, 5621(2004),93-104.
    [17]L. R. Dalton, New organic nonlinear optical materials and their integration into silicon nanophotonic circuits and devices,Proc.SPIE, 7118(2008),711803.
    [18]G. R. Meredith, Macromolecules,4(1982),142.
    [19]石顺祥,陈国夫,赵卫,刘继芳,“非线性光学”,西安:西安电子科技大学出版社,2003.
    [20]B. Kippelen, N. Peyghambarian, Photorefractive polymers and their applications,Advances in Polymer Science,161(2003),Springer-Verlag Berlin Heidelberg.
    [21]R. A. Soref, and B. R. Bennett,Electrooptical effects in silicon, IEEE J. Quantum. Electron. QE-23(1987),123-129.
    [22]刘恩科,朱秉升,罗晋生,等,“半导体物理学”,西安交通大学出版社,1998年10月第一版。
    [23]V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt.Lett.29(2004),1209-1211.
    [24]N.-N. Feng, R. Sun, L. C. Kimerling, and J. Michel,Lossless strip-to-slot waveguide transformer,Opt.Lett.32(2007),1250-1252.
    [25]Z. Wang, N. Zhu, Y. Tang, L. Wosinski,D. Dai,and S. He, Ultracompact low-loss coupler between strip and slot waveguides,Opt.lett.34(2009), 1498-1500.
    [26]J. Blasco, and C. A. Barrios,Compact slot-waveguide/channel-waveguide mode-converter,2005 Conference on lasers and electro-optics Europe,607.
    [27]J. V. Galan, P. Sanchis,J. Blasco, A. Martinez, and J. Marti,High efficiency fiber coupling to silicon sandwiched slot waveguides,Opt. Commun.281(2008),5173-5176.
    [28]A. M. P. Fievre, T. Liu, and R. R. Panepucci,Nanotaper coupler for the horizontal slot-waveguide, Proc. of SPIE,6645(2007),66450E.
    [29]Y. Liu, S. Chen, and J.Yu, High efficiency fiber to waveguide optical coupler in silicon-on-insulator-based slot waveguides,Proc. of SPIE, 6831(2007),68310R.
    [30]Y. Satuby, N. Berkovitch, and M. Orenstein, Coupling of nano-stripe and nano-slot plasmonic waveguides,2007 OSA/QELS,QThG2.
    [31]D. Dai,and S. He, Design of an ultrashort Si-nanowaveguide-based multimode interference coupler of arbitrary shape,Appl.Opt.47(2008), 38-44.
    [32]P. Mullner,and R. Hainberger,Structural optimization of silicon-on-insulator slot waveguides,IEEE Photon. Technol.Lett.18(2007), 2557-1559.
    [33]J. Liu et al.,Nature Photonics,2 (2008) 433-437.
    [34]M.K.Chin, and W. S. C. Chang, IEEE J. Quant Electron,29 (1993) 2476-2488.
    [1]H. Yajima,Dielectric thin-film optical branching waveguide, Appl. Phys.Lett.22(1973),647-649.
    [2]W. K. Burns,-and A. F. Milton,Mode Conversion in planar-dielectric separating waveguides,IEEE J. Quantum Electron. QE-11(1975),32-39.
    [3]H. Yajima, Coupled mode analysis of dielectric planar branching waveguides,IEEE J. Quantum Electron. QE-14(1978),749-755.
    [4]W. K. Burns,and A. F. Milton, An analytic solution for mode coupling in optical waveguide branches,IEEE J. Quantum Electron. QE-16(1980), 446-454.
    [5]H. Sasaki,and N. Mikoshiba,Normalised power transmission in single mode optical branching waveguides,Electro. Lett.17(1981),136-138.
    [6]M. Izutsu, Y. Nakai,and T. Sueta,Operation mechanism of the single-mode optical-waveguide Y junction, Opt.Lett.7(1982),136-138.
    [7]T. R. Ranganath, and S. Wang,Ti-diffused LiNbO3 branched-waveguide modulators:performance and design, IEEE J. Quantum Electron. QE-13 (1977),290-295.
    [8]H. Sasaki,and R. M. De La Rue, Electrooptic Y-junction modulator/ switch,Electron. Lett.12(1976),459-460;also "Errata",Electron. Lett. 12(1976),636.
    [9]H. Sasaki,and I.Anderson, Theoretical and experimental studies on active Y-junctions in optical waveguides,IEEE J.Quantum Electron. QE-14 (1978),883-892.
    [10]Y. Silberberg, P. Perlmutter,and J. E. Baren, Digital optical switch, Appl.Phys. Lett.51(1987),1230-1232.
    [11]赵龙,Ti:LiNbO3波导光开关研究[浙江大学硕士学位论文],2003.
    [12]张昊,有机聚合物数字型热光光开关的研究[浙江大学硕士学位论文],2005.
    [13]M. Zegaoui,D. Decoster, J. Harari,V. Magnin, X. Wallart,and J. Chazelas,A new low crosstalk InP digital optical switch based on carrier-induced effects for 1.55μm applications,IEEE Photon. Technol.Lett.21 (2009),546-548.
    [14]R. Krahenbuhl,M. N. Howerton, J. Dubinger, and J. S. Greenblatt, Performance and modeling of advanced Ti:LiNbO3 digital optical switches, J. Lightwave Technol.20(2002),92-99.
    [15]W. Yuan, S. Kim, W. H. Steier, and H. R. Fetterman, Electrooptic polymeric digital optical switches (DOSs)with adiabatic couplers,IEEE Photon. Technol.Lett.17(2005),2568-2570.
    [16]Y.O. Noh, H. J. Lee, Y. H. Woo, and M. C. Oh, Polymer waveguide thermo-optic switches with-70dB optical crosstalk, Opt.Commun.258(2006),18-22.
    [17]L. Sirleto, M. Iodice, F. G. Della Corte, and I.Rendina, Digital optical switch based on amorphous silicon waveguide, Optics and Lasers in Engineering,45(2007),458-462.
    [18]C. Park,Design and characteristics of thermo-optic 1×2 switch using silicon on insulator,Proc. of SPIE,4904(2002),139-146.
    [19]S. Xiao, F. Wang, X. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, Electro-optic polymer assisted optical switch based on silicon slot structure, Opt.Commun.282(2009),2506-2510.
    [20]Y. Enami,C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim,J. Luo,Y. Tian,and A. Jen,Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,Nature Photon.6(2007),180-185.
    [21]C. Barrios,and M. Lipson, Electrically driven silicon resonant light emitting device based on slot-waveguide, Opt.Express,13(2005),10092-10101.
    [22]R. A. Soref,and B. R. Bennett,Electro-optical effects in silicon, IEEE J. Quantum Electron. QE-23(1987),123-129.
    [23]H. Zhou, Y. Zhao, W. Wang,J.Yang, M. Wang, and X. Jiang, Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,opt.Express,17(2009),7043-7051.
    [24]J. Blasco,and C. A. Barrios,Compact slot-waveguide/channel-waveguide mode-converter,2005 Conference on Lasers and Electro-optics Europe, pp.607.
    [25]N.-N. Feng, R. Sun, L. Kimerling, and J. Michel,Lossless strip-to-slot waveguide transformer,Opt.Lett.32(2007),1250-1252.
    [26]M. Hochberg, T. Baehr-Jones,G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer,Towards a millivolt optical modulator with nano-slot waveguides,Opt.Express,15(2009),8401-8410.
    [27]W. Bogaerts,L. Liu, S. K. Selvaraja, P. Dumon, J. Brouckaert,D. Taillaert,D. Vermeulen, G. Roelkens,D. V. Thourhout,and R. Beats, Silicon nanophotonic waveguides and their applications,Passive Components and Fiber-based Passive V,Proc.of SPIE,7134(2008),713410-1.
    [28]L. Dalton, et al.Organic electro-optic materials,Proc. of SPIE, 5621(2004),93-104.
    [29]N.-N. Feng, J. Michel,and L. C. Kimerling, Optical field concentration in low-index waveguides,IEEE J.Quantum Electron.42(2006), 885-890.
    [30]N.-N. Feng, J. Michel,and L. C. Kimerling, Realization of high mode confinement in nanometer thin low-index media by multiple stacked slot waveguides,2006 OSA/IPRA, IMC4.
    [31]C.-Y. Chao, Simple and effective calculation of modal properties of bent slot waveguides,J. Opt. Soc. Am. B,24(2007),2373-2377.
    [1]靳琳,有机聚合物电光调制器的电极研究[吉林大学硕士学位论文],2006.
    [2]G. Wang, T. Baehr-Jones,M. Hochberg, and A. Scherer, Design and fabrication of segmented, slotted waveguides for electro-optic modulation, Appl.Phys.Lett.91(2007),143109.
    [3]T. Baehr-Jones,M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan,L. Dalton,A. K.-Y. Jen,and A. Scherer,Optical modulation and detection in slotted silicon waveguides,Opt.Express,11(2005), 5216-5226.
    [4]M. Hochberg, T. Baehr-Jones,G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, Towards a millivolt optical modulator with nano-slot waveguides,Opt.Express,15(2007),8401-8410.
    [5]K. K.McLauchlan, and S. T. Dunham, Analysis of a compact modulator incorporating a hybrid silicon/electro-optic polymer waveguide,IEEE J. Sel.Top. Quantum Electron.12(2006),1455-1460.
    [6]J. H. Wuelbern, A. Petrov, and M. Eich, Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,Opt.Express,17(2009),304-313.
    [7]C. Koos, P. Vorreau, T. Vallaitis,P. Dumon, W. Bogaerts,R. Baets, B. Esembeson, I.Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,Nature Photon.3(2009),216-219.
    [8]刘恩科,朱秉升,罗晋生,等,“半导体物理学”,西安交通大学出版社,1998年10月第一版.
    [9]童诗白、华成英,“模拟电子技术基础”,高等教育出版社,2001年1月第三版.
    [10]Y.-H. Kuo, H. Rong, V. Sih, S. Xu, and M. Paniccia, Demonstration of wavelength conversion at 40Gbit/s data rate in silicon waveguides,Opt. Express,14(2006),11721-11726.
    [11]L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit,H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia,40Gbit/s silicon optical modulator for high-speed applications,Electron. Lett.43(2007),No.22.
    [12]R. A. Soref, and B. R. Bennett,Electrooptical effects in silicon, IEEE J. Quantum. Electron.(1987)QE-23,123-129.
    [13]S. R. Giguere, L. Friedman, R. A. Soref, Simulation studies of silicon electro-optic waveguide devices,J. Appl.Phys.68(1990),4964-4970.
    [14]范承志、江传桂、孙士乾,电路原理,机械工业出版社,2001.7.
    [15]ATLAS user's manual,Device simulation software,2004,Silvaco International,CA.
    [16]S. S. M, Physics of semi-conductor devices,2nd edn, Wiley, NewYork, 2001.
    [1]H. Schmidt,and A. R. Hawkins,Optofluidic waveguides:Ⅰ.Concepts and implementations,Microfluid Nanofluid,4(2008),3-16.
    [2]D. Erickson, S. Mandal,A. H. J.Yang, and B. Cordovez, Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,Microfluid Nanofluid,4(2008),33-52.
    [3]A. D'Amico, and C. D. Natale, A contribution on some basic definitions of sensors properties,IEEE Sensors J.1(2001),183-190.
    [4]A. R. Hawkins, and H. Schmidt, Optofluidic waveguides:Ⅱ fabrication and structures,Microfluid Nanofluid,4(2008),17-32.
    [5]B. J. Luff, J.S. Wilkinson, J.Piehler,U. Hollenbach, J. Ingenhoff, and N. Fabricius,Integrated optical Mach-Zehnder biosensor,J.Lightwave Technol.16(1998),583-592.
    [6]F. Prieto, B. Sepulveda,A. Calle, A. Llobera, C. Dominguez,A. Abad,' A. Montoya, and L. M. Lechuga, An integrated optical interferometric nanodevice based on silicon technology for biosensor applications, Nanotechnology,14(2003),907-912.
    [7]R. G. Heidman, and P. V. Lambeck, Remote opto-chemical sensing with extreme sensitivity:design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system, Sens.Actuators B Chem.61(1999),100-127.
    [8]J. Y. Lou, L. M. Tong, and Z. Z. Ye, Modeling of silica nanowires for optical sensing, Opt.Express,13(2005),2135-2140.
    [9]A. Ymeti,J. Greve, P. V. Lambeck, T. Wink, S. Hovelll, T. A. M. Beumer, R. R. Wijin, R. G. Heideman, V. Subramaniam, and J. S. Kanger, Fast, ultrasensitive virus detection using a young interferometer sensor,Nano Lett.7(2007),394-397.
    [10]N. M. Hanumegowda, C. J. Stica, B. C. Patel,I. White, X. D. Fan, Refractometric sensors based on microsphere resonators,Appl.Phys.Lett. 87(2005),201107.
    [11]R. W. Boyd, and J. E. Heebner,Sensitive disk resonator photonic biosensor, Appl.opt.40(2001),5742-5747.
    [12]E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, Sensor based on an integrated optical microcavity, Opt.Lett.27(2002), 512-514.
    [13]C. Y. Chao, W. Fung, and L. J. Guo, Polymer microring resonators for biochemical sensing applications,IEEE J.Sel.Top. Quantum Electron. 12(2006),134-142.
    [14]K. D. Vos, I. Bartolozzi,E. Schacht,P. Bienstman, and R. Baets, Silicon-on-insulator microring resonator for sensitive and label-free biosensing, Opt.Express,15(2007)7610-7615.
    [15]A. Yalcin, K. C. Popat, J. C. Aldridge, et al,Optical sensing of biomolecules using microring resonators,IEEE J. Sel.Top. Quantum Electron.12(2006),148-155.
    [16]I.M. White, H. Oveys,and X. Fan, Liquid-core optical ring-resonator sensors,Opt.Lett.31(2006)1319-1321.
    [17]V. S. Ilchenko, and A. B. Matsko, Optical resonators with whispering-gallery modes-part II:applications,IEEE J. Sel.Top. Quantum Electron,12(2006),15-32.
    [18]H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, Analysis of biomolecule detection with optofluidic ring resonator sensors,Opt. Express,15(2007),9139-9146.
    [19]X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys,Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. of SPIE,6452(2007),64520M.
    [20]B. J.Luff,et al.Integrated-optical directional coupler biosensor, Opt.Lett.21(1996),618-620.
    [21]M. Mayeh, Design and optimization of slotted multimode interference devices for chemical and biochemical sensing,Proc.of SPIE,6619(2007).
    [22]S. Mandal,and D. Erickson, Nanoscale optofluidic sensor arrays,Opt. Express,16(2008),1623-1631.
    [23]M. R. Lee, and P. M. Fauchet,Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Opt.Express, 15(2007),4530-4535.
    [24]N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D'Agness,High resolution serface plasmon resonance spectroscopy, Rev. Sci.Instrum.70(1999),4656-4660.
    [25]B. Huang, F. Yu, and R. N. Zare, Surface plasmon resonance imaging using a high numerical aperture microscope objective, Anal.Chem. 79(2007),2979-2983.
    [26]G. J. Veldhuis,0. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, Sensitivity enhancement in evanescent optical waveguide sensors,J. Lightwave Technol.18(2000),677-682.
    [27]F. Dell'Olio, and V. M. N. Passaro, Optical sensing by optimized silicon slot waveguides,Opt.Express,15(2007),4977-4993.
    [28]J. T. Robinson, L. Chen, and M. Lipson, On-chip gas detection in silicon optical microcavities,Opt.Express,16(2008),4296-4301.
    [29]C. A. Barrios,K. B. Gylfason, B. Sanchez, A. Griol,H. Sohlstrom, M. Holgado, and R. Casquel,Slot-waveguide biochemical sensor,Opt.Lett. 32(2007),3080-3082.
    [30]C. A. Barrios,K.B. Gylfason, B. Sanchez, A. Griol,H. Sohlstrom, M. Holgado, and R. Casquel,Slot-waveguide biochemical sensor:erratum, Opt.Lett.33(2008),2554-2555.
    [31]C. A. Barrios,M. J. Banuls,V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol,A. Maquieira,H. Sohlstrom, M. Holgado, and R. Casquel, Label-free optical biosensing with slot-waveguides,Opt.Lett.33(2008), 708-710.
    [32]R. A. Soref, J.Schmidtchen, and K. Petermann, Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,IEEE J.Quantum Electron.27(1991), 1971-1974.
    [33]S. T. Lim, C. E. Png, and E. A. Ong, Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,Opt.Express,18(2007),11061-11072.
    [34]F. Grillot,L. Vivien, S. Laval,and E. Cassan, Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides, J. Lightwave Technol.24(2006),891-896.
    [35]W. Bogearts,et al.Silicon nanophotonic waveguides and their applications,Proc. of SPIE,7134(2008),713410-1.
    [36]D. R. Lide, CRC Handbook of chemistry and physics,80th edition 1999-2000, by CRC Press LLC.
    [37]C. Koos, P. Vorreau, P. Dumon, R. Beats,B. Esembeson, I.Biaggio, T. Michinobu, F. Diederich, W. Freude, and J.Leuthold, Highly-nonlinear silicon photonics slot waveguide,OFC/NFOEC(2008),PDP25.
    [38]W. Bogaerts,S. K. Selvaraja, and P. Dumon, ePIXfab, the silicon photonics platform, Technology paper IMEC_193_01,2008.
    [1]V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt.Lett.29(2004),1209-1211.
    [2]P. Mullner, and R. Haingerger, Structure optimization of silicon-on-insulator slot waveguides,IEEE Photon. Technol.Lett. 18(2006),2557-2559.
    [3]C. A. Barrios,Q. Xu, J. Shakya,C. Manolaton, and M. Lipson, Compact silicon slot-waveguide disk resonator,OSA/CLEO(2006),CTuCC3.
    [4]L. Zhang, Y. Yue, Y. Xiao-Li,R. G. Beausoleil,and A. E. Wiliner, Slot waveguides with a flattened near-zero dispersion and a small effective mode area,OSA/IPNRA/NLO/SL(2009),IWD6.
    [5]S. Lee, J. S. Chang, and J. H. Shin, Ridge-type, single mode multi-slot waveguide with Er-doped silica layers,Conference on Lasers and Electro-optic/Pacific Rim(CLEOPR),ThP-044.
    [6]R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel,M. Lipson, and L. Kimerling, Horizontal single and multiple slot waveguides:optical transmission at λ=1550nm, Opt.Express,15(2007),17967-17972.
    [7]Y. Fu, H. G. Yoo, D. Riley, and P. M. Fauchet,Photon confinement in multi-slot waveguides,Proc. of SPIE,6898(2008),68980P.
    [8]H. G. Yoo, Y. Fu, D. Riley, J. H. Shin, and P. M. Fauchet,Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2, Opt.Express,16(2008),8623-8628.
    [9]R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel,M. Lipson, and L. Kimerling, Optical transmission in horizontal slot waveguides, COTA/ICQI/IPNRA/SL(2008).IWH5.
    [10]R. M. Pafchek,J. Li,R. S. Tummidi,and T. L. Koch,Low loss Si-SiO2-Si 8nm slot waveguides,OSA/CLEO/QELS(2008),CThT3.
    [11]T. Baehr-Jones,M. Hochberg, C. Walker, and A. Scherer, High-Q optical resonators in silicon-on-insulator-based slot waveguides,Appl. Phys. Lett.86(2005),081101.
    [12]R. M. Briggs,M. Shearn, A. Scherer,and H. A. Atwater, Wafer-bonded single-crystal silicon slot waveguides and ring resonators,Appl.Phys. Lett.94(2009),021106.
    [13]G. Roelkens,Heterogeneous Ⅲ-Ⅴ/silicon photonics:bonding technology and integrated devices [比利时根特大学博士学位论文],2007.
    [14]G. Roelkens,J. V. Campenhout,J. Brouckaert,D. V. Thourhout,R. Baets,P. R. Romeo, P. Regreny, A. Kazmierczak, C. Seassal,X. Letartre, G. Hollinger, J. M. Fedeli,L. D. Cioccio, and C. Lagahe-Blanchard, Ⅲ-Ⅴ/Si photonics by die-to-wafer bonding, Materialstoday,10(2007), 36-43.
    [15]G. Roelkens,J. Brouckaert,D. V. Thourhout,R. Baets,R. Notzel, and M. Smit,Adhensive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutence,J.Electrochem. Soc. 153(2006),G1015-G1019.
    [16]G. Roelkens,B. Bataillou, J.Brouckaert,F. V. Laere, D. V. Thourhout, and R. Baets,Adhesive bonding of Ⅲ-Ⅴ dies to processed SOI using BCB for photonic applications,Meet.Electrochem. Soc.602(2006),1385-1390.
    [17]G. Roelkens,L. Liu, D. V. Thourhout,R. Beats,R. Notzel,F. Raineri, I.Sagnes,G. Beaudoin, and R. Raj,Light emission and enhanced nonlinearity in nanophotonic waveguide circuits by Ⅲ-Ⅴ/silicon-on-insulator heterogeneous integration, J. Appl.Phys.104(2008),033117.
    [18]D. V. Thourhout,J. V. Campenhout,G. Roelkens,J. Brouckaert,and R. Baets,Ⅲ-Ⅴ silicon heterogeneous integration for integrated transmitters and receivers,Proc. of SPIE,6896(2008),68960X.
    [19]J.Brouckaert,G. Roelkens,D. V. Thourhout,and R. Beats,Thin film InGaAs/InAlAs Photodetectors integrated on a silicon-on-insulator waveguide substrate,33rd European Conference and Exhibition on Optical Communication(ECOC),2(2007),251-252.
    [20]J.Brouckaert,G. Roelkens,D. V. Thourhout,and R. Baets,Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,IEEE Photon. Technol.Lett.19(2007), 1484-1486.
    [21]S. K. Selvaraja,E. Sleeckx, W. Bogaerts,M. Schaekers,P. Dumon, D. V. Thourhout,and R. Baets,Low loss amorphous silicon photonic wire and ring resonator fabricated by CMOS process,33rd European Conference and Exhibition on Optical Communication (ECOC),(2007).
    [22]关旭东,硅集成电路工艺基础,北京大学出版社,2003年10月第一版。
    [23]D. Meyerhofer,Characteristics of resist films produced by spinning, J. Appl.Phys.49(1978),3993.
    [24]CYCLOTENE* 3000 series advanced electronic resins,2005, http://www. dow. com.
    [25]李广波,玻璃基硅光波导及纳米波导研究[浙江大学硕士学位学位论文],2006.
    [26]R. Haingerger,P. Muellner,and M. Wellenzohn, Lateral confinement in horizontal SOI slot waveguide structures,Proc. of SPIE,7138(2008), 71381W.
    [27]P. Muellner, N. Finger, and R. Hainberger, Lateral leakage in symmetric SOI rib-type slot waveguides,Opt.Express,16(2008),287-294.
    [28]P. K. Tien, and R. Ulrich, Theory of prism-film coupler and thin-film light guides, J. Opt.Soc. Am.60(1970),1325-1337.
    [29]R. Ulrich, Theory of the prism-film coupler by plane-wave analysis, J. Opt.Soc. Am.60(1970),1337-1350.
    [30]S. T. Kirsch, Determining the refractive index and thickness of thin film from prism coupler measurements,Appl.Opt.20(1981),2085-2089.
    [31]R. Ulrich, and R. Torge, Measurement of thin film parameters with a prism coupler,Appl.Opt.12(1973),2901-2908.
    [32]K. S. Chiang, S. Y. Cheng, and Q. Liu, Characterization of ultrathin dielectric film with the prism-coupler method, J. Lightwave Technol. 25(2007),1206-1211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700