微腔结构及硅基顶发射有机电致发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)具有发光效率高、驱动电压低、色彩丰富、超薄便携等优异性能而成为新一代最具发展前景的平板显示技术。与传统的底发射器件相比,顶发射器件可以在Si基或带有复杂电路系统的有源驱动TFT基板上实现高质量显示,迎合了当前高分辨率、大尺寸和全彩显示的需求,是OLED研究的重点。本文侧重于OLED基础理论、性能改善以及在实现全彩显示方面进行的一些基础研究。主要研究内容及结果如下:
     (1)在底发射器件中,由于OLED的电子注入和传输均比空穴差,因此重点研究了电子注入能力的提高以及电子注入势垒高度的计算。首先开展了Liq/CsO_x作复合电子注入层改善OLED性能的研究,Liq/CsO_x复合电子注入层能使器件的效率提高约30%,电子注入能力的改善还进一步用‘电子-only’器件得到了证实,并用偶极效应和阶梯势垒等理论进行了解释。其次,采用双电子传输层(Bpy-OXD/Alq_3或Bpy-OXD/BPhen)改善了蓝光OLED的色度和电子注入能力,这是由于Bpy-OXD的空穴阻挡作用能有效地将载流子限制在发光层中及其提供的阶梯能级促进了电子注入。最后,用“电流-电压特性”计算了最常用的电子传输材料Alq_3和BPhen与Al形成的“金属/有机”界面的电子注入势垒高度,Alq_3/Al和BPhen/Al的电子注入势垒高度分别为0.66 eV和0.83 eV,而Alq_3/LiF/Al和BPhen/CsO_x/Al的电子注入势垒高度分别为0.1 eV和0.098 eV。
     (2)在具有微腔结构的顶发射器件中,详细研究了微腔效应及其对器件性能的影响。首先构建了[TBADN:DSA-Ph]作发光层、具有单模共振发射、低驱动电压的高效蓝光顶发射OLED。通过改变空穴传输层的厚度,器件的发光颜色可以从深蓝色[CIE(0.15,0.08)]调节到绿光发射[CIE(0.17,0.57)]。通过在半透明阴极之上引入C_(60)折射率匹配层可以使器件的发光效率提高60%,用传输矩阵理论计算了顶接触多层膜系的透过率和反射率,结果表明器件的最佳性能在顶接触‘最大’和‘最小’透过率之间的某一值获得,这是由于光在微腔内的广角干涉和多光束干涉之间的协调与平衡的结果。用[TBADN:DSA-Ph]/[Alq_3:DSA-Ph]双发光层取代单一发光层[TBADN:DSA-Ph]后,器件的发光效率提高了50%,而CIE色坐标基本保持不变,这主要归功于发光层[Alq_3:DSA-Ph]中Alq_3到DSA-Ph的能量转移以及DSA-Ph直接俘获载流子。其次,用Ag作反射阳极和半透明阴极构建了具有Ag-Ag微腔结构的高效率顶发射OLED,以Alq_3作发光层的器件具有最大发光效率9.21 cd/A,比Al/Ag作半透明阴极的顶发射器件和底发射器件提高了2-3倍,这主要归功于强烈的微腔效应以及从Ag电极的高效载流子注入能力。最后,用新型染料PDT掺杂的发光体系[Alq_3:PDT:rubrene]制备了具有窄光谱发射和没有电流诱导淬灭效应的红光荧光OLED,C_(60)作折射率匹配层的红光顶发射器件的发光效率为3 cd/A、CIE色坐标为(0.64, 0.36)。计算了[Alq_3:PDT:rubrene]中的F?rster能量转移半径,结果表明能量转移的途径主要是从主发光体Alq_3经由辅助掺杂剂rubrene转移到客发光体PDT的。
     (3)在Si基顶发射器件中重点研究了器件的性能改善和相关机理。首先研究了用MoO_x作阳极缓冲层比SiO2更能有效地提高器件的性能,p-Si/MoO_x器件的效率几乎是p-Si/SiO2器件的两倍。而且,与热氧化的SiO2相比,MoO_x可以采用真空热蒸发方法制备,从而简化了器件制备工艺。然后,用[TPBA:TPA]作发光层构建了高效率荧光Si基顶发射器件,发光效率和功率效率分别为3.3 cd/A和2.3 lm/W,最高亮度达到了1.3×104 cd/m~2 @12 V,这主要归功于从TPBA到TPA之间非常有效的能量转移以及TPA自身的高荧光发射和器件结构的优化。与Ag作阳极的顶发射器件相比,Si基顶发射器件具有弱微腔效应和非常高的象素对比度,这是由于Si的低反射率引起的,并从理论上进行了详细分析。最后,研究了以廉价Cu为阳极的顶发射OLED,MoO_x修饰能显著提高Cu的功函数,从而改善了器件性能。与Ag作阳极的器件相比,Cu作阳极的顶发射器件的优势主要体现在:较高的象素对比度、较弱的微腔效应以及较低的漏电流。
Organic light-emitting devices (OLEDs) are considered to hold the most brilliant promise of next generation of flat-panel displays due to their high luminous efficiency, low driving voltage, a broad range of colors, thinness and portability. In comparison with the conventional bottom emitting OLED (BOLED), top-emitting OLED (TOLED) paves a feasible way for realizing high-resolution large-size full-color OLED-based displays on Si thin-film-transistor (TFT) substrates or active-matrix backplanes with complicated pixel circuits and thereby drawing great attention of researchers. In this dissertation, we predominantly focused on the fundamental researches such as OLED theory, performance improvement, and some applications to realizing OLED displays. The results are listed as follows:
     (1) For BOLED, we mainly investigated the enhancement of electron-injection ability and the calculation of electron-injection barrier-height, owing to the fact that the injection and transport ability of electrons is inferior to holes in most OLEDs. Firstly, we studied the improvement of OLED performance by using a composite electron-injection layer (c-EIL) of Liq/CsO_x. The efficiency of device using c-EIL was enhanced by ~30%. The enhancement of device efficiency was further verified by‘Electron-only’devices and explained by dipole effect and step-barrier theory. Then, the chromaticity and electron-injection ability of blue OLEDs were significantly improved by using a dual electron-transport layer (d-ETL, e.g., Bpy-OXD/Alq_3 or Bpy-OXD/BPhen). This can be attributed to the hole-blocking function of Bpy-OXD which confines the carriers within the emitting layer (EML) and the step-barrier provided by the d-ETL which promotes carrier injection. Lastly, the electron-injection barrier-height of“metal/organic”interface (i.e., between the Al cathode and the most commonly used ETLs of Alq_3 and BPhen) was calculated by using“current-voltage (I-V) characteristics”. The barrier height of 0.66 eV for Alq_3/Al and that of 0.83 eV for BPhen/Al were estimated. While the barrier height of 0.1 eV for Alq_3/LiF/Al and that of 0.098 eV for BPhen/CsO_x/Al were derived.
     (2) For TOLEDs with microcavity structure, we systematically investigated the microcavity effect and its effect on device performance. We first demonstrated efficient blue TOLEDs with single-mode resonant emission and low voltage by using [TBADN:DSA-Ph] as EML. The chromaticity can be adjusted from deep blue with CIE color coordinates of (0.15, 0.08) to green emission with CIE color coordinates of (0.17, 0.57) by altering the thickness of hole-transport layer. The device efficiency can be enhanced by 60% with the deposition of C_(60) index-matching layer over the semitransparent cathode. The transmittance and reflectance of top contact through which the light is outcoupled was calculated by using a transfer matrix method, the results indicated that the optimal performance of blue TOLED was obtained in between the maximum and minimum transmittance of top contact as a result of the trade-off between wide-angle interference and multiple-beam interference within the cavity. The device efficiency was enhanced by 50% and the CIE color coordinates were negligibly affected by using a dual EML of [TBADN:DSA-Ph]/[Alq_3:DSA-Ph]. The improved performance of device with dual EML was attributed to the energy transfer from Alq_3 to DSA-Ph and DSA-Ph directly harvesting carriers in the EML of [Alq_3:DSA-Ph]. Then, highly efficient microcavity TOLED based on Ag anode and Ag semitransparent cathode was demonstrated. With Alq_3 as EML, the device showed a maximum luminous efficiency of 9.21 cd/A which is 2-3 times higher than those of the corresponding TOLED with Al/Ag semitransparent cathode and BOLED. This can be attributed to the significant microcavity effect and efficient carrier injection from Ag electrode. Lastly, fluorescent red OLEDs with narrow emission and negligible current-induced quenching by using PDT-doped emitting system of [Alq_3:PDT:rubrene] were demonstrated. With the incorporation of C_(60) outcoupling layer, the TOLED exhibited excellent red emission with luminous efficiency of ~3 cd/A and CIE color coordinates of (0.64, 0.36). The F?rster’s radius in the EML of [Alq_3:PDT:rubrene] was calculated, and the results indicated that the energy transfer process is predominantly from the host of Alq_3 to the guest of PDT via the intermediation of rubrene.
     (3) For Si-based TOLEDs, we mainly focused on the performance improvement and related theory. Firstly, MoO_x is proven to be more efficient than SiO_2 in improving device performance, the efficiencies of p-Si/MoO_x device are almost double those of p-Si/SiO_2 device. Moreover, in comparison with the thermally-grown SiO_2 buffer layer, MoO_x can be deposited by conventional evaporation technology under vacuum conditions, which simplifies the fabrication process. Secondly, Si-based TOLED with EML of [TPBA:TPA] was demonstrated possessing superior performance, the luminous and power efficiencies were achieved 3.3 cd/A and 2.3 lm/W, respectively, and the maximum luminance was reached 1.3×104 cd/m2 @12 V. This can be attributed to the efficient energy transfer from the host of TPBA to the guest of TPA, highly fluorescent emission of TPA, and the optimization of device structure. In comparison with the TOLED using conventional Ag anode, the Si-based TOLED shows negligible microcavity effect and giant enhancement of pixel contrast ratio (PCR) as a result of low reflectance of Si anode. The experimetnal results were theoretically analyzed in detail. Lastly, efficient TOLEDs with low-cost Cu anode were investigated. The MoO_x modification can considerably enhance the work function of Cu anode, which accounts for the performance improvement. The TOLED with Cu anode is superior to the counterpart with Ag anode in several respects such as higher PCR, weak microcavity effect and lower leakage current.
引文
[1] Tang C W, VanSlyke S A, Organic electroluminescent diodes [J], Appl. Phys. Lett. 1987, 51(12):913-915.
    [2] Tang C W, VanSlyke S A, Chen C H, Electroluminescence of doped organic thin films [J], J. Appl. Phys. 1989, 65(9):3610-3616.
    [3] Hung L S, Tang C W, Mason M G, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J], Appl. Phys. Lett. 1997, 70(2):152-154.
    [4] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R, Highly efficient phosphorescent emission from organic electroluminescent devices [J], Nature 1998, 395:151-154.
    [5] Hung L S, Tang C W, Mason M G, Raychaudhuri P, Madathil J, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes [J], Appl. Phys. Lett. 2001, 78(4):544-546.
    [6] Qin G G, Xu A G, Ma G L, Ran G Z, Qiao Y P, Zhang B R, Chen W X, Wu S K, A top-emission organic light-emitting diode with a silicon anode and an Sm/Au cathode [J], Appl. Phys. Lett. 2004, 85(22):5406-5408.
    [7] Jou J H, Wu M H, Shen S M, Wang H C, Chen S Z, Chen S H, Lin C R, Hsieh YL, Sunlight-style color-temperature tunable organic light-emitting diode [J], Appl. Phys. Lett. 2009, 95(1):013307.
    [8] Prache O, Active matrix molecular OLED microdisplays [J], Displays 2001, 22:49-56.
    [9] Rie? W, Beierlein T A, Riel H, Optimizing OLED Structures for a-Si Display Applications via Combinatorial Methods and Enhanced Outcoupling [J], phys. stat. sol. (a) 2004, 201(6):1360-1371.
    [10] Are organic LEDs ready for the big screen [J], Phys. Today 26 Nov. 2008.
    [11] Shinar J, Shinar R, Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview [J], J. Phys. D: Appl. Phys. 2008, 41:133001.
    [12] Kraker E, Haase A, Lamprecht B, Jakopic G, Konrad C, K?stler S, Integrated organic electronic based optochemical sensors using polarization filters [J], Appl. Phys. Lett. 2008, 92(3):033302.
    [13] Savvate'ev V, Esterlit Z C, Aylott J W, Choudhury B, Kim C H, Zou L, Friedl J H, Shinar R, Shinar J, Kopelman R, Integrated organic light-emitting device/fluorescence-based chemical sensors [J], Appl. Phys. Lett. 2002, 81(24):4652-4654.
    [14] Raikh M, Wei X, Current-Voltage Characteristics of Polymer Light-Emitting Diode at Low Voltages [J], Mol. Cryst. Liq. Cryst. 1994, 256:563-569.
    [15] Sze S M, Physics of Semiconductor Devices [M], 2nd edition, Wiley, New York, 1981.
    [16] Barth S, Wolf U, B?ssler H, Müller P, Riel H, Vestweber H, Seidler P F, Rie? W, Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation [J], Phys. Rev. B 1999, 60(12):8791-8797.
    [17] Huby N, Hirsch L, Wantz G, Vignau L, Barrière A S, Parneix J P, Aubouy L, Gerbier P, Injection and transport processes in organic light emitting diodesbased on a silole derivative [J], J. Appl. Phys. 2006, 99(8):084907.
    [18] Parker I D, Carrier tunneling and device characteristics in polymer light-emitting diodes [J], J. Appl. Phys. 1994, 75(3):1656-1666.
    [19] Wolf U, Arkhipov V I, B?ssler H, Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation [J], Phys Rev. B, 1999, 59(11):7507-7513.
    [20] Kiy M, Biaggio I, Koehler M, Günter P, Conditions for ohmic electron injection at the Mg/Alq3 interface [J], Appl. Phys. Lett. 2002, 80(23):4366-4368.
    [21] Mott N F, Gurney R W, Electronic Processes in Ionic Crystals [M]. Clarendon Press, Oxford, 1940.
    [22]陈金鑫,黄孝文, OLED有机电激发光材料与元件[M],五南出版社(台湾), 2005.
    [23] Murgatroyd P N, Theory of space-charge-limited current enhanced by Frenkel effect [J], J. Phys. D 1970, 3:151-156.
    [24] Frenkel J, On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors [J], Phys. Rev. 1938, 54(8):647-648.
    [25] Burrows P E, Shen Z, Bulovic V, McCarty D M, Forrest S R, Cronin J A, Thompson M E, Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J], J. Appl. Phys. 1996, 79(10):7991-8006.
    [26] Campbell A J, Bradley D D C, Lidzey D G, Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes [J], J. Appl. Phys. 1997, 82(12):6326-6342.
    [27] Burrows P E, Forrest S R. Electroluminescence from trap-limited current transport in vacuum deposited organic light-emitting devices [J]. Appl. Phys. Lett. 1994, 64(17):2285-2287.
    [28]中国科学院吉林物理所中国科学技术大学《固体发光》编写组,《固体发光》[M], 1976.
    [29] Huang J S, Pfeiffer M, Wener A, Blochwitz J, Leo K, Liu S, Low-voltage organic electroluminescent devices using pin structures [J]. Appl. Phys. Lett. 2002, 80(1):139-141.
    [30] Forrest S R, Bradley D D C, Thompson M E, Measuring the efficiency of organic light-emitting devices [J], Adv. Mater. 2003, 15(13):1043-1048.
    [31] Adachi C, Baldo M A, Thompson M E, Forrest S R, Nearly 100% internal phosphorescence efficiency in an organic light emitting device [J], J. Appl. Phys. 2001, 90(10):5048-5051.
    [32] Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C, Do Y R, A high-extraction-efficiency nanopatterned organic light-emitting diode [J], Appl. Phys. Lett. 2005, 82(21):3779-3781.
    [33] Madigan C F, Lu M H, Sturm J C, Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification [J], Appl. Phys. Lett. 2000, 76(13):1650-1652.
    [34] Bulovi? V, Khalfin V B, Gu G, Burrows P E, Garbuzov D Z, Forrest S R, Weak microcavity effects in organic light-emitting devices [J], Phys. Rev. B 1998, 58(7):3730-3740.
    [35] Jordan R H, Rothberg L J, Dodabalapur A, Slusher R E, Efficiency enhancement of microcavity organic light emitting diodes [J], Appl. Phys. Lett. 1996, 69(14):1997-1999.
    [36] Huang Q, Walzer K, Pfeiffer M, Leo K, Hofmann M, Stübinger T, Performance improvement of top-emitting organic light-emitting diodes by an organic capping layer: An experimental study [J], J. Appl. Phys. 2006, 100(6):064507.
    [37] Huang Q, Reineke S, Walzer K, Pfeiffer M, Leo K, Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced intrinsic quantum yield [J], Appl. Phys. Lett. 2006, 89(26):263512.
    [38] Lu M H, Weaver M S, Zhou T X, Rothman M, Kwong R C, Hack M, Brown J J, High-efficiency top-emitting organic light-emitting devices [J], Appl. Phys. Lett.2002, 81(21):3921-3923.
    [39] Kang M H, Hur J H, Nam Y D, Lee E H, Kim S H, Jang J, An optical feedback compensation circuit with a-Si:H thin-film transistors for active matrix organic light emitting diodes [J], J. Non-Cryst. Solids 2008, 354(19-25):2523-2528.
    [40] Lin C L, Tsai T T, A Novel Voltage Driving Method Using 3-TFT Pixel Circuit for AMOLED [J], IEEE Electron Device Letters 2007, 28(6):489-491.
    [41] Qiu X J, Tan X W, Wang Z, Liu G Y, Xiong Z H, Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities [J], J. Appl. Phys. 2006, 100(7):074503.
    [42] Han S, Huang C, Lu Z H, Color tunable metal-cavity organic light-emitting diodes with fullerene layer [J], J. Appl. Phys. 2005, 97(9):093102.
    [43] Han S, Grozea D, Huang C, Lu Z H, Wood R, Kim W Y, Al:SiO thin films for organic light-emitting diodes [J], J. Appl. Phys. 2004, 96(1):709-714.
    [44] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M, Physics and applications of organic microcavity light emitting diodes [J], J. Appl. Phys. 1996, 80(12):6954-6964.
    [45] Chen S, Xie W, Meng Y, Chen P, Zhao Y, Liu S, Effect of 2,9-dimethyl-4, 7-diphenyl-1,10-phenanthroline outcoupling layer on electroluminescent performances in top-emitting organic light-emitting devices [J], J. Appl. Phys. 2008, 103(5):054506.
    [46] Hayes G R, Cacialli F, Phillips R T, Ultrafast study of spontaneous emission from conjugated polymer microcavities [J], Phys. Rev. B 1997, 56(8):4798-4801.
    [47] Lemmer U, Hennig R, Guss W, Ochse A, Pommerehne J, Sander R, Greiner A, Mahrt R F, B?ssler H, Feldmann J, G?bel E O, Microcavity effects in a spin-coated polymer two-layer system [J], Appl. Phys. Lett. 1995, 66(11):1301-1303.
    [48] Tokito S, Tsutsui T, Taga Y, Microcavity organic light-emitting diodes forstrongly directed pure red, green, and blue emissions [J], J. Appl. Phys. 1999, 86(5):2407-2411.
    [49] Rogers T J, Deppe D G, Streetman B G, Effect of an AlAs/GaAs mirror on the spontaneous emission of an InGaAs-GaAs quantum well [J], Appl. Phys. Lett. 1990, 57(18):1858-1860.
    [50] Schubert E F, Hunt N E J, Micovic M, Malik R J, Sivco D L, Cho A Y, Zydzik G J, Highly efficient light-emitting diodes with microcavities [J], Science 1994, 265:943-945.
    [51] Cao J, Liu X, Khan M A, Zhu W Q, Jiang X Y, Zhang Z L, Xu S H, RGB tricolor produced by white-based top-emitting organic light-emitting diodes with microcavity structure [J], Curr. Appl. Phys. 2007, 7:300-304.
    [52] Schubert E F, Vredenberg A M, Hunt N E J, Wong Y H, Becker P C, Poate J M, Jacobson D C, Feldman L C, Zydzik G J, Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities [J], Appl. Phys. Lett. 1992, 61(12):1381-1383.
    [53] Tessler N, Burns S, Becker H, Friend R H, Suppressed angular color dispersion in planar microcavities [J], Appl. Phys. Lett. 1997, 70(5):556-558.
    [54] Yang C J, Lin C L, Wu C C, Yeh Y H, Cheng C C, Kuo Y H, Chen T H, High-contrast top-emitting organic light-emitting devices for active-matrix displays [J], Appl. Phys. Lett. 2005, 87(14):143507.
    [55] Han S, Feng X, Lu Z H, Johnson D, Wood R, Transparent-cathode for top-emission organic light-emitting diodes [J], Appl. Phys. Lett. 2003, 82(16):2715-2717.
    [56] Chin B D, Effective hole transport layer structure for top-emitting organic light emitting devices based on laser transfer patterning [J], J. Phys. D: Appl. Phys. 2007, 40:5541-5546.
    [57] Jean F, Mulot J Y, Geffroy B, Denis C, Cambon P, Microcavity organic light-emitting diodes on silicon [J], Appl. Phys. Lett. 2002, 81(9):1717-1719.
    [58] Hsu S F, Lee C C, Hu A T, Chen C H, Fabrication of blue top-emitting organic light-emitting devices with highly saturated color [J], Curr. Appl. Phys. 2004, 4:663-666.
    [59] Hsu S F, Lee C C, Hwang S W, Chen H H, Chen C H, Hu A T, Color-saturated and highly efficient top-emitting organic light-emitting devices [J], Thin Solid Films 2005, 478:271-274.
    [60] Li Y, Tan L W, Hao X T, Ong K S, Zhu F, Hung L S, Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates [J], Appl. Phys. Lett. 2005, 86(15):153508.
    [61] Lim J T, Jeong C H, Lee J H, Yeom G Y, Shin E C, Lee E H, Kim T W, High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode [J], J. Electrochem. Soc. 2007, 154(10):J302-J305.
    [62] Riel H, Karg S, Beierlein T, Rie? W, Neyts K, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study [J], J. Appl. Phys. 2003, 94(8):5290-5296.
    [63] Qiu C, Peng H, Chen H, Xie Z, Wong M, Kwok H S, Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors [J], IEEE Transactions on Electron Devices 2004, 51(7):1207-1210.
    [64] Chen C W, Hsieh P Y, Chiang H H, Lin C L, Wu H M, Wu C C, Top-emitting organic light-emitting devices using surface-modified Ag anode [J], Appl. Phys. Lett. 2003, 83(25):5127-5129.
    [65] Choi H W, Kim S Y, Kim K B, Tak Y H, Lee J L, Enhancement of hole injection using O2 plasma-treated Ag anode for top-emitting organic light-emitting diodes [J], Appl. Phys. Lett. 2005, 86(1):012104.
    [66] Xie Z, Hung L S, Zhu F, A flexible top-emitting organic light-emitting diode on steel foil [J], Chem. Phys. Lett. 2003, 381:691-696.
    [67] Peng H, Zhu X, Sun J, Xie Z, Xie S, Wong M, Kwok H S, Efficient organic light-emitting diode using semitransparent silver as anode [J], Appl. Phys Lett. 2005, 87(17):173505.
    [68] Peng H, Sun J, Zhu X, Yu X, Wong M, Kwok H S, High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode [J], Appl. Phys. Lett. 2006, 88(7):073517.
    [69] Hou J, Wu J, Xie Z, Wang L, Tuning the emissive colour of top-emitting organic light-emitting diodes by using exterior multilayer films [J], J. Phys. D: Appl. Phys. 2009, 42:035107.
    [70] Wu J, Hou J, Cheng Y, Xie Z, Wang L, Efficient top-emitting organic light-emitting diodes with a V2O5 modified silver anode [J], Semicond. Sci. Technol. 2007, 22:824-826.
    [71] Cho H, Yun C, Park J W, Yoo S, Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes [J], Org. Electron. 2009, 10:1163-1169.
    [72] Cao J, Jiang X Y, Zhang Z L, MoOx modified Ag anode for top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 89(25):252108.
    [73] Gu G, Bulovi? V, Burrows P E, Forrest S R, Thompson M E, Transparent organic light emitting devices [J], Appl. Phys. Lett. 1996, 68(19):2606-2608.
    [74] Parthasarathy G, Burrows P E, Khalfin V, Kozlov V G, Forrest S R, A metal-free cathode for organic semiconductor devices [J], Appl. Phys. Lett. 1998, 72(17):2138-2140.
    [75] Hung L S, Tang C W, Interface engineering in preparation of organic surface-emitting diodes [J], Appl. Phys. Lett. 1999, 74(21):3209-3211.
    [76] Hung L S, Liao L S, Lee C S, Lee S T, Sputter deposition of cathodes in organic light emitting diodes [J], J. Appl. Phys. 1999, 86(8):4607-4612.
    [77] Kanno H, Sun Y, Forrest S R, High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices [J], Appl. Phys. Lett. 2005, 86(26):263502.
    [78] Parthasarathy G, Adachi C, Burrows P E, Forrest S R, High-efficiency transparent organic light-emitting devices [J], Appl. Phys. Lett. 2000, 76(15):2128-2130.
    [79] Chen S, Jie Z, Zhao Z, Cheng G, Wu Z, Zhao Y, Quan B, Liu S, Li X, Xie W, Improved light outcoupling for top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 89(4):043505.
    [80] Wu Z, Chen S, Yang H, Zhao Y, Hou J, Liu S, Top-emitting organic light-emitting devices based on silicon substrate using Ag electrode [J], Semicond. Sci. Technol. 2004, 19:1138-1140.
    [81] Riel H, Karg S, Beierlein T, Ruhstaller B, Rie? W, Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling [J], Appl. Phys. Lett. 2003, 82(3):466-468.
    [82] Chen S, Li X, Huang W, Blue top-emitting organic light-emitting devices using a 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer [J], Org. Electron. 2008, 9:1112-1117.
    [83] Hou J, Wu J, Xie Z, Wang L, Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films [J], Org. Electron. 2008, 9:959-963.
    [84] Zhao W Q, Wang P F, Ran G Z, Ma G L, Zhang B R, Liu W M, Wu S K, Dai L, Qin G G, 1.54μm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode [J], J. Phys. D: Appl. Phys. 2006, 39:2711-2714.
    [85] Lee C J, Pode R B, Moon D G, Han J I, Park N H, Baik S H, Ju S S, On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode [J], Phys. Stat. Sol. (a) 2004, 201(5):1022-1028.
    [86] Hsu S F, Lee C C, Hwang S W, Chen C H, Highly efficient top-emitting white organic electroluminescent devices [J], Appl. Phys. Lett. 2005, 86(25):253508.
    [87] Pode R B,Lee C J, Moon D G, Han J I, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer [J], Appl. Phys. Lett. 2004, 84(23):4614-4616.
    [88] Chen S, Zhao Y, Cheng G, Li J, Liu C, Zhao Z, Jie Z, Liu S, Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 88(15):153517.
    [89] Lim J T, Yeom G Y, Lhm K, Kang T H, Electronic structures of Ba-on-Alq3 interfaces and device characteristics of organic light-emitting diodes based on these interfaces [J], Appl. Phys. Lett. 2009, 105(8):083705.
    [90] Hill D, Leo K, He G, Huang Q, Analysis of spatial coherence of organic light-emitting devices through investigation of interference effects observed in top-emitting devices [J], Appl. Phys. Lett. 2007, 90(10):101111.
    [91] Huang Q, Walzer K, Pfeiffer M, Lyssenko V, He G, Leo K, Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers [J], Appl. Phys. Lett. 2006, 88(11):113515.
    [92] Chen C W, Lin C L, Wu C C, An effective cathode structure for inverted top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2004, 85(13):2469-2471.
    [93] Liu C C, Liu S H, Tien K C, Hsu M H, Chang H W, Chang C K, Yang C J, Wu C C, Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics [J], Appl. Phys. Lett. 2009, 94(10):103302.
    [94] Yang C J, Liu S H, Hsieh H H, Liu C C, Cho T Y, Wu C C, Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution [J], Appl. Phys. Lett. 2007, 91(25):253508.
    [95] Wu C C, Lin C L, Hsieh P Y, Chiang H H, Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices [J], Appl. Phys.Lett. 2004, 84(20):3966-3968.
    [96] Lin C L, Lin H W, Wu C C, Examining microcavity organic light-emitting devices having two metal mirrors [J], Appl. Phys. Lett. 2005, 87(2):021101.
    [97] Lee M T, Tseng M R, Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping Technology [J], Curr. Appl. Phys. 2008, 8:616-619.
    [98] Ji W, Zhang L, Zhang T, Liu G, Xie W, Liu S, Zhang H, Zhang L, Li B, Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode [J], Opt. Lett. 2009, 34(18):2703-2705.
    [99] Thomschke M, Nitsche R, Furno M, Leo K, Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes [J], Appl. Phys. Lett. 2009, 94(8):083303.
    [1] Lee T W, Noh T, Choi B K, Kim M S, Shin D W, Kido J, High-efficiency stacked white organic light-emitting diodes [J], Appl. Phys. Lett. 2008, 92(4):043301.
    [2] Park G Y, Ha Y, Red phosphorescent iridium (III) complexes containing 2,3-diphenylquinoline derivatives for OLEDs [J], Synth. Metals 2008, 158:120-124.
    [3] Lee Y, Kim J, Kwon S, Min C K, Yi Y, Kim J W, Koo B, Hong M, Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application [J], Org. Electron. 2008, 9:407-412.
    [4] Yang H W, Yoon Y B, Kim T W, Kwack K D, Kim J H, Seo J H, Kim Y K, Enhancement of the efficiency and the color stabilization of organic light-emitting devices fabricated utilizing stepwise doped hole transport layers [J], Solid State Commun. 2006, 137:87-90.
    [5] Tang C W, VanSlyke S A, Organic electroluminescent diodes [J], Appl. Phys. Lett. 1987, 51(12):913-915.
    [6] Chen S Y, Chu T Y, Chen J F, Su C Y, Chen C H, Stable inverted bottom-emitting organic electroluminescent devices with molecular doping and morphology improvement [J], Appl. Phys. Lett. 2006, 89(5):053518.
    [7] Suzuki M, Tokito S, Sato F, Igarashi T, Kondo K, Koyama T, Yamaguchi T, Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers [J], Appl. Phys. Lett. 2005, 86(10):103507.
    [8] Hung L S, Tang C W, Mason M G, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J], Appl. Phys. Lett. 1997, 70(2):152-154.
    [9] Matsushima T, Adachi C, Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers [J], Appl. Phys. Lett. 2006, 89(25):253506.
    [10] Duan Y, Mazzeo M, Maiorano V, Mariano F, Qin D, Cingolani R, Gigli G, Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes [J], Appl. Phys. Lett. 2008, 92(11):113304.
    [11] Ho C L, Wong W Y, Gao Z Q, Chen C H, Cheah K W, Yao B, Xie Z Y, Wang Q, Ma D G, Wang L, Yu X M, Kwok H S, Lin Z, Red-Light-Emitting IridiumComplexes with Hole-Transporting 9-Arylcarbazole Moieties for Electrophosphorescence Efficiency/Color Purity Trade-off Optimization [J], Adv. Funct. Mater. 2008, 18:319-331.
    [12] Gao Z Q, Mi B X, Chen C H, Cheah K W, Cheng Y K, Wen W S, High-efficiency deep blue host for organic light-emitting devices [J], Appl. Phys. Lett. 2007, 90(12):123506.
    [13] Meerheim R, Walzer K, Pfeiffer M, Leo K, Ultrastable and efficient red organic light emitting diodes with doped transport layers [J], Appl. Phys. Lett. 2006, 89(6):061111.
    [14] Meerheim R, Scholz S, Olthof S, Schwartz G, Reineke S, Walzer K, Leo K, Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices [J], J. Appl. Phys. 2008, 104(1):014510.
    [15] Birnstock J, Canzler T, Hofmann M, Lux A, Murano S, Wellmann P, Werner A, PIN OLEDs-Improved structures and materials to enhance device lifetime [J], Journal of the Society for Information Display, 2008, 16(2):221-229.
    [16] Chou P T, Chi Y, Phosphorescent Dyes for Organic Light-Emitting Diodes [J], Chemistry-A European Journal, 2007, 13(2):380-395.
    [17] Gao Z Q, Mi B X, Tam H L, Cheah K W, Chen C H, Wong M S, Lee S T, Lee C S, High Efficiency and Small Roll-Off Electrophosphorescence from a New Iridium Complex with Well-Matched Energy Levels Materials [J], Adv. Mater, 2008, 20(4):774-778.
    [18] Jiang X Y, Zhang Z L, Cao J, Khan M A, Haq K, Zhu W Q, White OLED with high stability and low driving voltage based on a novel buffer layer MoOx [J], J. Phys. D: Appl. Phys. 2007, 40:5553-5557.
    [19] Mi B X, Gao Z Q, Cheah K W, Chen C H, Organic light-emitting diodes using 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane as p-type dopant [J], Appl. Phys. Lett. 2009, 94(7):073507.
    [20] Khan M A, Xu W, Haq K, Bai Y, Wei F, Jiang X Y, Zhang Z L, Zhu W Q, Highly power efficient organic light-emitting diodes based on p-doped andnovel n-doped carrier transport layers [J], J. Phys. D: Appl. Phys. 2007, 40:6535-6540.
    [21] Kim S H, Jang J, Lee J Y, Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices [J], Appl. Phys. Lett. 2006, 89(25):253501.
    [22] Wu C C, Wu C I, Sturm J C, Kahn A, Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices [J], Appl. Phys. Lett. 1997, 70(11):1348-1350.
    [23] Lee C T, Yu Q X, Tang B T, Lee H Y, Effects of plasma treatment on the electrical and optical properties of indium tin oxide films fabricated by r.f. reactive sputtering [J], Thin Solid Films 2001, 386:105-110.
    [24] Sun X H, Cheng L F, Liu M W, Liao L S, Wong N B, Lee C S, Lee S T, Photoelectron spectroscopic study of iodine- and bromine-treated indium tin oxides and their interfaces with organic films [J], Chem. Phys. Lett. 2003, 370:425-430.
    [25] Li F, Tang H, Shinar J, Resto O, Weisz S Z, Effects of aquaregia treatment of indium-tin-oxide substrates on the behavior of double layered organic light-emitting diodes [J], Appl. Phys. Lett. 1997, 70(20):2741-2743.
    [26] Kao P C, Chu S Y, You Z X, Liou S J, Chuang C A, Improved efficiency of organic light-emitting diodes using CoPc buffer layer [J], Thin Solid Films 2006, 498:249-253.
    [27] Chen C W, Lu Y J, Wu C C, Wu E H, Chu C W, Yang Y, Effective connecting architecture for tandem organic light-emitting devices [J], Appl. Phys. Lett. 2005, 87(24):241121.
    [28] Tokito S, Noda K, Taga Y, Metal oxides as a hole-injecting layer for an organic electroluminescent device [J], J. Phys. D: Appl. Phys. 1996, 29:2750-2753.
    [29] Hou J, Wu J, Xie Z, Wang L, Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films [J], Org. Electron. 2008, 9:959-963.
    [30] Lu H T, Yokoyama M, Enhanced emission in organic light-emitting diodes using Ta2O5 buffer layers [J], Solid-State Electronics 2003, 47:1409-1412.
    [31] Kim S Y, Baik J M, Yu H K, Lee J L, Highly efficient organic light-emitting diodes with hole injection layer of transition metal oxides [J], J. Appl. Phys. 2005, 98(9):093707.
    [32] Chan I M, Hsu T Y, Hong C F, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode [J], Appl. Phys. Lett. 2002, 81(10):1899-1901.
    [33] Zhang D D, Feng J, Liu Y F, Zhong Y Q, Bai Y, Jin Y, Xie G H, Xue Q, Zhao Y, Liu S Y, Sun H B, Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer [J], Appl. Phys. Lett. 2009, 94(22):223306.
    [34] Son M J, Kim S, Kwon S, Kim J W, Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy [J], Org. Electron. 2009, 10:637-642.
    [35] Poon C O, Wong F L, Tong S W, Zhang R Q, Lee C S, Lee S T, Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer [J], Appl. Phys. Lett, 2003, 83(5)1038-1040.
    [36] Qiu C, Xie Z, Chen H, Wong M, Kwok H S, Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes [J], J. Appl. Phys. 2003, 93(6):3253-3258.
    [37]陈金鑫,黄孝文, OLED有机电激发光材料与元件[M],五南出版社(台湾), 2005.
    [38] Wu C I, Lee G R, Pi T W, Energy structures and chemical reactions at the Al/LiF/Alq3 interfaces studied by synchrotron-radiation photoemission spectroscopy [J], Appl. Phys. Lett. 2005, 87(21):212108.
    [39] Mason M G, Tang C W, Hung L S, Raychaudhuri P, Madathil J, Giesen D J, Yan L, Le Q T, Gao Y, Lee S T, Liao L S, Cheng L F, Salaneck W R, dos Santos D A, Brédas J L, Interfacial chemistry of Alq3 and LiF with reactive metals [J], J. Appl. Phys. 2001, 89(5):2756-2765.
    [40] Im H C, Choo D C, Kim T W, Kim J H, Seo J H, Kim Y K, Highly efficient organic light-emitting diodes fabricated utilizing nickel-oxide buffer layers between the anodes and the hole transport layers [J], Thin Solid Films 2007, 515:5099-5102.
    [41] Cho K, Cho S W, Jeon P E, Lee H, Whang C N, Jeong K, Kang S J,Yi Y, Energy level alignments at tri(8-hydroquinoline)/ aluminum/ 8-hydroquinolatolithium/ aluminum interfaces [J], Appl. Phys. Lett. 2008, 92(9):093304.
    [42] Kim S H, Jang J, Lee J Y, Efficient electron injection in organic light-emitting diodes using lithium quinolate/Ca/Al cathodes [J], Appl. Phys. Lett. 2007, 91(10):103501.
    [43] Schmitz C, Schmidt H W, Thelakkat M, Lithium-Quinolate Complexes as Emitter and Interface Materials in Organic Light-Emitting Diodes [J], Chem. Mater. 2000, 12(10):3012-3019.
    [44] Liu Z, Salata O V, Male N, Improved electron injection in organic LED with lithium quinolate/aluminium cathode [J], Synth. Metals 2002, 128:211-214.
    [45] Park J H, Seo J H, Lim S H, Ryu G Y, Shin D M, Kim Y K, The effect of the molecular structure of organic material on the properties of solid-state fluorescence and electroluminescence [J], Journal of Physics and Chemistry of Solids 2008, 69:1314-1319.
    [46] Shakya P, Desai P, Curry R J, Gillin W P, Improved electron injection into Alq3 based devices using a thin Erq3 injection layer [J], J. Phys. D: Appl. Phys. 2008, 41:085108.
    [47] Gassmann A, Melzer C, Manke E, Jaegermann W, Seggern H V, Interface properties of a Li3PO4/Al cathode in organic light emitting diodes [J], J. Appl. Phys. 2009, 105(12):124517.
    [48] Gassmann A, Melzer C, Seggern H V, The Li3PO4/Al bilayer: An efficient cathode for organic light emitting devices [J], J. Appl. Phys. 2009, 105(8):084513.
    [49] Zhang D, Li Y, Zhang G, Gao Y, Duan L, Wang L, Qiu Y, Lithium cobalt oxide as electron injection material for high performance organic light-emitting diodes[J], Appl. Phys. Lett. 2008, 92(7):073301.
    [50] Wu C I, Lin C T, Chen Y H, Chen M H, Lu Y J, Wu C C, Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices [J], Appl. Phys. Lett. 2006, 88(15):152104.
    [51] Huang J, Xu Z, Yang Y, Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate [J], Adv. Funct. Mater. 2007, 17:1966-1973.
    [52] Chen S M, Yuan Y B, Lian J R, Zhou X, High-efficiency and high-contrast phosphorescent top-emitting organic light-emitting devices with p-type Si anodes [J], Opt. Express 2007, 15(22):14644-14649.
    [53] Li Y, Zhang D Q, Duan L, Zhang R, Wang L D, Qiu Y, Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes [J], Appl. Phys. Lett. 2007, 90(1):012119.
    [54] Hasegawa T, Miura S, Moriyama T, Kimura T, Takaya I, Osato Y, Mizutani H, Novel electron injection layers for top-emission OLEDs [C], SID Internat. Symp. Digest Tech. Papers 2004, 35(1):154-157.
    [55] Chan M Y, Lai S L, Fung M K, Tong S W, Lee C S, Lee S T, Efficient CsF/Yb/Ag cathodes for organic light-emitting devices [J], Appl. Phys. Lett. 2003, 82(11):1784-1786.
    [56] Sze S M, Physics of Semiconductor Devices [M], 2nd edition, Wiley, New-York, 1981.
    [57] Mori T, Fujikawa H, Tokito S, Taga Y, Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy [J], Appl. Phys. Lett. 1998, 73(19):2763-2765.
    [58] Ishii H, Sugiyama K, Ito E, Seki K, Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces [J], Adv. Mater. 1999, 11(8):605-625.
    [59] Parker I D, Carrier tunneling and device characteristics in polymerlight-emitting diodes [J], J. Appl. Phys. 1994, 75(3):1656-1666.
    [60] Wolf U, Arkhipov V I, B?ssler H, Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation [J], Phys. Rev. B 1999, 59(11):7507-7513.
    [61] Adachi C, Baldo M A, Thompson M E, Forrest S R, Nearly 100% internal phosphorescence efficiency in an organic light emitting device [J], J. Appl. Phys. 2001, 90(10):5048-5051.
    [62] Tao S, Hong Z, Peng Z, Ju W, Zhang X, Wang P, Wu S, Lee S, Anthracene derivative for a non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency [J], Chem. Phys. Lett. 2004, 397:1-4.
    [63] Tang C W, VanSlyke S A, Chen C H, Electroluminescence of doped organic thin films [J], J. Appl. Phys. 1989, 65(9):3610-3616.
    [64] Zheng T, Choy W C H, High-efficiency blue fluorescent organic light emitting devices based on double emission layers [J], J. Phys. D: Appl. Phys. 2008, 41:055103.
    [65] Kim M S, Choi B K, Lee T W, Shin D, Kang S K, Kim J M, Tamura S, Noh T, A stable blue host material for organic light-emitting diodes [J], Appl. Phys. Lett. 2007, 91(25):251111.
    [66] Wen S W, Lee M T, Chen C H, Recent Development of Blue Fluorescent OLED Materials and Devices [J], IEEE/OSA J. Display Technol. 2005, 1(1):90-99.
    [67] Wei F X, Zhang X B, Cao J, Khan M A, Zhu W Q, Jiang X Y, Zhang Z L, Highly efficient styrylamine-doped blue and white organic electroluminescent devices [J], Displays 2007, 28:186-190.
    [68] Jiang X Y, Zhang Z L, Zhu W Q, Xu S H, Study of blue organic light emitting diode by inserting a red dye ultra thin layer at the emitting layer [J], J. Phys. D: Appl. Phys. 2005, 38:4153-4156.
    [69] Bai Y, Khan M A, Zhu W Q, Jiang X Y, Zhang Z L, A blue organic light emitting diodes with graded junction [J], Displays 2008, 29:365-368.
    [70] Tao S, Xu S, Zhang X, Efficient blue organic light-emitting devices based onnovel anthracence derivatives with pronounced thermal stability and excellent film-forming property [J], Chem. Phys. Lett. 2006, 429:622-627.
    [71] Ichikawa M, Kawaguchi T, Kobayashi K, Miki T, Furukawa K, Koyama T, Taniguchi Y, Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecular materials [J], J. Mater. Chem. 2006, 16:221-225.
    [72] Ichikawa M, Hiramatsu N, Yokoyama N, Miki T, Narita S, Koyama T, Taniguchi Y, Electron transport with mobility above 10-3 cm2/Vs in amorphous film of co-planar bipyridyl-substituted oxadiazole [J], Phys. Stat. Sol. (RRL) 2007, 1(1):R37-R39.
    [73] Matsushima T, Jin G H, Murata H, Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide [J], J. Appl. Phys. 2008, 104(5):054501.
    [74] Lee H, Cho S W, Han K,Jeon P E, Whang C N, Jeong K, Cho K, Yi Y, The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N’-bis(1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine interfaces [J], Appl. Phy. Lett. 2008, 93(4):043308.
    [75] Li Y, Fung M K, Xie Z, Lee S T, Hung L S, Shi J, An efficient pure blue organic light-emitting device with low driving voltages [J], Adv. Mater. 2002, 14(18):1317-1321.
    [76] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M, Physics and applications of organic microcavity light emitting diodes [J], J. Appl. Phys. 1996, 80(12):6954-6964.
    [77] Tsang S W, Lu Z H, Tao Y, Engineering carrier transport across organic heterojunctions by interface doping [J], Appl. Phys. Lett. 2007, 90(13):132115.
    [78] Chen G T, Su S H, Yokoyama M, Improving Electrical and Optical Characteristics of White Organic Light-Emitting Diodes by Using Double Buffer Layers [J], J. Electrochem. Soc. 2006, 153(4):H68-H70.
    [79] Li J F, Su S H, Hwang K S, Yokoyama M, Enhancing the contrast and power efficiency of organic light-emitting diodes using CuPc/TiOPc as ananti-reflection layer [J], J. Phys. D: Appl. Phys. 2007, 40:2435-2439.
    [80] Wang Y M, Teng F, Zhou Q C, Wang Y S, Multiple roles of bathocuproine employed as a buffer-layer in organic light-emitting diodes [J], Appl. Surf. Sci. 2006, 252:2355-2359.
    [81] Huby N, Hirsch L, Wantz G, Vignau L, Barrière A S, Parneix J P, Aubouy L, Gerbier P, Injection and transport processes in organic light emitting diodes based on a silole derivative [J], J. Appl. Phys. 2006, 99(8):084907.
    [82] Salikhov R B, Lachinov A N, Rakhmeyev R G, Electrical properties of heterostructure Si/poly(diphenylenephthalide)/Cu [J], J. Appl. Phys. 2007, 101(5):053706.
    [83] Barth S, Wolf U, B?ssler H, Müller P, Riel H, Vestweber H, Seidler P F, Rie? W, Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation [J], Phys. Rev. B 1999, 60(12):8791-8797.
    [84] Wang S D, Kanai K, Kawabe E, Ouchi Y, Seki K, Enhanced electron injection into tris(8-hydroxyquinoline) aluminum (Alq3) thin films by tetrathianaphthacene (TTN) doping revealed by current-voltage characteristics [J], Chem. Phys. Lett. 2006, 423:170-173.
    [85] Scott J C, Malliaras G G, Charge injection and recombination at the metal-organic [J], Chem. Phys. Lett. 1999, 299:115-119.
    [86] Hung L S, Chen C H, Recent progress of molecular organic electroluminescent materials and devices [J], Materials Science and Engineering R, 2002, 39:143-222.
    [1] Hung L S, Tang C W, Mason M G, Raychaudhuri P, Madathil J, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes [J], Appl. Phys. Lett. 2001, 78(4):544-546.
    [2] Wu C C, Lin C L, Hsieh P Y, Chiang H H, Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2004, 84(20):3966-3968.
    [3] Lin C L, Lin H W, Wu C C, Examining microcavity organic light-emitting devices having two metal mirrors [J], Appl. Phys. Lett. 2005, 87(2):021101.
    [4] Chen C W, Hsieh P Y, Chiang H H, Lin C L, Wu H M, Wu C C, Top-emitting organic light-emitting devices using surface-modified Ag anode [J], Appl. Phys. Lett. 2003, 83(25):5127-5129.
    [5] Huang Q, Walzer K, Pfeiffer M, Lyssenko V, He G, Leo K, Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers [J], Appl. Phys. Lett. 2006, 88(11):113515.
    [6] Murayama K, Tanaka A, Color organic EL display and fabrication method thereof [P], U.S. Patent (No. 7,259,514 B2), 2007.
    [7] Chen S, Li X, Huang W, Blue top-emitting organic light-emitting devices usinga 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer [J], Org. Electron. 2008, 9:1112-1117.
    [8] Hsu S F, Lee C C, Hu A T, Chen C H, Fabrication of blue top-emitting organic light-emitting devices with highly saturated color [J], Curr. Appl. Phys. 2004, 4:663-666.
    [9] Hsu S F, Lee C C, Hwang S W, Chen H H, Chen C H, Hu A T, Color-saturated and highly efficient top-emitting organic light-emitting devices [J], Thin Solid Films 2005, 478:271-274.
    [10] Cao J, Liu X, Khan M A, Zhu W Q, Jiang X Y, Zhang Z L, Xu S H, RGB tricolor produced by white-based top-emitting organic light-emitting diodes with microcavity structure [J], Curr. Appl. Phys. 2007, 7:300-304.
    [11] Chin B D, Effective hole transport layer structure for top-emitting organic light emitting devices based on laser transfer patterning [J], J. Phys. D: Appl. Phys. 2007, 40:5541-5546.
    [12] Han S, Grozea D, Huang C, Lu Z H, Wood R, Kim W Y, Al:SiO thin films for organic light-emitting diodes [J], J. Appl. Phys. 2004, 96(1):709-714.
    [13] Han S, Huang C, Lu Z H, Color tunable metal-cavity organic light-emitting diodes with fullerene layer [J], J. Appl. Phys. 2005, 97(9):093102.
    [14] Seo S, Kumaki D, Ikeda H, Sakata J, Light emitting device [P], U.S. Patent (No.US 2007/0131948 A1), 2007.
    [15] Huang Q, Walzer K, Pfeiffer M, Leo K, Hofmann M, Stübinger T, Performance improvement of top-emitting organic light-emitting diodes by an organic capping layer: An experimental study [J], J. Appl. Phys. 2006, 100(6):064507.
    [16] Chen S, Xie W, Meng Y, Chen P, Zhao Y, Liu S, Effect of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer on electroluminescent performances in top-emitting organic light-emitting devices [J], J. Appl. Phys. 2008, 103(5):054506.
    [17] Chen S, Zhao Y, Cheng G, Li J, Liu C, Zhao Z, Jie Z, Liu S, Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 88(15):153517.
    [18] Riel H, Karg S, Beierlein T, Ruhstaller B, Rie? W, Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling [J], Appl. Phys. Lett. 2003, 82(3):466-468.
    [19] Riel H, Karg S, Beierlein T, Rie? W, Neyts K, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study [J], J. Appl. Phys. 2003, 94(8):5290-5296.
    [20] Chen S, Jie Z, Zhao Z, Cheng G, Wu Z, Zhao Y, Quan B, Liu S, Li X, Xie W, Improved light outcoupling for top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 89(4):043505.
    [21] Yuan Y, Grozea D, Han S, Lu Z H, Interaction between organic semiconductors and LiF dopant [J], Appl. Phys. Lett. 2004, 85(21):4959-4961.
    [22] Cao J, Jiang X Y, Zhang Z L, MoOx modified Ag anode for top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2006, 89(25):252108.
    [23] Deppe D G, Lei C, Lin C C, Huffaker D L, Spontaneous emission from planar microstructures [J], J. Mod. Opt. 1994, 41(2):325-344.
    [24] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M, Physics and applications of organic microcavity light emitting diodes [J], J. Appl. Phys. 1996, 80(12):6954-6964.
    [25] Born M, Wolf E, Principles of Optics [M], 7th edition, Cambridge University Press, 1999.
    [26] Palik E D, Handbook of Optical Constants of Solids [M], Academic Press, New-York, 1985.
    [27] Jiang X Y, Zhang Z L, Cao J, Khan M A, Haq K, Zhu W Q, White OLED with high stability and low driving voltage based on a novel buffer layer MoOx [J], J. Phys. D: Appl. Phys. 2007, 40:5553-5557.
    [28] Li Y, Fung M K, Xie Z, Lee S T, Hung L S, Shi J, An efficient pure blue organic light-emitting device with low driving voltages [J], Adv. Mater. 2002, 14(18):1317-1321.
    [29] Tokito S, Tsutsui T, Taga Y, Microcavity organic light-emitting diodes forstrongly directed pure red, green, and blue emissions [J], J. Appl. Phys. 1999, 86(5):2407-2411.
    [30] Lu M H, Weaver M S, Zhou T X, Rothman M, Kwong R C, Hack M, Brown J J, High-efficiency top-emitting organic light-emitting devices [J], Appl. Phys. Lett. 2002, 81(21):3921-3923.
    [31] Lim J T, Jeong C H, Lee J H, Yeom G Y, Shin E C, Lee E H, Kim T W, High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode [J], J. Electrochem. Soc. 2007, 154(10):J302-J305.
    [32] Han S, Feng X, Lu Z H, Johnson D, Wood R, Transparent-cathode for top-emission organic light-emitting diodes [J], Appl. Phys. Lett. 2003, 82(16):2715-2717.
    [33] Gu G, Bulovi? V, Burrows P E, Forrest S R, Thompson M E, Transparent organic light emitting devices [J], Appl. Phys. Lett. 1996, 68(19):2606-2608.
    [34] Kanno H, Sun Y, Forrest S R, High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices [J], Appl. Phys. Lett. 2005, 86 (26):263502.
    [35] Peng H, Sun J, Zhu X, Yu X, Wong M, Kwok H S, High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode [J], Appl. Phys. Lett. 2006, 88(7):073517.
    [36] Chen S M, Yuan Y B, Lian J R, Zhou X, High-efficiency and high-contrast phosphorescent top-emitting organic light-emitting devices with p-type Si anodes [J], Opt. Express 2007, 15(22):14644-14649.
    [37] Hasegawa T, Miura S, Moriyama T, Kimura T, Takaya I, Osato Y, Mizutani H, Novel Electron-Injection Layers for Top-Emission OLEDs [C], SID Internat. Symp. Digest Tech. Papers 2004, 35(1):154-157.
    [38] Zhang X W, Khan M A, Jiang X Y, Zhu W Q, Zhang Z L, Electron injection property at the organic-metal interface in organic light-emitting devices revealed by current-voltage characteristics [J], Physica B 2009, 404:1247-1250.
    [39] Huang J, Xu Z, Yang Y, Low-Work-Function Surface Formed bySolution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate [J], Adv. Funct. Mater. 2007, 17:1966-1973.
    [40] Li Y, Zhang D Q, Duan L, Zhang R, Wang L D, Qiu Y, Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes [J], Appl. Phys. Lett. 2007, 90(1):012119.
    [41] Virgili T, Lidzey D G, Bradley D D C, Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes [J], Adv. Mater. 2000,12(1):58-62.
    [42] Hamada Y, Kanno H, Tsujioka T, Takahashi H, Usuki T, Red organic light-emitting diodes using an emitting assist dopant [J], Appl. Phys. Lett. 1999, 75(12):1682-1684.
    [43] Liu T H, Iou C Y, Chen C H, Doped red organic electroluminescent devices based on a cohost emitter system [J], Appl. Phys. Lett. 2003, 83(25):5241-5243.
    [44] Lee Y G, Kang S K, Oh T S, Lee H N, Lee S, Koh K H, Comparison of two cohost systems for doped red organic light-emitting devices in an effort to improve the efficiency and the lifetime [J], Org. Electron. 2008, 9:339-346.
    [45] Young R H, Tang C W, Marchetti A P, Current-induced fluorescence quenching in organic light-emitting diodes [J], Appl. Phys. Lett. 2002, 80(5):874-876.
    [46] Xie Z Y, Hung L S, Lee S T, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure [J], Appl. Phys. Lett. 2001, 79(7):1048-1050.
    [47] Stampor W, Kalinowski J, Marco P D, Fattori V, Electric field effect on luminescence efficiency in 8-hydroxyquinoline aluminum (Alq3) thin films [J], Appl. Phys. Lett. 1997, 70(15):1935-1937.
    [48] Liu Z G, Chen Z J, Gong Q H, Reduction of concentration quenching in a nondoped DCM organic light-emitting diode [J], Chin. Phys. Lett. 2005, 22(6):1536-1539.
    [49] Tang C W, VanSlyke S A, Chen C H, Electroluminescence of doped organic thin films [J], J. Appl. Phys. 1989, 65(65):3610-3616.
    [50] Chen C T, Evolution of Red Organic Light-Emitting Diodes: Materials andDevices [J], Chem. Mater. 2004, 16(23):4389-4400.
    [51] Mi B X, Gao Z Q, Liu M W, Chan K Y, Kwong H L, Wong N B, Lee C S, Hung L S, Lee S T, New polycyclic aromatic hydrocarbon dopants for red organic electroluminescent devices [J], J. Mater. Chem. 2002, 12:1307-1310.
    [52] Picciolo L C, Murata H, Kafafi Z H, Organic light-emitting devices with saturated red emission using 6,13-diphenylpentacene [J], Appl. Phys. Lett. 2001, 78(16):2378-2380.
    [53] Wolak M A, Jang B B, Palilis L C, Kafafi Z H, Functionalized Pentacene Derivatives for Use as Red Emitters in Organic Light-Emitting Diodes [J], J. Phys. Chem. B 2004, 108(18):5492-5499.
    [54] Jang B B, Lee S H, Kafafi Z H, Asymmetric Pentacene Derivatives for Organic Light-Emitting Diodes [J], Chem. Mater. 2006, 18(2):449-457.
    [55] Wolak M A, Delcamp J, Landis C A, Lane P A, Anthony J, Kafafi Z, High-Performance Organic Light-Emitting Diodes Based on Dioxolane-Substituted Pentacene Derivatives [J], Adv. Funct. Mater. 2006, 16:1943-1949.
    [56]丁邦东,稠环芳烃材料在有机电致发光器件中的应用研究[D],上海大学博士学位论文, 2008.
    [57] Cheng D M, Ma F Y, Liu X Y, Pure red emission of dye-doped organic molecules from microcavity organic light emitting diode [J], Optics & Laser Technology 2007, 39:720-723.
    [58] Liu T H, Iou C Y, Wen S W, Chen C H, 4-(Dicyanomethylene)- 2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped red emitters in organic light-emitting devices [J], Thin Solid Films 2003, 441:223-227.
    [59] Jordan R H, Rothberg L J, Dodabalapur A, Slusher R E, Efficiency enhancement of microcavity organic light emitting diodes [J], Appl. Phys. Lett. 1996, 69(14):1997-1999.
    [60]陈金鑫,黄孝文, OLED有机电激发光材料与元件[M],五南出版社(台湾), 2005.
    [61] F?rster T, 10TH SPIERS MEMORIAL LECTURE TRSNSFERMECHANISMS OF ELECTRONIC EXCITATION [J], Discuss. Faraday Soc. 1959, 27: 7-17.
    [62] Yu L Z, Jiang X Y, Zhang Z L, Lou L R, Lee C T, Investigation of F?rster-type energy transfer in organic light-emitting devices with 4-(dicyanomethylene)-2- t-butyl-6-(1,1,7,7-tetramethy ljulolidin-4-yl-vinyl)-4H-pyran doped cohost emitting layer [J], J. Appl. Phys. 2009, 105(1):013105.
    [63] Bennett R G, Radiationless Intermolecular Energy Transfer. I. Singlet→singlet Transfer [J], J. Chem. Phys. 1964, 41(10):3037-3040.
    [1] Ball P, Let there be light [J], Nature 2001, 409:974-976.
    [2] Zhao W Q, Ran G Z, Ma G L, Xu W J, Dai L, Liu W M, Wang P F, Qin G G, Efficient 1.54μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure [J], Appl. Phys. Lett. 2006, 89(2):022109.
    [3] Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M, An all-silicon Raman laser [J], Nature 2005, 433:292-294.
    [4] Curry R J, Gillin W P, Knights A P, Gwilliam R, Silicon-based organic light-emitting diode operating at a wavelength of 1.5μm [J], Appl. Phys. Lett. 2000, 77(15):2271-2273.
    [5] Parker I D, Kim H H, Fabrication of polymer light-emitting diodes using doped silicon electrodes [J], Appl. Phys. Lett. 1994, 64(14):1774-1776.
    [6] Zhou X, He J, Liao L S, Lu M, Xiong Z H, Ding X M, Hou X Y, Tao F G, Zhou C E, Lee S T, Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode [J], Appl. Phys. Lett. 1999, 74(4):609-611.
    [7] Qin G G, Xu A G, Ma G L, Ran G Z, Qiao Y P, Zhang B R, Chen W X, Wu S K, A top-emission organic light-emitting diode with a silicon anode and an Sm/Aucathode [J], Appl. Phys. Lett. 2004, 85(22):5406-5408.
    [8] Ma G L, Ran G Z, Xu A G, Xu Y H, Qiao Y P, Chen W X, Dai L, Qin G G, Improving charge-injection balance and cathode transmittance of top-emitting organic light-emitting device with p-type silicon anode [J], Appl. Phys. Lett. 2005, 87(8):081106.
    [9] Chen S M, Yuan Y B, Lian J R, Zhou X, High-efficiency and high-contrast phosphorescent top-emitting organic light-emitting devices with p-type Si anodes [J], Opt. Express 2007, 15(22):14644-14649.
    [10] Zhao W Q, Ran G Z, Liu Z W, Bian Z Q, Sun K, Xu W J, Huang C H, Qin G G, Combination of passivated Si anode with phosphor doped organic to realize highly efficient Si-based electroluminescence [J], Opt. Express 2008, 16(7):5158-5163.
    [11] Zhao W Q, Ran G Z, Xu W J, Qin G G, Passivated p-type silicon: Hole injection tunable anode material for organic light emission [J], Appl. Phys. Lett. 2008, 92(7):073303.
    [12] Zhao W Q, Wang P F, Ran G Z, Ma G L, Zhang B R, Liu W M, Wu S K, Dai L, Qin G G, 1.54μm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode [J], J. Phys. D: Appl. Phys. 2006, 39:2711-2714.
    [13] Jean F, Mulot J Y, Geffroy B, Denis C, Cambon P, Microcavity organic light-emitting diodes on silicon [J], Appl. Phys. Lett. 2002, 81(9):1717-1719.
    [14] Wu Z, Chen S, Yang H, Zhao Y, Hou J, Liu S, Top-emitting organic light-emitting devices based on silicon substrate using Ag electrode [J], Semicond. Sci. Technol. 2004, 19:1138-1140.
    [15] Baigent D R, Marks R N, Greenham N C, Friend R H, Moratti S C,Holmes A B, Conjugated polymer light-emitting diodes on silicon substrates [J], Appl. Phys. Lett. 1994, 65(21):2636-2638.
    [16] Bulovi? V, Tian P, Burrows P E, Gokhale M R, Forrest S R, Thompson M E, Asurface-emitting vacuum-deposited organic light emitting device [J], Appl. Phys. Lett. 1997, 70(22):2954-2956.
    [17] Heinrich L M H, Müller J, Hilleringmann U, Goser K F, Holmes A, Hwang D H, Stern R, CMOS-Compatible Organic Light-Emitting Diodes [J], IEEE Transactions on Electron Devices 1997, 44(8):1249-1252.
    [18] Ran G Z, Zhao W Q, Dai L, Qin G G, Highly transparent cathodes comprised of rare earth and Au stacked layers for top-emission organic light emitting diodes [J], J. Appl. Phys. 2006, 100(11):113107.
    [19] Li Y Z, Ran G Z, Zhao W Q, Qin G G, Au generation centres doped n+-Si: hole-injection adjustable anode for efficient organic light emission [J], J. Phys. D: Appl. Phys. 2008, 41:155107.
    [20] Ran G Z, Xu Y H, Ma G L, Xu A G, Qiao Y P, Chen W X, Qin G G, Organic light-emitting diodes with n-type silicon anode [J], Semicond. Sci. Technol. 2005, 20:761-764.
    [21] Hung L S, Chen C H, Recent progress of molecular organic electroluminescent materials and devices [J], Materials Science and Engineering R 2002, 39:143-222.
    [22] Zhu X L, Sun J X, Peng H J, Meng Z G, Wong M, Kwok H S, Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode [J], Appl. Phys. Lett. 2005, 87(8):083504.
    [23] Zhu X L, Sun J X, Peng H J, Meng Z G, Wong M, Kwok H S, Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes [J], Appl. Phys. Lett. 2005, 87(15):153508.
    [24] Huang C J, Han S, Grozea D, Turak A, Lu Z H, Organic light-emitting devices with silicon anodes [J], J. Appl. Phys. 2005, 97(8):086107.
    [25] Kanno H, Holmes R J, Sun Y, Cohen S K, Forrest S R, White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer [J], Adv. Mater. 2006, 18:339-342.
    [26] Kim H H, Miller T M, Westerwick E H, Kim Y O, Kwock E W, Morris M D, Cerullo M, Silicon Compatible Organic Light Emitting Diode [J], Journal of Lightwave Technology 1994, 12(12):2107-2113.
    [27] Zhang Z L, Jiang X Y, Xu S H, Nagatomo T, Thin Film Electroluminescent Diodes based on Poly(vinyl carbazole) [In: Organic Electroluminescent Materials and Devices [M], edited by S. Miyata and H.S. Nalwa, Gordon and Breach, New-York, 1997, P. 209].
    [28] Xu A G, Ran G Z, Wu Z L, Ma G L, Qiao Y P, Xu Y H, Yang B R, Zhang B R, Qin G G, Effects of resistivity of a p-Si chip on the light-emitting efficiency of a top-emission organic light-emitting diode with the p-Si chip as the anode [J], phys. stat. sol. (a) 2006, 203(2):428-434.
    [29] Zhang X W, Jiang X Y, Khan M A, Li J, Zhang L, Cao J, Zhu W Q, Zhang Z L, Colour tunability of blue top-emitting organic light-emitting devices with single-mode resonance and improved performance by using C60 capping layer and dual emission layer [J], J. Phys. D: Appl. Phys. 2009, 42:145106.
    [30] Lee J H, Chen K Y, Hsiao C C, Chen H C, Chang C H, Kiang Y W, Yang C C, Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures [J], Journal of Display Technology 2006, 2(2):130-137.
    [31] Born M, Wolf E, Principles of Optics [M], 7th edition, Cambridge University Press, 1999.
    [32] Palik E D, Handbook of Optical Constants of Solids [M], Academic Press, New-York, 1985.
    [33] Xie Z Y, Hung L S, High-contrast organic light-emitting diodes [J], Appl. Phys. Lett. 2004, 84(7):1207-1209.
    [34] Wu Z, Wang L, Qiu Y, Contrast-enhancement in organic light-emitting diodes [J], Opt. Express 2005, 13(5):1406-1411.
    [35] Huang J, Xu Z, Yang Y, Low-Work-Function Surface Formed bySolution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate [J], Adv. Funct. Mater. 2007, 17:1966-1973.
    [36] Yang C J, Lin C L, Wu C C, Yeh Y H, Cheng C C, Kuo Y H, Chen T H, High-contrast top-emitting organic light-emitting devices for active-matrix displays [J], Appl. Phys. Lett. 2005, 87(14):143507.
    [37] Hung L S, Madathil J, Reduction of Ambient Light Reflection in Organic Light-Emitting Diodes [J], Adv. Mater. 2001, 13(23):1787-1790.
    [38] Krasnov A N, High-contrast organic light-emitting diodes on flexible substrates [J], Appl. Phys. Lett. 2002, 80(20):3853-3855.
    [39] Lau K C, Xie W F, Sun H Y, Lee C S, Lee S T, Contrast improvement of organic light-emitting devices with Sm:Ag cathode [J], Appl. Phys. Lett. 2006, 88(8):083507.
    [40] Wong F L, Fung M K, Jiang X, Lee C S, Lee S T, Non-reflective black cathode in organic light-emitting diode [J], Thin Solid Films 2004, 446:143-146.
    [41] Xie Z, Zhao Y, Niu X, Reduced ambient reflection of organic light-emitting diodes by utilizing multilayer low-reflection cathode [J], Semicond. Sci. Technol. 2006, 21:1077-1082.
    [42] Aziz H, Liew Y F, Grandin H M, Popovic Z A, Reduced reflectance cathode for organic light-emitting devices using metalorganic mixtures [J], Appl. Phys. Lett. 2003, 83(1):186-188.
    [43] Li J F, Su S H, Hwang K S, Yokoyama M, Enhancing the contrast and power efficiency of organic light-emitting diodes using CuPc/TiOPc as an anti-reflection layer [J], J. Phys. D: Appl. Phys. 2007, 40:2435-2439.
    [44] Zhou Y C, Ma L L, Zhou J, Gao X D, Wu H R, Ding X M, Hou X Y, High contrast organic light-emitting devices with improved electrical characteristics [J], Appl. Phys. Lett. 2006, 88(23):233505.
    [45] Riel H, Karg S, Beierlein T, Rie? W, Neyts K, Tuning the emission characteristics of top-emitting organic light-emitting devices by means of adielectric capping layer: An experimental and theoretical study [J], J. Appl. Phys. 2003, 94(8):5290-5296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700