光子晶体波导型器件及其在太赫兹技术中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包括二维平面光子晶体波导及光子晶体光纤在内的光子晶体波导在光子晶体领域中占有极其重要的地位。在光子集成、光通讯及光传感等领域,光子晶体波导均有重要应用价值。本论文针对光子晶体波导器件展开研究工作,主要研究了光子晶体波导中的慢光效应、光子晶体多模波导中的自成像效应、基于自成像效应和全禁带效应的偏振分束器、聚合物光子晶体太赫兹波导及椭圆多孔双折射太赫兹波导。研究工作总结如下:
     (1)研究了两种单光子晶体界面二维介质波导的慢光效应。一种是基于光子晶体禁带约束效应的单光子晶体界面介质波导,由于利用了色散曲线拐点附近具有较低群速色散的位置,该波导具有良好的慢光特性。而另外一种是基于负折射光子晶体,由于利用负折射光子晶体替代左手材料,可以克服左手材料通常面临的高损耗难题。我们对这种负折射光子晶体波导中的慢光特性进行了深入分析,并实现了一种可能用于双波长激光器及放大器的高Q值开放式谐振腔。
     (2)探讨了光子晶体多模波导中的多模干涉效应及自成像效应。对完全禁带二维光子晶体中的自成像效应进行了初步探索,并首次基于全禁带光子晶体中的自成像效应,提出了一种新颖的具有良好偏振分束性能的光子晶体偏振分束器。该分束器两个输出端口的偏振消光比分别达到了22.9dB和19.2dB。
     (3)研究了聚合物光子晶体太赫兹波导。包括:1)设计了一种纤芯和包层均为二维空气孔阵列的光子晶体太赫兹波导,并研究了纤芯为椭圆孔阵列的这种光子晶体波导的双折射特性。2)我们首次提出并研究了一种新颖的压缩晶格的椭圆多孔双折射太赫兹波导。该波导具有很高的双折射系数,并且由于空气孔阵列的引入而可以有效降低太赫兹波的传输损耗。
     (4)实验研究了激光辐照条件下高阻硅对太赫兹波的透射特性,探讨了高阻硅用于波导型太赫兹光电调制器件的可能性。利用特氟龙微细线和微细管制作了几种光子晶体太赫兹波导,并使用太赫兹时域谱系统及返波管连续太赫兹源对光子晶体太赫兹波导的基本传输特性进行了实验表征。
Photonic crystal waveguides, includes two-dimensional plane photonic crystal waveguides and photonic crystal fibers, have been intensively researched by many groups. And photonic crystal waveguides show potential applications in many important areas like photonic integrated circuits, optical communications, optical sensing, and so on. The thesis mainly focused on photonic crystal waveguide devices, our work included slow light effect in photonic crystal waveguides, self-imaging phenomenon in multi-mode photonic crystal waveguides, a polarization splitter based on the combination of self-imaging and complete photonic bandgap, polymer photonic crystal terahertz waveguides and multiple elliptical-hole birefrigent terahertz waveguides. We also fabricated several kinds of polymer photonic crystal terahertz waveguides. Main works of the dissertation are list as follows:
     Firstly, slow light effects in two kinds of two-dimensional dielectric waveguides with single photonic interface were investigated. One is a photonic crystal waveguide based on the photonic bandgap, the structure shows good properties for slow light purpose, since the low GVD property of the dispersion curves near the inflection points in the slow light region is used. The other is based on a photonic crystal with negative effective refractive index. Slow light properties of the waveguide were investigated in details, and we also realized a kind of two-frequency open cavity with high Q-factor, which may find applications in two-frequency lasers and applifiers.
     Secondly, multi-mode interference and self-imaging in multi-mode photonic crystal waveguides are introduced. We preliminarily studied self-imaging phenomenon of a multi-mode photonic crystal waveguides in an anisotropic photonic crystal with comple bandgap, by which, we firstly proposed a novel polarization beam splitter on the combination of the self-imaging phenomena and the absolute bandgap of a photonic crystal. We got polarization extinction ratios of 22.9dB and 19.2dB for the two ouput ports of the splitter, respectively.
     Thirdly, we focused on polymer photonic crystal terahertz fibers and birefringent terahertz fibers. A kind of photonic crystal terahertz fiber with air-holes array in both the core and cladding was proposed, and birefringent properties of the fiber with elliptical-hole array in the core were also studied. We firstly proposed a novel elliptical-hole birefringent terahertz fiber with squeezed lattices, which shows ultra-high birefringence in a wide terahertz range, and the propagation loss can be effectively reduced since a dominant fraction of the terahertz power are propagating in the air-holes of the fiber structure.
     At last, transmission property of high-resistance silicon under laser radiation was studied, which may be used as waveguide-type opto-electronic modulation devices in terahertz frequency range. Using teflon microwires and micro-tubes, several kinds of photonic crystal terahertz waveguides were fabricated, and we also experimentally characterized one of the photonic crystal terahertz waveguides by a terahertz time-domain system and a continuous BWO (backward wave osciallator) terahertz source.
引文
[1]S. John, "Strong localization of photons in certain disordered dielectric superlattices,' Phys. Rev. Lett.58,2486-2489 (1987).
    [2]E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics,' Phys. Rev. Lett.58,2059-2062 (1987).
    [3]J. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes," Phil. Mag.26,256-265 (1888).
    [4]T. Krauss, R. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
    [5]P. Pusey, and W. van Megen, "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres," Nature 320,340-342 (1986).
    [6]A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, and J. Mondia, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405,437-440 (2000).
    [7]M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
    [8]S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289,604-606 (2000).
    [9]J. Jones, J. Sanders, and E. Segnit, "Structure of opal," Nature 204,990-991 (1964).
    [10]P. Vukusic, and J. Sambles, "Photonic structures in biology," Nature 424,852-855 (2003).
    [11]J. Galusha, L. Richey, J. Gardner, J. Cha, and M. Bartl, "Discovery of a diamond-based photonic crystal structure in beetle scales," Phys. Rev. E 77,904 (2008).
    [12]T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett.79,4289-4291 (2001).
    [13]K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett.83, 1915-1917(2003).
    [14]M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett.81,2680-2682 (2002).
    [15]H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek, S. Kim, and Y Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305,1444-1447 (2004).
    [16]H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys.79,7483-7492 (1996).
    [17]A. Mekis, J. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett.77, 3787-3790(1996).
    [18]E. Brown, C. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B 10,404-407 (1993).
    [19]M. Boroditsky, T. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett.75,1036-1038 (1999).
    [20]M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705(2000).
    [21]C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65,201104 (2002).
    [22]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett.74, 1212-1214(1999).
    [23]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals:toward microscale lightwave circuits," J. Lightwave Technol.17,2032-2038 (1999).
    [24]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett.91, 207401 (2003).
    [25]Z. Ruan, and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett.30,2308-2310 (2005).
    [26]X. Ao, and S. He, "Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction," Opt. Lett.30,2152-2154 (2005).
    [27]D. Prather, S. Shi, J. Murakowski, G. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, "Self-collimation in photonic crystal structures:a new paradigm for applications and device development," J. Phys. D:Appl. Phys.40,2635-2651 (2007).
    [28]P. Rakich, M. Dahlem, S. Tandon, M. Ibanescu, Solja, and M. ccaron, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,' Nature Mater.5,93-96 (2006).
    [29]B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14,2413-2422 (2006).
    [30]S. Johnson, P. Villeneuve, S. Fan, and J. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62,8212-8222 (2000).
    [31]S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
    [32]M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett.77,1937-1939 (2000).
    [33]A. Adibi, Y. Xu, R. Lee, A. Yariv, and A. Schere, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2000).
    [34]P. Borel, L. Frandsen, M. Thorhauge, A. Harpoh, Y. Zhuang, M. Kristensen, and H. Chong, "Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light," Opt. Express 11,1757-1762 (2003).
    [35]J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Optics Express 16,11077-11082 (2008).
    [36]E. Khoo, T. Cheng, A. Liu, J. Li, and D. Pinjala, "Transmitting light efficiently on photonic crystal surface waveguide bend," Appl. Phys. Lett.91,171109 (2007).
    [37]A. Rahachou, and I. Zozoulenko, "Waveguiding properties of surface states in photonic crystals," J. Opt. Soc. Am. B 23,1679-1683 (2006).
    [38]H. Chen, K. Tsia, and A. Poon, "Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin," Opt. Express 14,7368-7377 (2006).
    [39]A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide:a proposal and analysis," Opt. Lett.24,711-713 (1999).
    [40]S. Mookherjea, and A. Yariv, "Coupled resonator optical waveguides," IEEE J. Sel. Top. Quantum Electron.8,448-456 (2002).
    [41]S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
    [42]R. Costa, A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett.15,401-403 (2003).
    [43]L. F-andsen, P. Borel, Y. Zhuang, A. Harpoth, M. Thorhauge, M. Kristensen, W. Bogaerts. P. Eumon, R. Baets, and V. Wiaux, "Ultralow-loss 3-dB photonic crystal waveguide splitter," Opt. Lett.29,1623-1625 (2004).
    [44]C. Liu, and L. Chen, "Tunable photonic crystal waveguide coupler with nematic liquid crystals," IEEE Photon. Technol. Lett.16,1849-1851 (2004).
    [45]M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol.19,1970-1975 (2001).
    [46]S. Harris, J. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett.64,1107-1110 (1990).
    [47]S. Harris, J. Field, and A. Kasapi, "Dispersive properties of electromagnetically induced transparency," Phys. Rev. A 46, R29-R32 (1992).
    [48]L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397,594-598 (1999).
    [49]M. Bigelow, N. Lepeshkin, and R. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301,200-203 (2003).
    [50]P. K.u, F. Sedgwick, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. Chang, and S. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett.29,2291-2293 (2004).
    [51]Y. Okawachi, M. Bigelow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett.94,153902(2005).
    [52]K. Tsakmakidis, A. Boardman, and O. Hess, "Trapped rainbow'storage of light in metamaterials," Nature 450,397-401 (2007).
    [53]J. He, and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wirel. Compon. Lett.16, 96-98 (2006).
    [54]T. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D:Appl. Phys.40, 2666-2670 (2007).
    [55]H. Gersen, T. Karle, R. Engelen, W. Bogaerts, J. Korterik, N. van Hulst, T. Krauss, and L Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett.94,073903 (2005).
    [56]Y. Vlasov, M. O'Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438,65-69 (2005).
    [57]L. Frandsen, A. Lavrinenko, J. Fage-Pedersen, and P. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14,9444-9450 (2006).
    [58]J. Ma, and C. Jiang, "Demonstration of Ultraslow Modes in Asymmetric Line-Defect Photonic Crystal Waveguides," IEEE Photon. Technol. Lett.20,1237-1239 (2008).
    [59]M. Settle, R. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,' Opt. Express 15,219-226 (2007).
    [60]D. Mori, and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett.85,1101-1103 (2004).
    [61]D. Mori, and T. Baba, "Wideband and low dispersion slow light by chiiped photonic crystal coupled waveguide," Opt. Express 13,9398-9408 (2005).
    [62]Solja, and M. Ccaron, "Enhancement of nonlinear effects using photonic crystals," Nature Mater.3,211-219(2004).
    [63]M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19,2052-2059 (2002).
    [64]L. Soldano, and E. Pennings, "Optical multi-mode interference devices based on self-imaging:principles and applications," J. Lightwave Technol.13,615-627 (1995).
    [65]O. Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Am.63, 416-419(1973).
    [66]R. Ulrich, "Image formation by phase coincidences in optical waveguides," Opt. Comm. 13,259-264(1975).
    [67]R. U rich, "Light-propagation and imaging in planar optical waveguides," Nouvelle Revue d'Optique 6,253-262 (1975).
    [68]H. Kim, I. Park, B. O, S. Park, E. Lee, and S. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides:application to wavelength de-multiplexing," Opt. Express 12,5625-5633 (2004).
    [69]T. Liu, A. Zakharian, M. Fallahi, J. Moloney, and M. Mansuripur, "Multimode interference-based photonic crystal waveguide power splitter," J. Lightwave Technol.22. 2842-2846 (2004).
    [70]Y. Zhang, Z. Li, and B. Li, "Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves," Opt. Express 14,2679-2689 (2006).
    [71]Z. Li, Y. Zhang, and B. Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle," Opt. Express 14,3887-3892 (2006).
    [72]J. Knight, T. Birks, P. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett.21,1547-1549 (1996).
    [73]T. Birks, J. Knight, and P. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett.22,961-963(1997).
    [74]T. Monro, P. Bennett, N. Broderick, and D. Richardson, "Holey fibers with random cladding distributions," Opt. Lett.25,206-208 (2000).
    [75]J. Knight, T. Birks, R. Cregan, P. Russell, and P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett.34,1347-1348 (1998).
    [76]M. Nielsen, J. Folkenberg, and N. Mortensen, "Singlemode photonic crystal fibre with effective area of 600 μm and low bending loss," Electron. Lett.39,1802-1803 (2003).
    [77]J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12,1313-1319 (2004).
    [78]W. Wong, X. Peng, J. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett.30, 2855-2857 (2005).
    [79]J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvemault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14,2715-2720 (2006).
    [80]A. Ortigosa-Blanch, J. Knight, W. Wadsworth, J. Arriaga, B. Mangan, T. Birks, and P. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett.25,1325-1327 (2000).
    [81]K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9,676-680 (2001).
    [82]T. Hansen, J. Broeng, S. Libori, E. Knudsen, A. Bjarklev, J. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13,588-590(2001).
    [83]N. Issa, M. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett.29,1336-1338 (2004).
    [84]D. Chen, and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett.19,185-187 (2007).
    [85]K. Saitoh, and M. Koshiba, "Single-polarization single-mode photonic crystal fibers,' IEEE Photon. Technol. Lett.15,1384-1386 (2003).
    [86]H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett.16,182-184 (2004).
    [87]J. Folkenberg, M. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett.30,1446-1448 (2005).
    [88]F. Gerome, J. Auguste, and J. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett.29,2725-2727 (2004).
    [89]A. Huttunen, and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13,627-635 (2005).
    [90]W. Reeves, J. Knight, P. Russell, and P. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10,609-613 (2002).
    [91]K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [92]J. Dudley, "Supercontinuum generation in photonic crystal fibre," Rev. Mod. Phys.78, 1135-1184(2006).
    [93]R. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short puses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett.24,1431-1433 (1999).
    [94]G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17,851-863 (2000).
    [95]R. Mendis, and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett.26,846-848 (2001).
    [96]S. Jamison, R. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett.76, 1987-1989(2000).
    [97]R. Mendis, and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys.88, 4449-4451 (2000).
    [98]K. Wang, and D. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [99]H. Chen, Y. Li, C. Pan, J. Kuo, J. Lu, L. Chen, and C. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett.32,1017-1019 (2007).
    [100]H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett.80,2634-2636 (2002).
    [101]M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Japa. J. Appl. Phys.43,317-319 (2004).
    [102]J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett.92,064105 (2008).
    [103]S. Atakaramians, S. Afshar V, B. Fischer, D. Abbott, and T. Monro, "Porous fibers:a novel approach to low loss THz waveguides," Opt. Express 16,8845-8854 (2008).
    [104]A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett.92,071101 (2008).
    [105]A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16,6340-6351 (2008).
    [106]M. Skorobogatiy, and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance." Appl. Phys. Lett.90,113514 (2007).
    [107]M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16,7-12 (2008).
    [108]G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, "Low-loss air-core polarization maintaining terahertz fiber," Opt. Express 16, 13593-13598(2008).
    [109]S. Atakaramians, S. Afshar V, B. Fischer, D. Abbott, and T. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Comm.282,36-38 (2009).
    [110]K. Nielsen, H. Rasmussen, A. Adam, P. Planken, O. Bang, and P. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Opt. Express 17,8592-8601 (2009).
    [111]陈海滨,何金龙,洪治,“单光子晶体界而介质波导中的慢光效应,”光子学报 38,2593-2597(2009).
    [112]H. Chen, J. He, Y. Jin, and Z. Hong, "Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate," Opt. Comm.282,653-656 (2009).
    [113]J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16,11077-11082 (2008).
    [114]S. Johnson, and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8,173-190 (2001).
    [115]S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett.87,111102 (2005).
    [116]D. Mori, and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13,9398-9408 (2005).
    [117]I. Shadrivov, A. Zharov, and Y. Kivshar, "Giant Goos-Hachen effect at the reflection from left-handed metamaterials," Appl. Phys. Lett.83,2713-2715 (2003).
    [118]1. Shadrivov, R. Ziolkowski, A. Zharov, and Y. Kivshar, "Excitation of guided waves in layered structures with negative refraction," Opt. Express 13,481-492 (2005).
    [119]K. Tsakmakidis, A. Klaedtke, D. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett.89,201103 (2006).
    [120]J. He, J. Yi, and S. He, "Giant negative Goos-Hanchen shifts for a photonic crystal with a negative effective index," Opt. Express 14,3024-3029 (2006).
    [121]K. Ohtaka, T. Ueta, and K. Amemiya, "Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods," Phys. Rev. B 57, 2550-2568(1998).
    [122]M. Agio, and C. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64,055603 (2001).
    [123]J. Jackson, "Classical Electrodynamics,3 rd cd," New York, Jhon Willey & Sons (1999).
    [124]C. Wang, and C. Pan, "Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity," Appl. Phys. Lett.64,3089-3091 (1994).
    [125]T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, "CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode," Electron. Lett.33,2039-2040 (1997).
    [126]H. Chen, Y. Xu, J. He, and Z. Hong, "A polarization splitter based on the self-imaging phenomena in an anisotropic photonic crystal with complete photonic band gap," Opt. Comm.282,3626-3629 (2009).
    [127]R. Ulrich, and G. Ankele, "Self-imaging in homogeneous planar optical waveguides," Appl. Phys. Lett.27,337-339 (1975).
    [128]D. Cheng, and E. Kuester, "A hybrid method for paraxial beam propagation in multimode optical waveguides," IEEE Trans. Microwave Theory Tech.29,923-933 (1981).
    [129]L. Botten, R. Hansen, and C. de Sterke, "Supermodes in multiple coupled photonic crystal waveguides," Opt. Express 14,387-396 (2006).
    [130]D. Modotto, M. Conforti, A. Locatelli, and C. De Angelis, "Imaging properties of multimode photonic crystal waveguides and waveguide arrays," J. Lightwave Technol.25, 402-409 (2007).
    [131]T. Yu, H. Zhou, Z. Gong, J. Yang, X. Jiang, and M. Wang, "Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides," J. Phys, D:Appl. Phys.41, 95101(2008).
    [132]D. Cassagne. C. Jouanin, and D. Bertho, "Photonic band gaps in a two-dimensional graphite structure," Phys. Rev. B 52, R2217-R2220 (1995).
    [133]L. Shen, S. He, and S. Xiao, "Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels." Phys. Rev. B 66,165315 (2002).
    [134]C. Anderson, and K. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett.77,2949-2952(1996).
    [135]Z. Li, B. Gu, and G. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett.81,2574-2577 (1998).
    [136]S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, "Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,' Appl. Phys. Lett.87,061107 (2005).
    [137]W. Huang, Y. Zhang, and B. Li, "Ultracompact wavelength and polarization splitters in periodic dielectric waveguides," Opt. Express 16,1600-1609 (2008).
    [138]L. Wu, M. Mazilu, J. Gallet, T. Krauss, A. Jugessur, and R. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett.29,1620-1622 (2004).
    [139]V. Zabelin, L. Dunbar, N. Le Thomas, H. R, M. Kotlyar, L. O'Faolain, and T. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett.32,530-532 (2007).
    [140]Y. Kalra, and R. Sinha, "Design of ultra compact polarization splitter based on the complete photonic band gap," Opt. Quantum Electron.37,889-895 (2005).
    [141]Y. Tsuji, Y. Morita, and K. Hirayama, "Photonic Crystal Waveguide Based on 2-D Photonic Crystal With Absolute Photonic Band Gap." IEEE Photon. Technol. Lett.18, 2410-2412(2006).
    [142]Y. Morita, Y. Tsuji, and K. Hirayama, "Proposal for a Compact Resonant-Coupling-Type Polarization Splitter Based on Photonic Crystal Waveguide With Absolute Photonic Bandgap," IEEE Photon. Technol. Lett.20,93-95 (2008).
    [143]T. Yu, X. Jiang, J. Yang, H. Zhou, Q. Liao, and M. Wang, "Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes," Phys. Lett. A 369,167-171 (2007).
    [144]H. Chen, D. Chen, and Z. Hong, "Squeezed lattice elliptical-hole terahertz fiber with high birefringence," Appl. Opt.48,3943-3947 (2009).
    [145]M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14,9944-9954 (2006).
    [146]H. Ebendorff-Heidepriem, and T. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15,15086-15092 (2007).
    [147]V. Kumar, A. George, J. Knight, and P. Russell, "Tellurite photonic crystal fiber," Opt. Express 11,2641-2645 (2003).
    [148]A. Snyder, and J. Love, Optical waveguide theory (Kluwer Academic Pub,1983).
    [149]L. Fekete, J. Hlinka, F. Kadlec, P. Kuzel, and P. Mounaix, "Active optical control of the terahertz reflectivity of high-resistivity semiconductors," Opt. lett.30,1992-1994 (2005).
    [150]E. Hendry, M. Lockyear, J. Goez Rivas, L. Kuipers, and M. Bonn, "Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays," Phys. Rev. B 75,235305 (2007).
    [151]D. Cooke, and P. Jepsen, "Optical modulation of terahertz pulses in a parallel plate waveguide," Opt. Express 16,15123-15129 (2008).
    [152]C. Pornseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. Large, and M. van Eijkelenborg, "Transmission of terahertz radiation using a microstructured polymer optical fiber," Opt. Lett.33,902-904 (2008).
    [153]S. Atakaramians, V. Shahraam Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, "THz porous fibers:design, fabrication and experimental characterization," Opt. Express 17,14053-14062 (2009).
    [154]C. Winnewisser, F. Lewen, and H. Helm, "Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy," Appl. Phys. A:Mater. Sci. Process 66, 593-598(1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700