用户名: 密码: 验证码:
高压CO_2相态下乙醇发酵及酵母菌结构变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩或超临界流体作为良好的萃取溶剂,在食品加工与保藏、制药和生物材料加工等领域有广阔的应用前景。而超临界二氧化碳又具有无毒、不易燃、易获得和临界点温度温和等优点,使其在萃取发酵生物产品时具有明显的优势。
    高压二氧化碳对乙醇发酵有不利影响,乙醇的产量随处理压力的升高而大幅度降低,在1MPa时对不同pH值条件下的乙醇产量进行分析,发现在pH值为8时乙醇的产量达到最大,而在4MPa的压力条件下乙醇的产量几乎为零。针对这种情况,采取了加大接种量浓度为原来的4-6倍,乙醇的产量有一定程度的提高,但当压力达到临界点以上时,乙醇的产量也只有常压发酵的6%左右。对各种不同压力条件下处理后菌的存活率分析发现在1MPa时有部分菌失活,到6MPa时菌几乎全部失活,对这些样品常压培养24h后,显微镜测量发现菌又恢复常压发酵时的存活率。
    在不同的压力条件下,对发酵液进行短时间30分钟的高压处理后进行常压发酵24h其乙醇产量接近常压发酵的产量。在相同条件下同时对超临界压力(7.5MPa)下不同pH发酵液的乙醇产量进行研究发现其产量与常压发酵产量(4.82%)相差很小,基本与初始pH值无关。
    扫描电镜、原子力显微镜及视差扫描量热分析仪分别对常压和高压(1、6、8MPa)条件下处理的酵母菌的结构进行了分析。扫描电镜是对菌细胞的表面结构进行分析的,其结果非常明显:常压的菌细胞非常饱满、表面光滑并呈圆形或椭圆形,随着压力的升高,菌细胞表面逐渐变得粗糙并且形状变得细长,到8MPa压力的处理条件时,菌细胞表面出现了明显的褶皱,并且有少量菌发生破裂。原子力显微镜只是对常压发酵后菌的结构进行了检测,其结果表现为三维的立体结构与二维的平面信息分析图相结合,为以后的研究提供了一个新的视角。热分析仪分别对这四种条件下得到的菌进行了分析,发现高压处理后菌的内部结构发生了明显的变化,对结果进行初步分析认为细胞膜、蛋白质、及细胞内的脂类等物质发生了变性。
Compressed or supercritical fluids are excellent extraction solvents. They havegot wide applications in food processing and storage, medicine making, as well asbiomaterial processing. As an environmentally benign solvent, supercritical carbondioxide possesses many advantages due to its low toxicity, nonflammability, highavailability and ambient critical temperature. It could be used as an alternative toreplace traditional solvents in the extraction of many fermentation products.
    High-pressure carbon dioxide has the disadvantage effect on the ethanolproduction. With the pressure increase the ethanol concentration decreased veryquickly. At 1MPa pressure, when the pH value is 8 the ethanol concentration is thelargest. And when using the common inoculation amount (10% v/v) of yeasts, theethanol concentration is almost zero at 4MPa pressure. In order to solve this problem,the larger inoculation amount (4-6 times concentration of the common inoculationamount) was used. The ethanol production has been raised in some extent, but abovethe supercritical pressure the ethanol conenntration is also very low, only about 6% ofthat at the atmospheric pressure fermentation. The viability of yeast cells underdifferent pressure conditions was also investigated. We found that there were a part ofcells inactivated under 1MPa pressure disposed, but almost all of the cells inactivatedunder a higher pressure of 6MPa condition, and when the samples was cultivated for24h under atmospheric pressure nearly all of the inactivated cells became activated.
    The ethanol production under different pressure conditions, 30 min short timedisposed and to ferment under atmospheric pressure for 24h is nearly equal to theconcentration of atmospheric fermentation. On the same disposed time, under asupercritical pressure (7.5MPa), we found that the ethanol concentration is also nearlyequal to the atmospheric fermentation and almost no concern to the pH value.
    We also use the SEM (Scanning electron microscopy) AFM (atomic forcemicroscopy) and DSC (differential scanning calorimetry) to evaluate the structurechange of Saccharomyces cerevisiae cells in ethanol fermentation broth underatmospheric, 1, 6, and 8MPa pressure environment. SEM was used to detect thesurface changes of the yeast cells, and the results revealed that the cells in theatmospheric fermentation broth were smooth and full and cells figure were almostround and ellipse. But the coarseness and wrinkle formation on the cell surface and
    became severe with pressure increase, when the pressure was 8MPa, this becamemore severe and there were a little amount of cells broken. AFM was used to detectthe structure changes of yeast cells in the atmospheric pressure fermentation broth, theresults represented a new way: the three-dimensional stereograph combined with theplanar ichnography of signal analysis. It gave us a new perspective for study of cellsstructure. DSC was used to evaluate the inner substance changes of yeast cells in thefour different fermentation broths, the results were analyzed, and it could beconcluded that cells membrane, protein, and the lipid in the cells had obviousdenaturation.
引文
[1] Website of American Coalition for Ethanol at http://www.ethanol.org/
    [2] Wilson R C. Upstream and downstream processing. New York: Wiley and Sons, 1986
    [3] Serra A, Pock M, Sola C. A survey of separation system for fermentation ethanol recovery. Process Biochemistry, 1987, 22(5): 154~158
    [4] Kuk M S, Montagna J C. Solubility of oxygenated hydrocarbons in supercritical carbon dioxide [A]. In: Paulaitis M E, Penninger J M L, Gray R D, et al. Chemical engineering at supercritical fluids conditions [M]. Ann Arbor, Michigan: Ann Arbor Science, 1983
    [5] 张镜澄. 超临界流体萃取. 北京: 化学工业出版社, 2000.80
    [6] Maiorella B L, Blanch H W, Wilke C R. Eeconomic evaluation of alternative ethanol fermentation processes. Biotech Bioeng, 1984, 26(9): 1003~1025
    [7] Holzberg I, Finn R K, Steinkraus K H. A kinetic study of the alcoholic fermentation of grape juice. Biotech Bioeng, 1967, 9(3): 413~427
    [8] Luong J H. Kinetics of ethanol inhibition in alcohol fermentation. Biotech Bioeng, 1985, 27(3): 280~285
    [9] Maiorella B, Wilke C R, Blanch H W. Alcohol production and recovery. Adv Biochem Eng, 1981, 20(1): 43~92
    [10] Minier M, Goma G, Ethanol production by extractive fermentation. Biotech Bioeng, 1982, 24(7): 1565~1579
    [11] Cartón A, Benito G G, Rey J A, et al. Selection of Adsorbents to be used in an Ethanol Fermentation Process. Adsorption Isotherms and Kinetics. Bioresource Technol, 1998, 66(1): 75~78
    [12] Pitt Jr W W, Haag G L, Lee D D. Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotech Bioeng, 1983, 25(1): 123~131
    [13] Henkel Kommanditgesellschaft auf Aktien, Degussa Aktiengesellschaft. Process for manufacture of quaternary ammonium compounds [P]. US 4492802, 1985-01-08
    [14] Kyung R G, Gerhardt P. Continuous production of ethanol by yeast immobilized in a membrane-contained fermentor. Biotech Bioeng, 1984, 26(3): 252~256
    [15] Kargupta K, Datta S, Sangal S K. Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochem Eng J, 1998, 1(1): 31~37
    [16] Nomura M, Bin T, Nakao Sin-ichi. Selective ethanol extraction from fermentation broth using a silicalite membrane. Separation Purification Technology, 2002, 27(1): 59~66
    [17] Bothun G D, Knutson B L, Strobel H J, et al. Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. J Supercrit Fluids, 2003, 25(2): 119~134
    [18] 肖建平,范崇政,超临界流体技术研究进展,化学进展, 2001,13(2):94~101
    [19] Baiker A. Supercritical Fluids in heterogeneous catalysis. Chem. Rev., 1999, 99: 453~473
    [20] 刘丽丽,超临界流体在多孔膜中的扩散:[硕士学位论文],天津,天津大学,2004
    [21] 姜文选,郭继志,超临界流体技术的研究和应用,石油化工高等学校学报, 2001,14(2):15~20
    [22] 王洛春,仇汝臣等,超临界萃取技术的应用研究进展,化工时刊 , 2003,17(1):9~11
    [23] 魏勇,刘学武等,超临界萃取的研究及在医药工业中的应用,化学工业与工程, 2002,19(5):401~404
    [24] Roger M S, Supercritical fluids in separation science -the dreams, the reality and the future, J. Chrom.A, 1999,856(1-2): 83~115
    [25] 朱自强,超临界流体技术-原理和应用,北京:化学工业出版社,2000
    [26] 楼芝英,严新焕等,超临界流体中的催化反应,化学通报,2001,64(9):569~572
    [27] 王东辉,程代云,史喜成,等. 环境友好的超临界多相催化反应研究进展. 现代化工, 2001,21(11):16~20
    [28] 蔡信之,黄君红,微生物学,北京:高等教育出版社,2002
    [29] 周敬宜,酒精生产技术问答,四川:四川科学技术出版社,1986
    [30] 陈士怡,徐洪基,酵母遗传学,北京:科学出版社,1989
    [31] A.N. 格拉泽,二介堂弘,微生物生物技术,北京:科学出版社,2002
    [32] 章克昌,酒精与蒸馏酒工艺学,北京:中国轻工业出版社,2002
    [33] Mesiano A J, Beckman E J, Russell A J. Supercritical biocatalysis. Chem. Rev., 1999, 99: 623~633
    [34] Nakamura K. Biochemical reactions in supercritical fluids. Trends Biotechnol., 1990, 8: 288~292
    [35] Russell A J, Beckman E J, Chaudhary A K. Studying enzyme activity in supercritical fluids. CHEMTECH, 1994, 3: 33~37
    [36] 刘宏军,超临界二氧化碳中微生物存活率和生理活性的研究:[硕士学位论文],天津,天津大学,2002
    [37] Thibault J, LeDuy A, Cote F. Production of ethanol by Saccharomyces cerevisiae under high-pressure condition. Biotech Bioeng, 1987, 30(1): 74~80
    [38] L'Italien Y, Thibault J, LeDuy A. Improvement of ethanol fermentation under hyperbaric conditions. Biotech Bioeng, 1989, 33(4): 471~476
    [39] Onken U. [J]. Batch and continuous cultivation of Pseudomonas fluorescens at increased pressure. Biotech Bioeng, 1990, 35(10): 983~989
    [40] Isenschmid A, Marison I W, von Stockar U. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. J Biotechnol, 1995, 39(3): 229~237
    [41] Knutson B L, Strobel H J, Nokes S E, et al. Effect of pressurized solvents on ethanol production by the thermophilic bacterium Clostridium thermocellum. J Supercrit Fluids, 1999, 16(12): 149~156
    [42] Fabre C E, Condoret J-S, Marty A. Extractive fermentation of aroma with supercritical CO2. Biotech Bioeng, 1999, 64(4): 392~400
    [43] Berberich J A, Knutson B L, Strobel H J, et al. Product selectivity in Clostridium thermocellum in the presence of compressed solvents. Ind Eng Chem Res, 2000, 39(2): 4500~4505
    [44] Berberich J A, Knutson B L, Strobel H J, et al. Toxicity effects of compressed and supercritical solvents on thermophilic microbial metabolism. Biotech Bioeng, 2000, 70(5): 491~497
    [45] Matsuda Tomoko, Harada Tadao, Nakamura Kaoru. Alcohol dehydrogenase is active in supercritical carbon dioxide. Chem Commun, 2000, (15): 1367~1368
    [46] Zhang B Q, Liu X F, Gan Y R, et al. Viability and activity of microorganisms in supercritical CO2. 化工学报, 2003, 54(5): 713~715
    [47] Zhang B Q, Liu X F, Gan Y R. Viability and activity of microorganisms in pressurized and supercritical carbon dioxide. Stud Surf Sci Catal, 2004, 153:469~474
    [48] Dixon N M, Kell D B. The inhibition by CO2 of the growth and metabolism of micro-organisms. J Appl Bacteriol, 1989, 67(2): 109~136
    [49] 元英进,刘明言,董岸杰,中药现代化生产关键技术,北京:化学工业出版社现代生物技术与医药科技出版中心,2002
    [50] Spilimbergo S, Bertucco A. Non-thermal bacterial inactivation with dense CO2. Biotech Bioeng, 2003, 84(6): 627-638
    [51] Erkmen O. Kinetic analysis of Listeria monocytogenes inactivation by high pressure carbon dioxide. J Food Eng, 2001, 47(1): 7~10
    [52] Erkmen O, Karaman H. Kinetics studies on the high pressure carbon dioxide inactivation of Salmonella typhimurium. J Food Eng, 2001, 50(1): 25~28
    [53] Spilimbergo S, Elvassore N, Bertucco A. Microbial inactivation by high-pressure. J Supercrit Fluids, 2002, 22(1): 55~63
    [54] Shimoda M, Kago H, Kojima N, et al. Accelerated Death Kinetics of Aspergillus niger Spores under High-Pressure Carbonation. Appl Environ Microbiol, 2002, 68(8):4162~4167
    [55] Thom S R and Marquis R E. Microbial growth modification by compressed gases and hydrostatic pressure. Appl. Environ. Microbiol, 1984, 47(4):780~787
    [56] Inomata H, Arai K, Ohba S, et al. Measurement and prediction of phase equilibria for the CO2-Ethanol-water system. Fluid Phase Equilibra, 1989, 53(1): 23~30
    [57] Hirohama S, Takatsuka T, Migamoto S, et al. Measurement and correlation of phase equilibria for the carbon dioxide-ethanol-water system. Chem Eng Jpn, 1993, 26: 408~415
    [58] Gilbert M L, Paulaitis M E, Gas-liquid equilibrium for ethanol-water-carbon dioxide mixtures at elevated pressures. J Chem Eng Data, 1986, 31(3): 296~298
    [59] Brignole E A, Andersen P M, Fredenslund A. Supercritical fluid extraction of alcohols from water. Ind Eng Chem Res, 1987, 26(2): 254~261
    [60] Yao S, Guan Y, Zhu Z. Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressure. Fluid Phase Equilibria, 1994, 99(15): 249~259
    [61] Gros H P, Diaz S, Brignole E A. Near-critical separation of aqueous azeotropic mixtures: process synthesis and optimization. J Supercrit Fluids, 1998, 12(1): 69~84
    [62] Güven? A, Mehmetogluü, ?alimili A. Supercritical CO2 extraction of ethanol from fermentation broth in a semicontinuous system. J Supercrit Fluids, 1998, 13(1-3): 325~329
    [63] Güven? A, MehmetoDlu ü, ?alimili A. Supercritical CO2 extraction of ethanol. Turkish Journal of Chemistry, 1999, 23(3): 285~291
    [64] Jin C K, Chiang H L, Wang S S. Steady state analysis of the enhancement in ethanol productivity of a continuous fermentation process employing a protein-phospholipid complex as a protecting agent. Enz Microbiol Technol, 1981, 3(3): 249~257
    [65] Lin H-M, Cao N-J, Chen L-F. Antimicrobial effect of pressurized carbon-dioxide on Listeria monocytogenes. J Food Sci, 1994, 59(3): 657~659
    [66] Fumiyoshi A, Koki H. The biotechnological potential of piezophiles. Trends in Biotechnology, 2001, 19(3): 102~108
    [67] 张宝泉, 刘丽丽, 林跃生. 超临界流体和膜过程耦合技术的研究进展. 现代化工, 2003, 23(5): 9~12
    [68] http://www.mhez.mhedu.sh.cn 新能源主页
    [69] 史戈峰,莫湘筠,酒精发酵过程中酿酒酵母海藻糖代谢的研究.食品与发酵工业, 1999, 25(5), 15~18
    [70] 天津大学生物化学教研室编,生物化学实验,天津:天津大学出版社,2004
    [71] R. P. Jones and P. F. Greenfield. Effect of carbon dioxide on yeast growth and fermentation. Enzyme microb. Technol, 1982,4(4): 210~223
    [72] 赵南明,周海梦著,生物物理学,北京:高等教育出版社,2000
    [73] 康莲娣著,生物电子显微技术,合肥:中国科学技术大学出版社,2003
    [74] 邱文彦,儿童口腔内变形链球菌的感染和变形链球菌的原子力显微镜探测:[博士学位论文],吉林,吉林大学,2001
    [75] Rugar D, Hansma P. Atomic force microscopy. Physics Today. 1990(4): 23~30
    [76] Meng Y, Albena I. Encapsulated cells: an atomic force microscopy study. Biomaterials. 2004(25): 3655~3662
    [77] Fritsche J, Gunst S, Golusda E, et al. Surface analysis of CdTe thin film solar cells. Thin Solid Films. 2001(387): 161~164
    [78] Kajal B, Tapan G, Radhaballav B, et al. Atomic Force Microscopic studies on Erythrocytes From an Evolutionary Perspective. The Anatomical Recorder Part A. 2004(290A): 671~675
    [79] Gad M, Arimichi I, Atsusphi I. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy cell. Cell Biology International. 1997(21): 697~706
    [80] Heng C, Jun H L, Wan Q L, et al. Purification of the recombinant hepatitis B virus core antigen (rHBcAg) produced in the yeast Saccharomyces cerevisiae and comparative observation of its particles by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Micron. 2004(35): 311~318
    [81] Robert N, Paul L. Imaging the surface details of red blood cells with atomic force microscopy. Surface and Interface Analysis. 2002(33):118~121
    [82] Dage L, Chen W, Zhang L, et al. Visualization of the intermediates in a uniform DNA condensation system by tapping mode atomic force microscopy?. Surface and Interface Analysis. 2001(32):15~19
    [83] Andrew E P, Sadaf S, Edith B G, et al. Local nanomechanical motion of the cell wall of saccharomyces cerevisiae. Science, 2004(35): 1147~1150
    [84] Dhadwar S S, Bemman T, Anderson W A, et al. Yeast cell adhesion on oligopeptide modified surface. Biotechnology advance. 2003(21):395~406
    [85] 张益,陈圣福,欧阳振乾等. 单个 DNA 分子的拉直操纵和成像.科学通报,2000(45): 491~494
    [86] 李余增,热分析,北京:清华大学出版社,1987
    [87] 刘京萍,李金,叶磊等,DSC 法鉴别细菌初探,北京联合大学学报,1995, 9(2): 59~62
    [88] 杨道武,谢昌礼,郭煜等,差示扫描量热法(DSC)鉴别细菌的研究,长沙水电师范自然科学学报,1993, 8(1): 65~69
    [89] Kaletun? G,Lee J, Alpas H, et al, Evaluation of structure changes induced by high hydrostatic pressure in Leuconostoc mesenteroides, Applied and Environmental Microbiology, 2004, 70(2): 1116~1122
    [90] Alpasa H, Leeb J, Bozoglua F, et al. Evaluation of high hydrostatic pressure sensitivity of Staphylococcus aureus and Escherichia coli O157:H7 by differential scanning calorimetry, International Journal of Food Microbiology, 2003, 87: 229~237
    [91] Bayles D O, Tunick M H, Foglia T A, et al. Cold Shock and Its Effect on Ribosomes and Thermal Tolerance in Listeria monocytogenes, Applied and Environmental Microbiology, 2000, 66(10): 4351~4355
    [92] Niven G W, Miles C A, Mackey B M, The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry, Microbiology, 1999, 145: 419~425
    [93] Farkas C M, Mészáros L, Reichart O, et al. Thermal denaturation of bacterial cells examined by differential scanning calorimetry, Journal of Thermal analysis and calorimetry, 1999, 57: 409~414
    [94] Lee J, Kaletun? G, Evaluation of the Heat Inactivation of Escherichia coli and Lactobacillus plantarum by Differential Scanning Calorimetry, Applied and Environmental Microbiology, 2002, 68(11): 5379~5386
    [95] Fonsecta F, Obert J P, Marin B M, State diagrams and sorption isotherms of bacterial suspensions and fermented medium, Thermochimica Acta, 2001, 366: 167~182
    [96] Lee J, Kaletun? G, Calorimetric determination of inactivation parameters of micro-organisms, Journal of Applied Microbiology, 2002, 93: 178~189
    [97] Mrevlishvili G M, Sottomayor M J, Ribeiro M A, et al, Differential Scanning Calorimetry and hydrodynamic study of bacterial viruses effect of solution conditions, Journal of Thermal Analysis and Calorimetry, 2001, 66: 103~111
    [98] 布朗 G H, 沃尔肯 J J 著,吴熙载,何海平译,液晶与生物结构,北京:科学出版社,1983:61-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700