掺杂ZnO准一维超晶格纳米结构制备与物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有超晶格结构的InMO_3(ZnO)_m同系物化合物,由于拥有优良的光电性能,一直受到人们的关注。近年来,大量的InMO_3(ZnO)_m准一维超晶格纳米线被成功制备。但是到目前为止,所有报道的此类化合物的准一维纳米结构全部为非公度的超晶格纳米线。如何制备形貌更为丰富、公度性更好的InMO_3(ZnO)_m纳米结构,并且对其物理性质进行更深入的研究将是下一步InMO_3(ZnO)_m超晶格纳米材料研究的重点。本论文研究工作以InMO_3(ZnO)_m纳米材料为主要研究对象,从In_2O_3(ZnO)_m平面超晶格纳米带的制备到结构表征、物理性质研究到InGaO_3(ZnO)_m轴向超晶格纳米线的制备与物性等几个方面,开展了一系列工作,具体包括以下几个方面:
     1.In_2O_3(ZnO)_m平面超晶格纳米带制备与输运性质研究
     通过化学气相沉积自组装的方法成功制备出In_2O_3(ZnO)_m平面超晶格纳米带。通过分析纳米带从宽面入射的选区电子衍射花样,结合X射线的结果,我们判定出产物中有In_2O_3(ZnO)_m平面超晶格纳米带的生成,其中超晶格的堆垛方向沿纳米带的高度方向。并且给出了In_2O_3(ZnO)_m单斜结构单包与ZnO六方结构单包之间的转换关系,利用单斜结构对纳米带电子衍射花样进行了标定。通过将所得产物包裹在环氧树脂中进行切片处理,我们得到了具有超晶格结构的纳米带很截面高分辨照片,直接证明了产物中超晶格纳米带的生成。通过测量纳米带的Ⅰ-Ⅴ特性,在两端所加电压在-5V到+5V范围内,我们得到了最高达几十微安量级的电流,显示了十分优秀的半导体性能。
     2.In_2O_3(ZnO)_m平面超晶格纳米带的喇曼性质研究
     由于超晶格结构的形成改变了ZnO的局域晶体结构,从而会使其振动特性发生改变。我们对比了超晶格纳米带和没有形成超晶格结构的In掺杂ZnO纳米带的喇曼光谱。两者具有明显的不同,相对于In掺杂ZnO纳米带拉曼光谱,In_2O_3(ZnO)_m平面超晶格纳米带的拉曼光谱中出现了一个位于621cm~(-1)的新的振动模式,并且属于ZnO特征振动模式的E_2(high)峰变弱且变宽。通过分析In_2O_3(ZnO)_m的局域晶体结构,我们认为,该新的振动模式来自于In_2O_3(ZnO)_m晶体结构中In-O层和In/Zn-O交界面处,一个O原子与三个In原子和一个Zn原子键连而形成的振动模式,是In_2O_3(ZnO)_m超晶格结构的特征振动模式。
     3.InGaO_3(ZnO)_m轴向超晶格纳米线的制备与发光
     采用化学气相沉积自组装的方法制备了InGaO_3(ZnO)_m轴向超晶格纳米线。高分辨透射电镜照片显示该纳米线具有完美公度的超晶格层状结构,每两层In-O层间夹四层In/Zn-O层。EDS谱显示在In/Zn-O层,有大量的In原子取代了Zn原子。我们在产物中还发现了具有完美公度的InGaO_3(ZnO)_5超晶格纳米线。和侧面向超晶格纳米带的生成。通过分析样品的发光光谱,显示超晶格纳米线的带边发射位置在3.23eV附近,相比于ZnO带隙,超晶格的带隙变窄。
     4.几种特殊形貌的ZnO纳米结构的制备与物性研究
     利用直接蒸发ZnO和In_2O_3混合物粉末,我们制备了ZnO纳米盘/纳米带复合结构。纳米盘的宽面为ZnO(0001)极性面,纳米带生长方向沿[11-20],宽面同样为ZnO(0001)极性面。光致发光谱显示,因为In掺杂,ZnO带边发射发生红移至409nm。在不同实验条件下,我们得到了ZnO纳米棒/纳米带的复合结构。通过蒸发ZnO和MnO_2粉末,我们得到了ZnO纳米塔和层状ZnO六棱柱准阵列。X射线衍射结果显示产物为ZnO纤锌矿结构。这些复合纳米结构,丰富了ZnO纳米结构的形貌。
The synthesis, characterization and physical properties studying of quasi-one-dimensional (1D) nanomaterials, including nanowires (rods), nanoribbons (belts), nanotubes, heterostructure and superlattice nanowires (ribbons) are always the center spots of namomaterials research area. Among these, the preparing and physical properties studying of heterostructure and superlattice nanostructures are of even more important, as it is the critical case for the success of future optical and electronic nanodevice and integrate circuits performance. In recent years, different kinds and different shape of quasi-1D nanomaterials heterostrtures and superlattice have been successfully synthesized.
     Owing to the better optical and electronic properties, the homogenous compounds of InMO_3(ZnO)_m have attracted much attention recently. Huge improgress have been obtained on quasi-1D InMO_3(ZnO)_m nanomaterials and a large of them have been successfully synthesized. Yet to now, all superlattice nanowires reported are not periodical and little physcial properties such as photoluminescence have been studied. So it is important to prepared periodical InMO_3(ZnO)_m superlattice nanostructures with different shapes and studying their further physical properties. The main contents, focusing on the preparing, characterization, physical properties studying of In_2O_3(ZnO)_m planar superlattice nanoribbons and InGaO_3(ZnO)_m axial superlattice nanowires, are summarized as:
     1. synthesis and electrical properties studying of In_2O_3(ZnO)_m planar superlattice nanoribbons.
     By the use of chemical vapor transports self assembly method, we successfully synthesized In_2O_3(ZnO)_m planar superlattice nanoribbons. Combined with XRD results, we verified the formation of In_2O_3(ZnO)_3 planar superlattice nanoribbons by analyzing the SAED pattern with the incident direction of electron beam perpendicular to the wide surface of a nanoribbon. We also give the translational relation between monoclinic cell and ZnO wurtzite cell and successfully index the obtained SAED with monoclinic structure. We mixed the In_2O_3(ZnO)_m planar superlattice nanoribbons with epoxy resin and cross cut the mixture to slices of about 200 run in thickness and obtained cross-sectional HRTEM image of a nanoribbon. The HRTEM image clearly shows the formation of superlattice structures. We also measure theⅠ-Ⅴproperties of the obtained In_2O_3(ZnO)_m planar superlattice nanoribbons and the out put current can reach severalμA level, which is the highest results ever reported.
     2 Raman property of In_2O_3(ZnO)_m planar superlattice nanoribbons
     The formation of superlattice structures change the local crystal structure of ZnO wurtzite and thus the vibrational property. We compared the Raman spectra of In doped ZnO nanoribbons with and without superlattice structures. Beside the intensity of ZnO characteristic mode E_2(high) getting low and broading, there is a new vibrational mode (AM) around 621cm~(-1) in Raman spectra of products containing In_2O_3(ZnO)_m planar superlattice nanoribbons. By the analysis of the local crystal structure of In_2O_3(ZnO)_m planar superlattice nanoribbons, we infer that this new mode is attributed to an O atom that bonded with three In atoms and one Zn atom in a distorted tetrahedron coordinatio in the interface between In-O layer and In/Zn-O layers in the superlattice of nanoribbons and be the characteristic vibrational mode of In_2O_3(ZnO)_m superlattice nanoribbons.
     3 Synthesis and photoluminescene properties of InGaO_3(ZnO)_m axial superlattice nanowires
     We havealso successfully synthesized InGaO_3(ZnO)_3 axial superlattice nanowires using chemical vapor transport self assembly method. HRTEM images show the nanowires having layered superlattice structure with perfect commensurability and and exactly four In/Zn-O layers between two adjacent In-O layers. EDS spectra indicates that a large amount of Zn atoms in Ga/Zn-O layers.are substituted by In atoms. We have also found some InGaO_3(ZnO)_5 axial superlattice nanowires and InGaO_3(ZnO)_m lateral superlattice nanoribbons formation in the as synthesized products. By the analysis of PL spectra of the as synthesized products, we infer that the peaks around 3.23eV is the near band edge emission of InGaO_3(ZnO)_m superlattice nanowires.
     4 Syntheis and physical properties studying of several kinds of complexed ZnO nanostructures.
     We successfully prepared complexed nanostructures of ZnO nanodisks/nanoribbons by directly evaporating the mixture of ZnO and In_2O_3 powders. The wide surface of the nanodisks is ZnO (0001) and the growth direction of ZnO nanoribbons is [11-20] with the wide surface (0001). The band gap emission redsift to 409nm cause by In doping was obtained in photoluminescence (PL) spectra. Under different experimental condition, we also successfully prepared the complexed nanostructures of ZnO nanorods/nanoribbons.
     By evaporating the powders of ZnO and MnO_2 displayed at different places, we obtained ZnO nanotowers and ZnO nanorods arrays with layered structures. XRD result indicates the crystal structures of ZnO wurtzite. All the complexed nanostructures obtained above enrich the morphology of ZnO nanostructures.
引文
[1]白春礼 纳米科技及其发展前景:科学通报.46卷,第2期,2001.
    [2]韩新海,2006。准一维ZnO纳米材料可控制备与物性;中国科技大学博士论文:合肥。
    [3] Maruccio G, Cingolani R, Rinaldi R, 2004, J. Mater. Chem. Concepts, results and perspectives of molecular electronics 14(4): 542-554.
    [4]姜桂兴,2001。世界纳米科技发展态势分析;世界科技研究与发展.30卷,第2期。
    [5] Pan Z W, Dai Z R, Wang Z L, 2001, Science. Nanobelts of semiconducting oxides, 291(5510):1947-1949.
    [6]黄昆原著,韩汝琦改编.1988。 固体物理学:高等教育出版社:北京。
    [7] Kubo R, Kawabata A, Kobayashi S, 1984, Annu. Rev. Mater. Sci. Tailoring of Piezoelectric Ceramics. 14:27-47.
    [8]Lu J,Tinkhan M 1998,物理,27(3):137。
    [9] Feldhein, D. L. Keating, C. D. 1998, Self-assembly of single electron transistors and related device. Chem. Soc. Rev. 27, 1.
    [10] Nalwa (ed.) H S, 2000, Handbook of Nanostructured Materials and Nanotechnology. (Academic Press).
    [11] Shalaev V M, and Moskovits(eds.) M 1997, Nanostructured materials: Clusters, Composites, and Thinfilms (American Chemical Society, Washington, DC).
    [12] Edelstein A S, and Cammarata (eds.) R C, 1996, Nanomaterials: synthesis, Properties and Applications (Institute of Physics, UK).
    [13] Bawendi M G, Steigerwald M L, and Brus L E, 1990, The Quantum Mechanics of Larger Semiconductor Clusters. Annu. Rev. Phys. Chem. 41, 477.
    [14] Iijima S 1991, Helicalmicrotubules of graphitic carbon. Nature 354(6348), 56-58.
    [15] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, and Bawendi M G, 2000, Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 314,290.
    [16] Likharev K K, and Claeson 1992, Classical and Quantum Limitations on Energy Consumption in Computation.T. Sci. Am. June, 80.
    [17] Likharev K K, 1988, Correlated discrete transfer of single electrons in ultrasmall junctions. IBM J. Res. Develop. 32, 144.
    [18] Rueckes T, Kim K, Joselevich E, Tseng G Y. Cheung C.-L, and Lieber C M 2000, Magnetic Clusters on Single-Walled Carbon Nanotubes. Science. 94, 289.
    [19] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897-1899.
    
    [20] Wong E W, Sheehan P E, Liebei C M, 1997, Nanobeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes. Science. 277(5534), 1971-1975.
    
    [21] Duan X F, Huang Y, Cui Y, Wang J F, Lieber C M, 2001, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 409(6816), 66-69.
    
    [22] Zhang Z B, Sun X Z, Dresselhaus M S, Ying J Y, heremans J, 2000, Electronic transport properties of single-crystal bismuth nanowire arrays. Phys. Rev. B. 61(7), 4850-4861.
    
    [23] Li C, Zhang D H, Liu X L, Han S, Tang T, Han J, Zhou C W, 2003, In_2O_3 nanowires as chemical sensors. Appl. Phys. Lett. 82(10), 1613-1615.
    
    [24] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J, 2002, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81(19), 3648-3650.
    
    [25] Law M, Goldberger J, Yang P D 2004, Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34,83-122.
    
    [26] Han X H, Wang G Z, Jie J S, Choy W C H, Luo Y, Yuk T I, Hou J G 2005, Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature J. Phys. Chem. B 109(7), 2733-2738.
    
    [27] Morales A M, Lieber C M, 1998, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science. 279(5348), 208-211.
    
    [28] Park W I, Kim D H, Jung S W, Yi G C 2002, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80(22), 4232-4234.
    
    [29] Wagner R S, Ellis W C, 1964, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Appl. Phys. Lett. 4(5), 89-90.
    
    [30] Harmon J B, Kodambaka S, Ross F M, Tromp R M 2006, The influence of the surface migration of gold on the growth of silicon nanowires. Nature. 440, 69-71.
    
    [31] Wu Y Y, Yang P D 2001, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc. 123(12), 3165-3166.
    
    [32] Wang X D, Song J H, Summers C J, Ryou J H, Li P, Dupuis R D, Wang Z L 2006, Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications J. Phys. Chem. B. 110, 7720-7724.
    
    [33] Li D P, Wang G Z, Han X H, Jie J S, Lee S T J. Phys. Chem. C. (accpeted, Article Ref: jp810158u)
    
    [34] Jie J S, Wang G Z, Han X H, Hou J G 2004, Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. J. Phys. Chem. B. 108(44), 17027-17031.
    [35] Stach E A, Pauzauskie P J, Kuykendall T, Goldberger J, He R R, Yang P D 2003, Watching GaN Nanowires Grow.Nano Lett. 3(6), 867-869.
    [36]揭建胜.2004。准一维纳米材料可控合成及其物性的研究:中国科技大学博士论文:合肥。
    [37] Frank F C Discuss 1949, The influence of dislocations on crystal growth. Faraday Soc. 23,48-54.
    [38] Dai Z R, Pan Z W, Wang Z L 2003, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Adv. Func. Mater. 13(1), 9-24.
    [39] Lei W W, Liu D, Zhang J, Zhu P W, Cui Q L, Zou G T 2009, Direct Synthesis, Growth Mechanism, and Optical Properties of 3D A1N Nanostructures with Urchin Shapes. Cryst. Growth.Des. 9(3), 1489-1493.
    [40] Yin L W, Lee S T 2009, Wurtzite-Twinning-Induced Growth of Three-Dimensional Ⅱ-Ⅵ Ternary Alloyed Nanoarchitectures and their Tunable Band Gap Energy Properties. Nano. Lett. 9(3), 957-963.
    [41] Je J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P Hou J G 2004, Indium-doped zinc oxide nanobelts. Chem. Phys. Lett. 387,466-470.
    [42] Yan J, Fang X S, Zhang L D, Bando Y, Gautam U K, Dierre B, Sekiguchi T Golberg D 2008, Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Lett, 8, 2794.
    [43] Wu C G, Bein T 1994, Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 264(5166), 1757-1759.
    [44] Tretler T J, Hickman K M, Goel S C, Viano A M, Gibbons P C, Buhro W E 1995, Solution-Liquid-Solid Growth of Crystalline Ⅲ-Ⅴ Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 270(5243), 1791-1759.
    [45] Kong X Y, Ding Y, Yang R, Wang Z L 2004, Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science 303(5662), 1348-1351.
    [46] Kong X Y, Wang Z L 2003, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts Nano Lett. 3(12), 1625-1631.
    [47] Pan Z W, Budai J D, Dai Z R, Liu W J, Paranthaman M P, Dai S 2009, Zinc Oxide Microtowers by Vapor Phase Homoepitaxial Regrowth. Adv. Mater. 21, 890-896.
    [48] Ortega Y, Fern'andez P, Piqueras J, 2007, Growth and luminescence of oriented nanoplate arrays in tin doped ZnO. Nanotech, 18, 115606.
    [49] Ortega Y, Fernandez P Piqueras 2009, J. Al doped ZnO nanoplate arrays and microbox structures grown by thermal deposition.J.Appl. Phys. 105, 054315.
    [50] Xua CX, Suna X W, Dongb Z L, Yuc M B 2004, J. Cryst. Growth. 270, 498-504.
    
    [51] Qian F, Gradecak S, Li Y, Wen C Y, Lieber C M 2005, Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Lett. 5(11), 2287-2291.
    
    [52] Wang K, Chen J J, Zhou W L, Zhang Y, Yan Y F, Pern J, Mascarenhas A 2008, Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications. Adv. Mater. 20, 3248-3253.
    
    [53] Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002, One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058.
    
    [54] Clark E T, Nimmatoori P, Lew K K, Pan L, Redwing J M, Dickey E C 2008, Diameter Dependent Growth Rate and Interfacial Abruptness in Vapor-Liquid-Solid Si/Si_(1-x)Ge_x Heterostructure Nanowires. Nano Lett. 8, 1246.
    
    [55] Wu Y Y, Fan R, Yang P D 2002, Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires. Nano Lett. 2, 83.
    
    [56] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M 2002, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 415, 617.
    
    [57] Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002, One-dimensional Steeplechase for Electrons Realized. Nano Lett. 2, 87.
    
    [58] Xue F H, Fei G T, Wu B, Cui P, Zhang, L. D. 2005, Direct Electrodeposition of Highly Dense Bi/Sb Superlattice Nanowire Arrays. J. Am. Chem. Soc. 127, 15348.
    
    [59] Solanki R, Huo J, Freeouf J L, Miner B 2002, Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81, 3864.
    
    [60] Jie J S, Wang G Z, Han X H, Hou J G 2004, Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. J. Phys. Chem. B 108,17027.
    
    [61] Na C W, Bae S Y, Park J 2005, Short-Period Superlattice Structure of Sn-Doped In_2O_3(ZnO)_4 and In_2O_3(ZnO)_5 Nanowires. J. Phys. Chem. B 109,12785.
    
    [62] Gao P M, Ding Y, Mai W J, Hughes W L, Lao C S Wang Z L 2005, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science 309, 1700.
    
    [63] Hao Y, Meng G, Wang Z L, Ye C, Zhang L 2006, Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth. Nano Lett. 6, 1650.
    [64] He R R, Law M, Fan R, Kim F Y,ang P D 2002, Functional Bimorph Composite Nanotapes. Nano Lett. 2(10), 1109-1112.
    
    [66] Han X H, Wang G Z, Wang Q T, Li C, Liu R B, Zou B S, Hou J G 2005, Ultraviolet lasing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays. Appl. Phys. Lett. 86, 223106.
    
    [67] Fan H J, Fuhrmann B, Scholz RHimcinschi et, al. 2006, Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotech. 17,s231-s239.
    
    [68] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D 2001, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 13(2), 113-116.
    
    [69] Kuykendall T, Pauzauskie P J, Zhang Y F, Goldberg J, Sirbuly D, Denlinger J, Yang P D 2004, Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3(8), 524-528.
    
    [70] Nikoobakht B, Michaels C A, Stranick S J, Vandin M D 2004, Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 85(15), 3244-3246.
    
    [71] Bae S Y, Na C W, kang J H, Park J 2005, Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation. J. Phys. Chem. B 109(7), 2526-2531.
    
    [72] Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S, Lee S T 2008, p-Type ZnO Nanowire Arrays. Nano. Lett. 8, 2591.
    
    [73] Wang Y S, Thomas P J O'Brien, P. 2006, Optical Properties of ZnO Nanocrystals Doped with Cd, Mg, Mn, and Fe Ions. J. Phys. Chem. B 110,21412-21415.
    
    [74] Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Cheng C P, Wang R M, Xu J, Yu D P2003, Synthesis, optical, and magnetic properties of diluted magnetic semiconductor Zn_(1-x)Mn_xO nanowires via vapor phase growth. Appl. Phys. Lett. 83(19), 4020-4022.
    
    [75] Bail J M, Lee J L 2005, Fabrication of Vertically Well-Aligned (Zn,Mn)O Nanorods with Room Temperature Ferromagnetism. Adv. Mater. 17(22), 2745.
    
    [76] Xu C X, Sun X W, Dong Z L, Yu M B, Xiong Y Z, Chen J S 2005, Room-temperature ferromagnetism in well-aligned Zn_(1-x)Co_xO nanorods. Appl. Phys. Lett. 86, 173110.
    
    [77] Wu J J, Liu S C, Yang M H 2004, Room-temperature ferromagnetism in well-aligned Zn_(1-x)Co_xO nanorods. Appl. Phys. Lett. 85(6), 1027-1029.
    
    [78] Jie J S, Wang G Z, Han X H, Fang J P, Yu Q X, Liao Y, Xu B, Wang Q T, Hou J G 2004, Growth of Ternary Oxide Nanowires by Gold-Catalyzed Vapor-Phase Evaporation. J. Phys. Chem. B 108(24), 8249-8253.
    [79] Zhi M J Zhu L P Ye Z Z Wang F Z Zhao B H 2005, Preparation and Properties of Ternary ZnMgO Nanowires. J. Phys. Chem. B 109(50), 23930-23934.
    
    [80] Sellmyer D J, Zheng M, Skomski R 2001, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Mater. 13, R433.
    
    [81] Chen C Q, Shi Y, Zhang Y S, Zhu J, Yan Y J 2006, Size Dependence of Young's Modulus in ZnO Nanowires . Phys. Rev. Lett. 96(7). 075505.
    
    [82] Yan H Q Jonnson J Law M He R R knutsen K Mckinney J R Pham J Saykally R Yang P D 2003, ZnO Nanoribbon Microcavity Lasers. Adv. Mater. 15(22), 1907.
    
    [83] Hsieh Y P, Chen H, Yi Lin M Z, et, al. 2009. Nano Lett. NL803804A.
    
    [84] Pan A, Wang X, He P B, Zhang Q L, Wan Q, Zacharias M, Zhu X, Zou B S 2007, Color-Changeable Optical Transport through Se-Doped CdS ID Nanostructures. Nano Lett. 7(10), 2970-2975.
    
    [85] Houten H V, Beenakker C 1996, Quantum Point Contacts. Phys. Today July, 22.
    
    [87] Cui Y, Lieber C M 2001, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 291(5505), 851-853.
    
    [88] Huang Y, Duan X F, Cui Y, Lauhon L J, kim K H, Lieber C M 2001, Logic Gates and Computation from Assembled Nanowire Building Blocks. Science 294(5545), 1313-1317.
    
    [89] Cha S N, Jang J E, Choi Y, Amaratunga G A J, Ho G W, Welland M E, Hasko D G, Kang D J, Kim J M 2006, High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89,263102.
    
    [90] Park W I, Kim J S, Yi G C, Lee H J ZnO 2005, Nanorod Logic Circuits. Adv. Mater. 17(11), 1393-1397.
    
    [91] Xiang J, Lu W, Hu Y J, Wu Y, Yan H, Lieber C M 2006, Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 441,489-493.
    
    [92] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K J, Dai H J 2000, Nanotube Molecular Wires as Chemical Sensors. Science 287(5453), 622-625.
    
    [93] Kolmakov S Zhang Y X Cheng G S Moskovits M 2003, Detection of CO and O_2 Using Tin Oxide Nanowire Sensors. Adv. Mater. 15(12), 997.
    
    [94] Li C, Zhang D H, Liu X L, han S, Tang T, Han J, Zhou C W 2003, In_2O_3 nanowires as chemical sensors. Appl. Phys. Lett. 82(10), 1613-1615.
    
    [95] Huang H, Lee Y C, Tan O K, Zhou W, Peng N, Zhang Q 2009, High sensitivity SnO_2 single-nanorod sensors for the detection of H_2 gas at low temperature. Nanotech. 20, 115501.
    
    [96] Zhang Y, Xu J Q, Xiang Q, Li H, Pan Q Y, Xu P C 2009, Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C 113(9), 3430-23435.
    
    [97] Li Q H, Liang Y X, Wan Q, Wang T H 2004, Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 85(26), 6389-6391.
    
    [98] Wang Q, Li Q H, Chen Y J, Wang T H, He X L, Gao X G, Li J P 2004, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84(16), 3085-3087.
    
    [99] Weng X G, Fang Y P, Pang Q, Yang C L, Wang J N, Ge W K, Wong K S, Yang S H 2005, ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications. J. Phys. Chem. B 109 (32), 15303-15308.
    
    [100] Wang C H, Chu X F, Wu M W, 2006, Detection of H_2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors and Actuators B 113(1), 320-323.
    
    [101] Patolsky F, Zheng G F, Lieber C M 2006, Nanowire-Based Biosensors. Analytical Chemistry, July 1, 4261-4269.
    
    [102] Fowler R H, Nordheim L W 1928, Electron emission in intense electric fields. Proc. R. Soc. London Ser. A 119, 173.
    
    [103] Deheer W A, Chatelain A, Ugarte D 1995, A Carbon Nanotube Field-Emission Electron Source. Science 270(5239), 1179-1180.
    
    [104] Au F C K, Wong K W, Tang Y H, Zhang Y F, Bello I, Lee S T 1999, Electron field emission from silicon nanowires. Appl. Phys. Lett. 75(12), 1700-1702.
    
    [105] Chen J, Deng S Z, Xu N S, Wang S H, Wen X G, Yang S H, Yang C L, Wang J N, Ge W K 2002, Field emission from crystalline copper sulphide nanowire arrays. Appl. Phys. Lett. 80(19), 3620-3622.
    
    [106] Li Y B, Bando Y, Golberg D, Kurashima K 2002, Field emission from MoO_3 nanobelts. Appl. Phys. Lett. 81(26), 5048-5050.
    
    [107] Wu Z S, Deng S Z, Xu N S, Chen J, Zhou J, Chen J 2002, Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties. Appl. Phys. Lett. 80(20), 3829-3831.
    
    [108] Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P 2003, Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144-146.
    
    [109] Cheng J P, Zhang Y J, Guo R Y 2009, Field Emission Properties of ZnO Single Crystal Microtubes. J.Appl. Phys. 105, 034313.
    
    [110] Kuan C Y, Hon M H, Chou J M, Leu L C 2009, Growth Behavior, Microstructure Characterization,and Field-Emission Property of 6-Fold HierarchicalZn/ZnO Structures Prepared by Direct Annealing. Crystal Growth & Design. 9, 813.
    
    [111] Li C F, Bando Y, Nakamura M, Kimizuka N A 1997, modulated structure of ln203(Zn0)m as revealed by high-resolution electron microscopy. J. Electron Micrsc. 46,119.
    
    [112] Li C F, Bando Y, Nakamura M, Onoda M, Kimizuka N 1998, Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group J. Solid State Chem. 139, 347.
    
    [113] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H Science Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. 2003, 300,1269.
    
    [114] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q, Hark S K 2009, Crystal Structure of In_2O_3(ZnO)_m Superlattice Wires and Their Photoluminescence Properties. Cryst. Growth Des. 9 (1), 364-367.
    
    [115] Wu L L, Zhang X T 2008, Synthesis and optical properties of ZnO nanowires with a modulated structure. J. Phys. D: Appl. Phys. 41, 195406.
    [1] (a) Wu Y Y, Fan R, Yang P D 2002. Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires Nano Lett.. 2,83.; (b) Clark E T, Nimmatoori P, Lew K K, Pan L Redwing, J. M. Dickey, E. C. 2008. Diameter Dependent Growth Rate and Interfacial Abruptness in Vapor-Liquid-Solid Si/Si1-xGex Heterostructure Nanowires Nano Lett. 8, 12461.
    
    [2] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M 2002. Growth of nanowire superlattice structures for nanoscale photonics and electronics Nature 415,617.
    
    [3] (a) Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002. One-dimensional Steeplechase for Electrons Realized. Nano Lett. 2, 87. (b) Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80,1058.
    
    [4] Jie J S, Wang G Z, Han X H, Hou J G 2004. Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. J. Phys. Chem. B 108,17027.
    
    [5] Cheng B C, Xiao Y H, Wu G S, Zhang L D 2004. Controlled Growth and Properties of One-dimensional ZnO nanostructures with Ce as Activator/Dopant. Adv. Funct. Mater. 14, 913.
    
    [6] Li D Y, Wu Y, Fan R, Yang P D, Majumdar A. 2003. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83,3186.
    
    [7] Klein A, Schmidt A, Hammer L, Heinz K 2004. Europhys. Lett. 65, 830.
    
    [8] Solanki R, Huo J, Freeouf J L, Miner B. 2002. Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81, 3864.
    
    [9] Xue F H, Fei G ,T Wu B, Cui P, Zhang L D 2005. Direct Electrodeposition of Highly Dense Bi/Sb Superlattice Nanowire Arrays. J. Am. Chem. Soc. 127,15348.
    
    [10] Na C W, Bae S Y, Park J 2005, Short-Period Superlattice Structure of Sn-Doped In_2O_3(ZnO)_4 and In_2O_3(ZnO)_5 Nanowires. J. Phys. Chem. B 109,12785.
    
    [11] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science 309,1700.
    
    [12] Hao Y, Meng G, Wang Z L, Ye C, Zhang L. 2006, Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth Nano Lett. 6, 1650.
    
    [13] (a) Dou X C, L G H, Lei H C 2008, Kinetic versus Thermodynamic Control over Growth Process of Electrodeposited Bi/BiSb Superlattice Nanowires. Nano Lett. 8,1286.; (b) Wang W, Lu X L, Zhang T, Zhang G Q, Jiang W J, Li X G 2007, Bi2Te3/Te Multiple Heterostructure Nanowire Arrays Formed by Confined Precipitation J. Am. Chem. Soc. 129,6702.
    [14] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q, Hark S K 2009, Crystal Structure of In_2O_3(ZnO)_m Superlattice Wires and Their Photoluminescence Properties. Cryst. Growth Des. 9 (1), 364-367.
    [15] Wu L L, Zhang X T 2008, Synthesis and optical properties of ZnO nanowires with a modulated structure. J. Phys. D: Appl. Phys. 41,195406.
    [16] Li C F, Bando Y, Nakamura M, Kimizuka N. 1997, A modulated structure of In_2O_3(ZnO)_m as revealed by high-resolution electron microscopy. J. Electron Micrsc. 46,119.
    [17] Li C F, Bando Y, Nakamura M, Onoda M, Kimizuka N 1998, Modulated Structures of Homologous Compounds InMO_3(ZnO)_m(M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group J. Solid State Chem. 139,347.
    [18] Yan Y, Pennycook S J, Dai J, Chang R P H, Wang A, Marks T J 1998, Polytypoid structures in annealed In_2O_3-ZnO films. Polytypoid structures in annealed In_2O_3-ZnO films. Appl. Phys. Lett. 73,2585.
    [19] Li C F, Bando Y, Nakamura V, Kurashima K, Kimizuka N 1999, Structure analysis of new homologous compounds Ga2O3(ZnO)m (m = integer) by highresolution analytical transmission electron microscopy Acta Crystallogr. B 55, 355.
    [20] Li C, Bando Y, Nakamura M, Kimizuka N. 2000, Relation between In ion ordering and crystal structure variation in homologous compounds InMO_3(ZnO)_m (M=Al and In; m=integer).Micron 31,543.
    [21] Nomura K, Ohta H, Ueda K, Orita M. et al. 2002, Novel film growth technique of single crystalline In2O3(ZnO)m (m=integer) homologous compound Thin Solid Films 411,147.
    [22] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. 2003, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor Science 300,1269。
    [23]揭建胜.2004:准一维纳米材料可控合成及其物性的研究。中国科技大学博士论文:合肥,
    [24] Kong X Y, Ding Y, Yang R, Wang Z L 2004, Single crystal ZnO nanorings. Science 303(5662), 1348-1351.
    [25] Fan H J, Fuhrmann B, Scholz R, et, al. 2006, Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotech. 17, s231-s239.
    [26] Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004, In doped ZnO nanobelts. Chem. Phys. Lett. 387, 466.
    [27] Fang X S, Ye C H, Zhang L D, Li Y, Xiao Z D 2005, Formation and Optical Properties of Thin and Wide Tin-doped ZnO Nanobelts. Chem. Lett. 34,436.
    
    [28] Xu C X, Sun X W, Dong Z L, Yu M B, Xiong Y Z, Chen J S. 2005, Magnetic nanobelts of iron-doped zinc oxide. Appl. Phys. Lett. 86,173110.
    
    [29] Huang H, Lee Y C, Tan O K, Zhou W, Peng N, Zhang Q. 2009, High sensitivity SnO_2 single-nanorod sensors for the detection of H_2 gas at low temperature. Nanotech, 20,115501.
    
    [30] Zhang Y, Xu J Q, Xiang Q, Li H, Pan Q Y, Xu P C. 2009, Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C 113(9), 3430-23435.
    
    [31] Li Q H, Liang Y X, Wan Q, Wang T H. 2004, Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 85(26), 6389-6391.
    
    [32] Han X H, Wang G Z, Wang Q T, Li C, Liu R B, Zou B S, Hou J G 2005, Ultraviolet lasing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays. Appl. Phys. Lett. 86, 223106.
    
    [33] Yan H Q, Jonnson J, Law M, He R R, knutsen K, Mckinney J R, Pham J, Saykally R, Yang P D. 2003, Adv. Mater. 15(22), 1907.
    
    [34]Cui Y, Wei Q Q, Park H K, Lieber C M. 2001, Science 293(5533), 1289-1292.
    
     [35] Cha S N, Jang J E, Choi Y, Amaratunga G A J, Ho G W, Welland M E ,Hasko D G, Kang D J, Kim J M. 2006, High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89,263102.
    
    [36] Xiang J, Lu W, Hu Y J, Wu Y, Yan H, Lieber C M 2006, Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature, 441,489-493.
    [1]Minami T, Sonohara H, Kakumu T, Takata S 1995, Highly Transparent and Conductive Zn_2In_2O_5 Thin Films Prepared by RF Magnetron Sputtering. Jpn. J. Appl.Phys., Part 2 34, L971.
    
    [2] Minami T, Kakumu T, Takata S J. 1996, Preparation of transparent and conductive In_2O_3-ZnO films by radio frequency magnetron sputtering. Vac. Sci. Technol., A 14, 1704.
    
    [3] Hiramatsu H, Seo W S, Koumoto K 1998, Electrical and Optical Properties of Radio-Frequency-Sputtered Thin Films of (ZnO)_5In_2O_3. Chem. Mater. 10, 3033-3039.
    
    [4] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H 2003,Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 300, 1269.
    
    [5] Jie J S, Wang G Z, Han X H, Hou J G 2004, Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. J. Phys. Chem. B 108, 17027.
    
    [6] Na C W, Bae S Y, Park J 2005, Short-Period Superlattice Structure of Sn-Doped In_2O_3(ZnO)_4 and In_2O_3(ZnO)_5 Nanowires. J. Phys. Chem. B 109,12785.
    
    [7] Li D P, Wang G Z, Han X H, Jie J S, Lee S T Syntehsis and characteriazation of In doped ZnO planar superlattice nanoribbons. J. Phys. Chem C. (jp-2008-10158u.Rl, to be published).
    
    [8] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q, Hark S K 2009, Crystal Structure of In_2O_3(ZnO)_m Superlattice Wires and Their Photoluminescence Properties. Cryst. Growth Des. 9 (1), 364-367.
    
    [9] Wu L L, Zhang X T 2008, Synthesis and optical properties of ZnO nanowires with a modulated structure. J. Phys. D: Appl. Phys. 41,195406.
    
    [10] He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L, Li X H 2007, Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods Appl. Phys. Lett. 90,023104.
    
    [11] Deng R, Zhang X T, Zhang E, Liang Y, Liu Z, Xu H Y, Hark S K 2007, Planar Defects in Sn-Doped Single-Crystal ZnO Nanobelts. J. Phys. Chem. C 111, 13013.
    
    [12] Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004, In doped ZnO nanobelts. Chem. Phys. Lett. 387, 466.
    
    [13] Fang X S, Ye C H, Zhang L D, Li Y, Xiao Z D 2005, Formation and Optical Properties of Thin and Wide Tin-doped ZnO Nanobelts. Chem. Lett. 34,436.
    
    [14] Xu C X, Sun X W, Dong Z L, Yu M B, Xiong Y Z, Chen J S. 2005, Magnetic nanobelts of iron-doped zinc oxide. Appl. Phys. Lett. 86, 173110.
    [15] Fan H J, Fuhrmann B, Scholz R, et, al. 2006, Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotech. 17, s231-s239.
    
    [16] Bhatti H S, Kumar D, Gupta A, Sharma ,R Singh K, Sharma P. 2006, Synthesis and characterization of Mn doped ZnO nanobelts Journal of Optoelectronics and Advanced Materials 8, 860.
    
    [17] Tang H P, Zhu L P, He H P, Ye Z Z, Zhang Y, Zhi M J, Yang Z X, Zhao B, H Li T X 2006, Preparation and characterization of Al-doped quasi-aligned ZnO submicro-rods.J. Phys D: Appl. Phys. 39,2696-2700.
    
    [18] Viswanatha R, Chakraborty S, Basu S, Sarma D D 2006, Blue-Emitting Copper-Doped Zinc Oxide Nanocrystals J. Phys. Chem. B 110,22310.
    
    [19] Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005, In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibrationJ. Appl. Phys. 97,014308.
    
    [20] Cheng B C, Xiao Y H, Wu G S, Zhang L D 2004, The vibrational properties of one-dimensional ZnO:Ce nanostructures. Appl. Phys. Lett. 84,416
    
    [21] Bundesmann C, Ashkenov N, Schubert M, Speman D, Butz T, Kaidashev E M, Lorenz, M Grun(?)mann M 2003, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett., 83,1974.
    
    [22] Manjon F J, Man B, Serrano J, Romero A H 2005, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97,053516.
    
    [23] Sato-Berru R Y, Vazquez-Olmos A, Fernandez-Osorio A L 2007, Sotres-Martinez, S. Micro-Raman investigation of transition-metal-doped ZnO nanoparticles J. Raman Spectrosc. 38, 1073
    
    [24] Sudakar C, Kharel P, Lawes G, Suryanarayanan R, Naik R, Naik V M 2007, Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys.: Condens. Matter. 19, 206212.
    
    [25] Yadav H K, Sreenivas K, Katiyar R S, Gupta V 2007, Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films. J. Phys.D: Appl. Phys. 40,6005-6009.
    
    [26] Cusco R, Alarcon-Llado E, Ibanez J, Artus L 2007, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202.
    
    [27] Hasuike N, Nishio K, Katoh H, Suzuki A, Isshiki T, Kisoda K, Harima H. 2009, Structural and electronic properties of ZnO polycrystals doped with Co. J. Phys.: Condens. Matter. 21, 064215.
    
    [28] Mapa M, Gopinath C S 2009, Combustion Synthesis of Triangular and Multifunctional ZnO1-xNx. Chem. Mater., 21 (2), 351-359.
    
    [29] Ye J D, Tripathy S, Ren F F, Sun X W, Lo G Q, Teo K L 2009, Raman-active Frohlich optical phonon mode in arsenic implanted ZnO. Appl. Phys. Lett. 94,011913.
    
    [30] Phan T L, Vincent R, Cherns D, Nghia N X, Ursaki V V 2008, Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion Nanotech. 19, 475702.
    
    [31] Duan L B, Rao G H, Wang Y C, Yu J, Wang T 2008, Magnetization and Raman scattering studies of (Co,Mn) codoped ZnO nanoparticles J. Appl. Phys. 104,013909.
    
    [32] Cong C J, Honga J H, Zhang K L 2009, Effect of atmosphere on the magnetic properties of the Co-doped ZnO magnetic semiconductors Mater. Chem. Phys. 113,435-440.
    
    [33] Zuo J, Xu C Y, Zhang L H, Xu B K, Wu R 2001, Sb-induced size effects in ZnO nanocrystallites. J. Raman Spectrosc. 32,979-981.
    
    [34] Cannard P J, Tilley D R J 1998, New intergrowth phases in the ZnO-In_2O_3 system J. Solid State Chem. 73,418.
    
    [35] Schinzer C, Heyd F, Matar S F 1999, Zn_3In_2O_6-crystallographic and electronic structure. J. Mater. Chem. 9, 1569-157.
    [1] Na C W, Bae S Y, Park J 2005, Short-Period Superlattice Structure of Sn-Doped In_2O_3(ZnO)_4 and In_2O_3(ZnO)_5 Nanowires. J. Phys. Chem. B 109,12785.
    
    [2] Jie J S, Wang G Z, Han X H, Hou J G 2004. Synthesis and Characterization of ZnO:In Nanowires with Superlattice Structure. J. Phys. Chem. B 108,17027.
    
    [3] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q, Hark S K 2009, Crystal Structure of In_2O_3(ZnO)_m Superlattice Wires and Their Photoluminescence Properties. Cryst. Growth Des. 9 (1), 364-367.
    
    [4] Wu L L, Zhang X T 2008, Synthesis and optical properties of ZnO nanowires with a modulated structure. J. Phys. D: Appl. Phys. 41, 195406.
    
    [5] (a) Wu Y Y, Fan R, Yang P D 2002. Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires Nano Lett.. 2, 83.; (b) Clark E T, Nimmatoori P, Lew K K, Pan L Redwing, J. M. Dickey, E. C. 2008. Diameter Dependent Growth Rate and Interfacial Abruptness in Vapor-Liquid-Solid Si/Si1-xGex Heterostructure Nanowires Nano Lett. 8, 12461.
    
    [6] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M 2002. Growth of nanowire superlattice structures for nanoscale photonics and electronics Nature 415,617.
    
    [7] (a) Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002. One-dimensional Steeplechase for Electrons Realized. Nano Lett. 2, 87. (b) Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80,1058.
    
    [8] Cheng B C, Xiao Y H, Wu G S, Zhang L D 2004. Controlled Growth and Properties of One-dimensional ZnO nanostructures with Ce as Activator/Dopant. Adv. Funct. Mater. 14, 913.
    
    [9] Li D Y, Wu Y, Fan R, Yang P D, Majumdar A. 2003. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83,3186.
    
    [10] Klein, A.; Schmidt, A.; Hammer, L.; Heinz, K. Europhys. Lett. 2004,65, 830.
    
    [11] Solanki R, Huo J, Freeouf J L, Miner B. 2002. Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81, 3864.
    
    [12] Xue F H, Fei G,T Wu B, Cui P, Zhang L D 2005. Direct Electrodeposition of Highly Dense Bi/Sb Superlattice Nanowire Arrays. J. Am. Chem. Soc. 127,15348.
    
    [13] Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science 309, 1700.
    
    [14] Hao Y, Meng G, Wang Z L, Ye C, Zhang L. 2006, Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth Nano Lett. 6, 1650.
    
    [15] (a) Dou X C, L G H, Lei H C 2008, Kinetic versus Thermodynamic Control over Growth Process of Electrodeposited Bi/BiSb Superlattice Nanowires. Nano Lett. 8, 1286.; (b) Wang W, Lu X L, Zhang T, Zhang G Q, Jiang W J, Li X G 2007, Bi2Te3/Te Multiple Heterostructure Nanowire Arrays Formed by Confined Precipitation J. Am. Chem. Soc. 129,6702.
    
    [16] Li C F, Bando Y, Nakamura M, Kimizuka N. 1997, A modulated structure of In_2O_3(ZnO)_m as revealed by high-resolution electron microscopy. J. Electron Micrsc. 46, 119.
    
    [17] Li C F, Bando Y, Nakamura M, Onoda M, Kimizuka N 1998, Modulated Structures of Homologous Compounds InMO_3(ZnO)_m(M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group J. Solid State Chem. 139, 347.
    
    [18] Yan Y, Pennycook S J, Dai J, Chang R P H, Wang A, Marks T J 1998, Polytypoid structures in annealed In_2O_3-ZnO films. Polytypoid structures in annealed In_2O_3-ZnO films. Appl. Phys. Lett. 73, 2585.
    
    [19] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. 2003, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor Science 300, 1269
    
    [20] Hsin C L, He J H, Chena L J 2006, Modulation of photoemission spectra of In_2O_3 nanowires by the variation in Zn doping level. Appl. Phys. Lett. 88,063111.
    
    [21] Cao H Q, Qiu X Q, Liang Y, Zhu Q M, Zhao M J 2003, Room-temperature ultraviolet-emitting In_2O_3 nanowires. Appl. Phys. Lett. 83,761.
    
    [22] Zhou H J, Cai W P, Zhang L D 1999, Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica. Appl. Phys. Lett. 75,495.
    
    [23] Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004, In doped ZnO nanobelts. Chem. Phys. Lett. 387,466.
    
    [24] Fan H J, Fuhrmann B, Scholz R, et, al. 2006, Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotech. 17, s231-s239.
    [1]揭建胜.2004。准一维纳米材料可控合成及其物性的研究:中国科技大学博士论文.合肥。
    [2] Han, X. H. Wang, G. Z. Wang, Q. T. Li, C. Liu, R. B. Zou, B. S. Hou, J. G. 2005. Ultraviolet asing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays: Appl. Phys. Lett. 86,223106.
    [3] Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004, In doped ZnO nanobelts. Chem. Phys. Lett. 387,466.
    [4] Fan H J, Fuhrmann B, Scholz R, et, al. 2006, Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotech. 17,s231-s239.
    [5] Kong X Y, Ding Y, Yang R, Wang Z L 2004, Single crystal ZnO nanorings. Science 303(5662), 1348-1351.
    [6] Yang L W, Wu X L, Huang G S, Qiu T, Yang Y M 2005, In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibrationJ. Appl. Phys. 97,014308.
    [7] Yan Y G, Zhou L X, Xue Q Z, Zhang Y. 2008, Controlled growth of hierarchical ZnO nanorods with periodical structure under negative feedback mechanism J. Phys. D: Appl. Phys. 41, 195402.
    [8] Yang L W, Wu X L, Xiong Y, Yang Y M, Huang G S, Chu P K, Siu G G 2005, Formation of zinc oxide micro-disks via layer-by-layer growth and growth mechanism of ZnO nanostructuresJ. Crys. Growth. 283, 332.
    [9] Xiao J, Zhang X X, Zhang G M. 2008. Field emission from zinc oxide nanotowers: the role of the top morphology Nanotech. 19, 295706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700