EBV相关胃癌抑癌基因甲基化状态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EB病毒(Epstein-Barr virus, EBV)是重要的DNA肿瘤病毒,与人类多种恶性肿瘤密切相关。DNA甲基化是目前最为前沿及研究最为深入的表观遗传学机制,其中抑癌基因(tumor suppressor genes, TSGs)启动子高度甲基化被认为是除突变和缺失以外抑癌基因功能失活的关键机制。
     目的筛选鉴定EBV阳性胃癌细胞系中由于甲基化而沉默的抑癌基因。
     方法选取EBV阳性(GT38、PT和SNU719)和阴性(SGC7901)胃癌细胞系,用5-氮杂-2'-脱氧胞苷(5-Aza-CdR)处理,然后采用Agilent人类全基因组表达谱芯片(4x44K)检测处理前后基因表达水平。采用荧光实时定量PCR法(Real-time quantitative PCR, real-time qPCR)验证基因芯片结果,甲基化特异性PCR (Methylation-Specific PCR,MSP)及亚硫酸氢盐基因组测序法(Bisulfite genomic sequencing, BGS)检测部分基因启动子区域CpG岛甲基化情况。
     结果①芯片检测结果显示,5-Aza-CdR处理后表达显著上调的基因:GT38细胞系860条;PT细胞系804条;SNU719细胞系1099条;SGC7901细胞系5924条。表达显著下调的基因:GT38细胞系679条;PT细胞系667条;SNU719细胞系667条;SGC7901细胞系5882条。②三种EBV阳性胃癌细胞系(GT38、PT和SNU719)中筛选出42条共表达上调基因,与SGC7901处理后表达上调基因比较,筛选出差异表达基因19条。③采用real-time qPCR检测细胞5-Aza-CdR处理前后差异表达基因(H19、LOXL1、ARMCX2、LXN、CDH3和MMP7)的表达水平,结果与基因芯片分析结果基本一致。④MSP和BGS法检测结果显示在EBV阳性细胞系中LOXL1基因启动子均存在不同程度的甲基化,且在GT38和PT中呈完全甲基化,SGC7901和HGC-27中未发生甲基化,提示该基因为因甲基化而沉默的候选抑癌基因。⑤EBVaGC和EBVnGC组织中LOXL1基因启动子甲基化状态有差别,EBVaGC组织中其甲基化程度明显高于EBVnGC。
     结论①表达谱芯片初步筛选出19条EBV诱导甲基化而表达下调的基因,其基因调控区甲基化导致表达下调,甲基化转移酶抑制剂可激活这些基因表达,它们在EBVaGC发病中可能具有重要作用。②候选抑癌基因LOXL1启动子区均呈高甲基化状态,表明EBV是导致LOXL1基因调控区域甲基化的重要原因;启动子CpG岛发生异常甲基化进而引起抑癌基因失活可能是EBV参与EBVaGC发生的一种机制。
Epstein-Barr virus (EBV) is an important DNA virus, which has a close relationship with many kinds of human malignant tumor. DNA methylation is the most cutting-edge and the most studied epigenetic mechanism. Besides mutation and deletion, the hypermethylation of tumor suppressor gene promoter is considered the key mechanism of inactivation in the tumor.
     Objective To identify the methylation silenced tumor suppressor genes in EBVaGC.
     Methods Agilent Human Whole Genome Expression Profiling (4×44K) chips were used to compare the changes in gene expression profiles following the treatment of 5-Aza-CdR in EBVaGC (PT、GT38 and SNU719) and EBVnGC (SGC7901) cell lines. real-time qPCR was used to validate the results of microarray, MSP and BGS was adopted to detect the methylation levels of gene promoters.
     Results①T he differential expression genes were identified by microarray analysis, up-regulated genes:GT38,860 genes; PT,804 genes; SNU719,1099 genes; SGC7901,5924 genes. Down-regulated genes:GT38,679 genes; PT,667 genes; SNU719,667 genes; SGC7901,5882 genes.②A total of 42 up-regulated genes were found in three EBVaGC (PT, GT38 and SNU719) cell lines. The functions of these genes were involved in tumor suppression, immunity, cell adhesion, cell cycle, cell proliferation, apoptosis, signal transduction and etc. Compared to the EBVnGC cell lines,19 differential genes were found in these 42 selected genes.③The expression levels of 6 differential genes (H19, LOXL1, ARMCX2, LXN, CDH3 and MMP7) in 5-Aza-CdR treated cells were confirmed by real-time qPCR, which were consistent with the results of microarray.④The methylation status of LOXL1 was detected by MSP and BGS in cell lines. The results showed that the promoter of LOXL1 was hypermethylation in different degrees, suggesting that this gene as candidate methylation silenced tumor suppressor gene.⑤The methylation rates of LOXL1 in EBVaGC were significantly higher than those in EBVnGC.
     Conclusion①The expression chip screens 19 genes silenced by methylation and reactivated by 5-Aza-CdR in EBVaGC. These genes may play an important role in the pathogenesis of EBVaGC.②The promoter methylation of LOXL1 is an important regulation mechanism of gene expression. It suggested LOXL-1 is a methylation silenced tumor suppressor gene in EBVaGC. The hypermethylation of tumor suppressor gene promoter induced by EBV may play an important role in the pathogenesis of EBVaGC
引文
1. Wu MS, Shun CT, Wu CC, Hsu TY, Lin MT, Chang MC, Wang HP, Lin JT. Epstein-Barr virus-associated gastric carcinomas:relation to H. pylori infection and genetic alterations. Gastroenterology,2000; 118:1031-1038.
    2. Akiba S, Koriyama C, Herrera-Goepfert R, Eizuru Y. Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci,2008; 99:195-201.
    3. Mladenova I, Pellicano R. Infectious agents and gastric tumours. An increasing role for Epstein-Barr virus. Panminerva Med,2003; 45:183-188.
    4.王云,罗兵,赵鹏,黄葆华.EB病毒相关胃癌组织中病毒基因表达的研究.癌症,2004;23:782-787。
    5. Esteller M. Epigenetics in cancer. N Engl J Med,2008; 358:1148-1159.
    6. Flint SJ, Enquist LW, Krug RM, Raceniello VR, Skalka AM. Principles of virology:Molecular Biology, Pathogenesis, and Control.2000, ASM Press, Washington.
    7. Li H, Minarovits J. Host cell-dependent expression of latent Epstein-Barr virus genomes:regulation by DNA methylation. Adv Cancer Res,2003; 89:133-156.
    8. Tao Q, Robertson KD. Stealth technology:how Epstein-Ban-virus utilizes DNA methylation to cloak itself from immune detection. Clin Immunol,2003; 109:53-63.
    9. Uozaki H, Fukayama M. Epstein-Barr virus and gastric carcinoma-viral carcinogenesis through epigenetic mechanisms. Int J Clin Exp Pathol,2008; 1:198-216.
    10.Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest,2008; 88:161-170.
    11.Kang GH, Lee S, Kim WH, Lee HY, Kim JC, Rhyu MG, Ro JY. Epstein-Barr virus positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methlator phenotype-positive gastric carcinoma. Am J Pathol,2002; 160:787-794.
    12.Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res,2006; 12:2995-3002.
    13. Sun J, Chen Z, Zhu T, Yu J, Ma K, Zhang H, He Y, Luo X, Zhu J. Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in mainland China. J Cancer Res Clin Oncol,2009; 135(12):1717-27.
    14.Fukayama M, Hino R, Uozaki H. Epstein-Barr virus and gastric carcinoma:virus-host interactions leading to carcinoma. Cancer Sci,2008; 99:1726-1733.
    15.zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric carcinomas:expression of the transforming BARF1 gene. Cancer Res,2000; 60:2745-2748.
    16.Esteller M. Epigenetics in cancer. N Engl J Med,2008; 358:1148-1159.
    17.Kagan HM, Li W. Lysyl oxidase:properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem,2003; 88(4):660-672.
    18.Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, Csiszar K, Hendrix MJ, Kirschmann DA. Lysal oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res,2005; 65(24):11429-11436.
    19.Bollinger JA, Brown DE, Dooley DM. The formation of lysinetyrosylquinone (LTQ) is a self-processing reaction.Expression and characterization of a Drosophila lysyl oxidase. Biochemistry,2005; 44(35):11708-11714.
    20.Wu G, Guo Z, Chang X, Kim MS, Nagpal JK, Liu J, Maki JM, Kivirikko KI, Ethier SP, Trink B, Sidransky D. LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res,2007; 67(9):4123-9.
    21.Bell A, Bell D, Weber RS, El-Naggar AK. CpG Island Methylation Profiling in Human Salivary Gland Adenoid Cystic Carcinoma. Cancer,2011, [Epub ahead of print].
    22.Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rew Cancer,2005; 5:223-231.
    23. Robertson KD. DNA methylation and chromatin-unraveling the tangled web. Oncogene,2002; 21:5361-5379.
    24.Li H, Minarovits J. Host cell-dependent expression of latent Epstein-Barr virus genomes:regulation by DNA methylation. Adv Cancer Res,2003; 89:133-156.
    25.Tao Q, Robertson KD. Stealth technology:how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection. Clin Immunol,2003; 109:53-63.
    26.Uozaki H, Fukayama M. Epstein-Barr virus and gastric carcinoma-viral carcinogenesis through epigenetic mechanisms. Int J Clin Exp Pathol,2008; 1:198-216.
    27.Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene,2006; 25:1070-1080.
    28.Seo SY, Kim EO, Jang KL. Epstein-Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-beta 2 expression via DNA methylation. Cancer Lett,2008; 270:66-76.
    29.Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y, Chen CL, Tsao SW, Tse KP, Yu JS, Chang YS. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH(2)-terminal kinase signaling. Cancer Res,2006; 66:11668-11676.
    30.Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res,2009; 69(7):2766-74.
    31.Hu L, Troyanovsky B, Zhang X, Trivedi P, Ernberg I, Klein G. Differences in the immunogenicity of latent membrane protein 1(LMP1) encoded by Epstein-Barr virus genomes derived from LMP1-positie and-negative nasopharyngeal carcinoma. Cancer Res,2000; 60(19):5589-5593.
    32.Fruehling S, Longnecker R. The immunoreceptor tryosinebased activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology,1997; 235(2):241-251.
    33.Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA, 1994; 91(2):772-776.
    1. Esteller M. Epigenetics in cancer. N Engl J Med,2008; 358:1148-1159.
    2. Flint SJ, Enquist LW, Krug RM, Raceniello VR, Skalka AM. Principles of virology:Molecular Biology, Pathogenesis, and Control.2000, ASM Press, Washington.
    3. Dutton A, Woodman CB, Chukwuma MB, Last JI, Wei W, Vockerodt M, Baumforth KR, Flavell JR, Rowe M, Taylor AM, Young LS, Murray PG. Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood,2007; 109:2597-2603.
    4. Tao Q, Chan AT. Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments. Expert Rev Mol Med,2007; 9:1-24.
    5. Flanagan JM.. Host epigenetic modifications by oncogenic viruses. Br J Cancer,2007; 96:183-188.
    6. Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T, Fuks F. Viral oncoproteins target the DNA methyltransferases. Oncogene,2007; 26:1650-1655.
    7. Tsai CL, Li HP, Lu YJ, Hsueh C, Liang Y, Chen CL, Tsao SW, Tse KP, Yu JS, Chang YS. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH(2)-terminal kinase signaling. Cancer Res,2006; 66:11668-11676.
    8. Lee JO, Kwun HJ, Jung JK, Choi KH, Min DS, Jang KL. Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene,2005; 24:6617-6625.
    9. Wolf H, zur Hausen H, Becker V. EB viral genomes in epithelial nasopharyngealcarcinoma cells. Nat New Biol,1973; 244:245-247.
    10.Desgranges C, Wolf H, De-The G, Shanmugaratnam K, Cammoun N, Ellouz R, Klein G, Lennert K, Munoz N, Zur Hausen H. Nasopharyngeal carcinoma. X. Presence of Epstein-Barr genomes in separated epithelial cells of tumours in patients from ingapore, Tunisia and Kenya. Int J Cancer,1975; 16:7-15.
    11.刘振声,李宝民,刘产仿.EB病毒与促癌物协同作用诱发人鼻咽恶性淋巴瘤和未分化癌的研究.病毒学报,1996;12:1154.
    12.Niedobitek G, Agathanggelou A, Rowe M, Jones EL, Jones DB, Turyaguma P, Oryema J, Wright DH, Young LS. Heterogeneous expression of Epstein-Barr virus latent proteins in endemic Burkitt's lymphoma. Blood, 1995; 86:659-665.
    13.Ambinder RF, Robertson KD, Moore SM, Yang J. Epstein-Barr Virus and Hodgkin's disease. Semin Cancer Biol,1996; 7:217-226.
    14. Young L, Alfieri C, Hennessy K, Evans H, O'Hara C, Anderson KC, Ritz J, Shapiro RS, Rickinson A, Kieff E, Cohen JI. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med,1989; 321:1080-1085.
    15.Zhou XG, Hamilton-Dutoit SJ, Yan QH, Pallesen G. High frequency of Epstein-Barr virus in Chinese peripheral T-cell lymphoma. Histopathology,1994; 24:115-122.
    16.Raab-Traub N, Flynn K, Pearson G, Huang A, Levine P, Lanier A, Pagano J. The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer,1987; 39:25-29.
    17.Imai S, Koizumi S, Sugiura M, Tokunaga M, Uemura Y, Yamamoto N, Tanaka S, Sato E, Osato T. Gastric carcinoma:monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA,1994; 91:9131-9135.
    18.Ho FC, Srivastava G, Loke SL, Fu KH, Leung BP, Liang R, Choy D. Presence of Epstein-Barr virus DNA in nasal lymphomas of B and "T" cell type. Hematol Oncol,1990; 8:271-281.
    19.McCain KL, Leach CT, Jenson HB, Joshi W, Pollock BH, Parmley RT, Di Carlo FJ, Chadwick EG, Murphy SB. Association of Epstein-Barr virus with leiomyosarcomas in young people with AIDS. N Engl J Med, 1995; 332:12-18.
    20.Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rew Cancer,2005; 5:223-231.
    21.Robertson KD. DNA methylation and chromatin-unraveling the tangled web. Oncogene,2002; 21:5361-5379.
    22.Leonhardt H, Page AW, Weier H, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell,1992; 71:865-873.
    23.Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999; 99:247-257.
    24. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002; 3:415-428.
    25.Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med,2003; 349:2042-2054.
    26.Minarovits J. Epigenotypes of latent herpesvirus genomes. Curr Top Microbiol Immunol,2006; 310:61-80.
    27.Bellan C, Lazzi S, Hummel M, Palummo N, de Santi M, Amato T, Nyagol J, Sabattini E, Lazure T, Pileri SA, Raphael M, Stein H, Tosi P, Leoncini L. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBVpositive and EBV-negative Burkitt lymphomas. Blood,2005; 106:1031-6.
    28.Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Schwarzmann F, Wolf H, Minarovits J. EBV associated neoplasms:alternative pathogenetic pathways. Med Hypotheses 2004; 62:387-91.
    29.Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, Hansmann ML, Haralambieva E, Harder L, Hasenclever D, Kiihn M, Lenze D, Lichter P, Martin-Subero JI, Moller P, Muller-Hermelink HK, Ott G, Parwaresch RM, Pott C, Rosenwald A, Rosolowski M, Schwaenen C, Stiirzenhofecker B, Szczepanowski M, Trautmann H, Wacker HH, Spang R, Loeffler M, Trumper L, Stein H, Siebert R; Molecular Mechanisms in Malignant Lymphomas Network Project of the Deutsche Krebshilfe. Abiologic definition of Burkitt's lymphoma from transcriptional and geno micprofiling. N Engl J Med,2006; 354:2419-30.
    30.Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, Saglio G, Vitolo U, Pileri SA, Esteller M, Carbone A, Gaidano G. Aberrantpromoter methylation of multiple genes throughout the clinico-pathologicspectrum of B-cell neoplasia. Haematologica,2004; 89:154-164.
    31.Lindstrom MS, Wiman KG. Role of genetic and epigenetic changes in Burkittlymphoma. Semin Cancer Biol, 2002; 12:381-387.
    .32.Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res,1997; 57:837-841.
    33.Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wima KG. p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma. Blood,1998; 91:1680-1687
    34.Baur AS, Shaw P, Burri N, Delacretaz F, Bosman FT, Chaubert P. Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood,1999; 94:1773-1781
    35.Sanchez-Beato M, Saez AI, Navas IC, Algara P, Sol Mateo M, Villuendas R, Camacho F, Sanchez-Aguilera A, Sanchez E, Piris MA. Overall survival in aggressive B-cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27. Am J Pathol,2001; 159:205-213
    36.Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A, Said J, Tatsumi E, Koeffler HP. Lossof p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood,1999; 94:1113-1120.
    37.Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAPkinase CpG Island is a common alteration in B-cell malignancies. Blood,1999; 93:4347-4353.
    38.Doucet JP, Hussain A, Al-Rasheed M, Gaidano G, Gutierrez MI, Magrath I, Bhatia K. Differences in the expression of apoptotic proteins in Burkitt's lymphoma cell lines:potential models for screening apoptosis-inducing agents. Leuk Lymphoma,2004; 45:357-362.
    39.Gutierrez MI, Cherney B, Hussain A, Mostowski H, Tosato G, Magrath I, Bhatia K. Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis. Cancer Res, 1999; 59:696-703.
    40.Hussain A, Doucet JP, Gutierrez M, Ahmad M, Al-Hussein K, Capello D, Gaidano G, Bhatia K. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas apoptosis in Burkitfs lymphomas with loss of multiple pro-apoptotic proteins. Haematologica,2003; 88:167-175.
    41. Garrison SP, Jeffers JR, Yang C, Nilsson JA, Hall MA, Rehg JE, Yue W, Yu J, Zhang L, Onciu M, Sample JT, Cleveland JL, Zambetti GP. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol,2008; 28:5391-5402.
    42.Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V, Beltran E, Agirre X, Marugan I, Marin M, Rosenwald A, Sugimoto KJ, Wheat LM, Karran EL, Garcia JF, Sanchez L, Prosper F, Staudt LM, Pinkel D, Dyer MJ, Martinez-Climent JA. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood,2007; 109:271-280.
    43.Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G, Issa JP, Hinoda Y, Tokino T, Imai K. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer,2005; 92:1165-1172.
    44.Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ. Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog,2009; 5(6):e1000492.
    45. Sinclair AJ, Palmero I, Holder A, Peters G, Farrell PJ. Expression of cyclin D2 in Epstein-Barr virus-positive Burkirt's lymphoma cell lines is related to methylation status of the gene. J Virol,1995; 69:1292-1295.
    46. Li Y, Nagai H, Ohno T, Yuge M, Hatano S, Ito E, Mori N, Saito H, Kinoshita T. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood,2002; 100:2572-2577.
    47.Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q. The stressresponsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res,2005; 11:6442-6449.
    48.Syed N, Smith P, Sullivan A, Spender LC, Dyer M, Karran L, O'Nions J, Allday M, Hoffmann I, Crawford D, Griffin B, Farrell PJ, Crook T. Transcriptional silencing of Polo-like Kinase 2 (Snk/Plk2) is a frequent event in B cell malignancies. Blood,2006; 107:250-256.
    49.Hussain A, Gutierrez MI, Timson G, Siraj AK, Deambrogi C, Al-Rasheed M, Gaidano G, Magrath I, Bhatia K., Frequent silencing of fragile histidine triad gene (FHIT) in Burkitt's lymphoma is associated with aberrant hypermethylation. Genes Chromosomes Cancer,2004; 41:321-329.
    50.Ying J, Li H, Cui Y, Wong AH, Langford C, Tao Q. Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia,2006; 20:1173-1175.
    51.Ying J, Li H, Chen YW, Srivastava G, Gao Z, Tao Q. WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood,2007; 110:4130-4132.
    52.Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene,2006; 25:1070-1080.
    53.Ying J, Gao Z, Li H, Srivastava G, Murray PG, Goh HK, Lim CY, Wang Y, Marafioti T, Mason DY, Ambinder RF, Chan AT, Tao Q. Frequent epigenetic silencing of protocadherin 10 by methylation in multiple haematologic malignancies. Br J Haematol,2007; 136:829-832.
    54.Ying J, Li H, Murray P, Gao Z, Chen YW, Wang Y, Lee KY, Chan AT, Ambinder RF, Srivastava G, Tao Q. Tumor-specific methylation of the 8p22 tumor suppressor gene DLC1 is an epigenetic biomarker for Hodgkin, nasal NK/T-cell and other types of lymphomas. Epigenetics,2007; 2:15-21.
    55.Kuppers R. Molecular biology of Hodgkin's lymphoma. Adv Cancer Res,2002; 84:277-312.
    56.Hansmann M L, W illenbrock K. WHO classification of Hodgkin's lymphoma and its molecular pathological relevance. Pathology,2002; 23:207-218.
    57.Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK, Tao Q, Murray PG, Diehl V, Teitell MA, Wall R. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphomaderived and primary efusion lymphoma cell lines. JMB,2005; 350:631-640.
    58.Valsami S, Pappa V, Rontogianni D, Kontsioti F, Papageorgiou E, Dervenoulas J, Karmiris T, Papageorgiou S, Harhalakis N, Xiros N, Nikiforakis E, Economopoulos T. A clinicopathological study of B-cell differentiation markers and transcription factors in classical Hodgkin's lymphoma:a potential prognostic role of MUM1/IRF4. Haematologica,2007; 92:1343-1350.
    59.Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci USA,2002; 99:10084-10089.
    60.Garcia MJ, Martinez-Delgado B, Cebrian A, Martinez A, Benitez J, Rivas C. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin's and CD30-Positive non-Hodgkin's lymphomas. Am J Pathol,2002; 161:1007-1013.
    61. Sanchez-Aguilera A, Delgado J, Camacho FI, Sanchez-Beato M, Sanchez L, Montalban C, Fresno MF, Martin C, Piris MA, Garcia JF. Silencing of the p18INK4c gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood,2004; 103:2351-2357.
    62. Murray PG, Qiu GH, Fu L, Waites ER, Srivastava G, Heys D, Agathanggelou A, Latif F, Grundy RG, Mann JR, Starczynski J, Crocker J, Parkes SE, Ambinder RF, Young LS, Tao Q. Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin's lymphoma. Oncogene,2004; 23:1326-1331.
    63.Kato N, Fujimoto H, Yoda A, Oishi I, Matsumura N, Kondo T, Tsukada J, Tanaka Y, Imamura M, Minami Y Regulation of Chk2 gene expression in lymphoid malignancies:involvement of epigenetic mechanisms in Hodgkin's lymphoma cell lines. Cell Death Differ,2004; 11:153-161.
    64.Shiramizu B, Mick P. Epigenetic changes in the DAP-kinase CpG island in pediatric lymphoma. Med Pediatr Oncol,2003; 41:527-531.
    65.Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell,2004; 5:423-428.
    66.Li X, Wang E, Zhao YD, Ren JQ, Jin P, Yao KT, Marincola FM. Chromosomal imbalances in nasopharyngeal carcinoma:ameta-analysis of comparative genomic hybridization results. J Transl Med,2006; 4:4.
    67. Chan AS, To KF, Lo KW, Mak KF, Pak W, Chiu B, Tse GM, Ding M, Li X, Lee JC, Huang DP. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res,2000; 60:5365-5370.
    68.Chan AS, To KF, Lo KW, Ding M, Li X, Johnson P, Huang DP. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer,2002; 102:300-303.
    69.Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med,1995; 333:693-698.
    70. Cheung ST, Huang DP, Hui AB, Lo KW, Ko CW, Tsang YS, Wong N, Whitney BM, Lee JC. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer,1999; 83:121-126.
    71. Fung LF, Lo AK, YuenPW, Liu Y,Wang XH, Tsao SW. Differential gene expression in nasopharyngeal carcinoma cells. Life Sci,2000; 67:923-936.
    72. Xie L, Xu L, He Z, Zhou W, Wang L, Zhang L, Lan K, Ren C, Liu W, Yao K. Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array. J Cancer Res Clin Oncol,2000; 126:400-406.
    73.Sriuranpong V, Mutirangura A, Gillespie JW, Patel V, Amornphimoltham P, Molinolo AA, Kerekhanjanarong V, Supanakorn S, Supiyaphun P, Rangdaeng S, Voravud N, Gutkind JS. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin Cancer Res,2004; 10:4944-4958.
    74. Yang XY, Ren CP, Wang L, Li H, Jiang CJ, Zhang HB, Zhao M, Yao KT. Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol,2005; 27:215-223.
    75.Zhang SQ, Peng H, Song LY, Li XM, Jiang HY, Yao KT, Zhao T. Detection of KIAA1173 gene expression in nasopharyngeal carcinoma tissues and cell lines on tissue microarray. Ai Zheng,2005; 24:1322-1326.
    76.Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol,2007; 38:120-123
    77.Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res,2002; 8:131-137.
    78.Tsao SW, Liu Y, Wang X, Yuen PW, Leung SY, Yuen ST, Pan J, Nicholls JM, Cheung AL, Wong YC. The association of E-cadherin expression and the methylation status of the E-cadherin gene in nasopharyngeal carcinoma cells. Eur J Cancer,2003; 39:524-531.
    79.Zheng Z, Pan J, Chu B, Wong YC, Cheung AL, Tsao SW. Downregulation and abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma:close association with advanced disease stage and lymph node metastasis. Hum Pathol,1999; 30:458-466.
    80.Krishna SM, Kattoor J, Balaram P. Down regulation of adhesion protein Ecadherin in Epstein-Barr virus infected nasopharyngeal carcinomas. Cancer Biomark,2005; 1:271-277.
    81.Niemhom S, Kitazawa S, Kitazawa R, Maeda S, Leopairat J. Hypermethylation of epithelial-cadherin gene promoter is associated with Epstein-Barr virus in nasopharyngeal carcinoma. Cancer Detect Prev,2008; 32:127-134.
    82.Seo SY, Kim EO, Jang KL. Epstein-Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-beta2 expression via DNA methylation. Cancer Lett,2008; 270:66-76.
    83. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA,2007; 104:16164-16169.
    84. Peng D, Ren CP, Yi HM, Zhou L, Yang XY, Li H, Yao KT. Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai), 2006; 38:349-355.
    85. Ayadi W, Karray-Hakim H, Khabir A, Feki L, Charfi S, Boudawara T, Ghorbel A, Daoud J, Frikha M, Busson P, Hammami A. Aberrant methylation of p 16, DLEC1.BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res,2008; 28:2161-2167.
    86.Liu H, Zhang L, Niu Z, Zhou M, Peng C, Li X, Deng T, Shi L, Tan Y, Li G. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer,2008; 8:253.
    87.Cui Y, Ying Y, van Hasselt A, Ng KM, Yu J, Zhang Q, Jin J, Liu D, Rhim JS, Rha SY, Loyo M, Chan AT, Srivastava G, Tsao GS, Sellar GC, Sung JJ, Sidransky D, Tao Q. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation. PLoS ONE,2008; 3:2990.
    88. Jin H, Wang X, Ying J, Wong AH, Li H, Lee KY, Srivastava G, Chan AT, Yeo W, Ma BB, Putti TC, Lung ML, Shen ZY, Xu LY, Langford C, Tao Q. Epigenetic identification of ADAMTS18 as a novel 16q23.1 tumor suppressor frequently silenced in esophageal, nasopharyngeal and multiple other carcinomas. Oncogene, 2007; 26:7490-7498.
    89.Lung HL, Lo PH, Xie D, Apte SS, Cheung AK, Cheng Y, Law EW, Chua D, Zeng YX, Tsao SW, Stanbridge EJ, Lung ML. Characterization of a novel epigenetically-silenced, growth-suppressive gene, ADAMTS9, and its association with lymph node metastases in nasopharyngeal carcinoma. Int J Cancer,2008; 123:401-408.
    90. Yi HM, Li H, Peng D, Zhang HJ, Wang L, Zhao M, Yao KT, Ren CP. Genetic and epigenetic alterations of LTF at 3p21.3 in nasopharyngeal carcinoma. Oncol Res,2006; 16:261-272.
    91.Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, Yi W, Xiao L, Li X, Huang C, Cao L, Tang K, Li X, Shen S, Li G. Lactotransferrin:a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogenactivated protein kinase pathway. Int J Cancer,2008; 123:2065-2072.
    92.Lee KY, Geng H, Ng KM, Yu J, van Hasselt A, Cao Y, Zeng YX, Wong AH, Wang X, Ying J, Srivastava G, Lung ML, Wang LD, Kwok TT, Levi BZ, Chan AT, Sung JJ, Tao Q. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene,2008; 27:5267-5276.
    93.Lo KW, Tsang YS, Kwong J, To KF, Teo PM, Huang DP. Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma. Int J Cancer,2002; 98:651-655.
    94.Zhou L, Feng X, Shan W, Zhou W, Liu W, Wang L, Zhu B, Yi H, Yao K, Ren C. Epigenetic and genetic alterations of the EDNRB gene in nasopharyngeal carcinoma. Oncology,2007; 72:357-363.
    95. Kwong J, Lo KW, Chow LS, To KF, Choy KW, Chan FL, Mok SC, Huang DP. Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia,2005; 7:67-74.
    96. Kwong J, Lo KW, Chow LS, Chan FL, To KF, Huang DP. Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int J Cancer,2005; 113:386-392.
    97.Lin YC, You L, Xu Z, He B, Mikami I, Thung E, Chou J, Kuchenbecker K, Kim J, Raz D, Yang CT, Chen JK, Jablons DM. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun,2006; 341:635-640.
    98.Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, Ng KM, Wang Y, Lee KY, Tsao GS, Zhong S, Robertson KD, Rha SY, Chan AT, Tao Q. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest,2007; 87:644-650.
    99. Jin H, Wang X, Ying J, Wong AH, Cui Y, Srivastava G, Shen ZY, Li EM, Zhang Q, Jin J, Kupzig S, Chan AT, Cullen PJ, Tao Q. Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc Natl Acad Sci USA,2007; 104:12353-12358.
    100. Shao L, Cui Y, Li H, Liu Y, Zhao H, Wang Y, Zhang Y, Ng KM, Han W, Ma D, Tao Q. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res,2007; 13:5756-5762.
    101. Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W, Tao Q, Yao K. Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia,2005; 7:809-815.
    102. Watanabe H, Enjoji M, hnai T. Gastric carcinoma with lymphold stroma:its morpbolodic characteristics and Prognoslic correlations. Cancer,1976; 38:232-243.
    103. Min KW, Holmquist S, Peiper SC, O'Leary TJ. Poorly diferentiated adenocarcinoma with lymphoid stroma (lymphoep ithliomas-like carcinomas of the stomach). Am J Clin Pathol,1991; 96:219-227.
    104. Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S, Weiss LM. Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol,1991; 139:469-474.
    105. Shibata D, Weiss LM. Epstein-Barr virus associated gastric adenocarcinoma. AM J pathol,1992; 140:769-774.
    106. Burke AP, Yen TS, Shekitka KM, Sobin LH. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol,1990; 3:377-380.
    107. Akiba S, Koriyama C, Herrera-Goepfert R, Eizuru Y. Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci,2008; 99:195-201.
    108. Lee JH, Kim SH, Han SH, An JS, Lee ES, Kim YS. Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma:a meta-analysis. J Gastroenterol Hepatolb,2009; 24:354-365.
    109. Fukayama M, Hino R, Uozaki H. Epstein-Barr virus and gastric carcinoma:virus-host interactions leading to carcinoma. Cancer Sci,2008; 99:1726-1733.
    110. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterologyn,2009; 137:824-833.
    111. van Beek J, zur Hausen A, Klein Kranenbarg E, van de Velde CJ, Middeldorp JM, van den Brule AJ, Meijer CJ, Bloemena E. EBV-positive gastric adenocarcinomas:a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol,2004; 22:664-670.
    112. Hino R, Uozaki H, Inoue Y, Shintani Y, Ushiku T, Sakatani T, Takada K, Fukayama M. Survival advantage of EBV-associated gastric carcinoma:survivin up-regulation by viral latent membrane protein 2A. Cancer Res,2008; 68:1427-1435.
    113. Fukuda M, Longnecker R. Epstein-Barr virus latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt Pathway. J Virol,2007; 81:9299-9306.
    114. Wang Q, Tsao SW, Ooka T, Nicholls JM, Cheung HW, Fu S, Wong YC, Wang X. Anti-apoptotic role of BARF1 in gastric cancer cells. Cancer Lett,2006; 238:90-103.
    115. Wiech T, Nikolopoulos E, Lassman S, Heidt T, Schopflin A, Sarbia M, Werner M, Shimizu Y, Sakka E, Ooka T, zur Hausen A. Cyclin D1 expression is induced by viral BARF1 and is overexpressed in EBV associated gastric cancer. Virchows Arch,2008; 452:621-627.
    116. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, Chan AS, Law S, Troyanskaya OG, Wong J, So S, Botstein D, Brown PO. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell,2003; 14:3208-3215.
    117. Chong JM, Sakuma K, Sudo M, Osawa T, Ohara E, Uozaki H, Shibahara J, Kuroiwa K, Tominaga S, Hippo Y, Aburatani H, Funata N, Fukayama M. Interleukin-lbeta expression in human gastric carcinoma with Epstein-Barr virus infection. J Virol,2002; 76:6825-6831.
    118. Lee HS, Chang MS, Yang HK, Lee BL, Kim WH. Epstein-Barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with Epstein-Barr virus-negative carcinoma. Clin Cancer Res,2004; 10:1698-1705.
    119. Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, Baylin SB, Issa JP. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res,1999; 59:5438-5442.
    120. Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res,2006; 12:989-995.
    121. Lee JH, Park SJ, Abraham SC, Seo JS, Nam JH, Choi C, Juhng SW, Rashid A, Hamilton SR, Wu TT. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene,2004; 23:4646-4654.
    122. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, Ro JY. Epstein-Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol,2002; 160:787-794.
    123. Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci,2006; 97:64-71.
    124. Akino K, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, Yamamoto E, Tarasawa I, Sonoda T, Mori M, Imai K, Shinomura Y, Tokino T. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci,2007; 98:88-95.
    125. Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest,2003; 83:635-641.
    126. Kusano M, Toyota M, Suzuki H, Akino K, Aoki F, Fujita M, Hosokawa M, Shinomura Y, Imai K, Tokino T. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer,2006; 106:1467-1479.
    127. Chong JM, Sakuma K, Sudo M, Ushiku T, Uozaki H, Shibahara J, Nagai H, Funata N, Taniguchi H, Aburatani H, Fukayama M. Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein-Barr virus. Cancer Sci,2003; 94:76-80.
    128. Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res,2006; 12:2995-3002.
    129. Enomoto S, Maekita T, Tsukamoto T, Nakajima T, Nakazawa K, Tatematsu M, Ichinose M, Ushijima T. Lack of association between CpG island methylator phenotype in human gastric cancers and methylation in their background non-cancerous gastric mucosae. Cancer Sci,2007; 98:1853-1861.
    130. Kim J, Lee HS, Bae SI, Lee YM, Kim WH. Silencing and CpG island methylation of GSTP1 is rare in ordinary gastric carcinomas but common in Epstein-Barr virus-associated gastric carcinomas. Anticancer Res,2005; 25:4013-4019.
    131. Etoh T, Kanai Y, Ushijima S, Nakagawa T, Nakanishi Y, Sasako M, Kitano S, Hirohashi S. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol,2004; 164:689-699.
    132. Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res.2009 Apr 1;69(7):2766-74.
    133. Chang MS, Lee HS, Kim HS, Kim SH, Choi SI, Lee BL, Kim CW, Kim YI, Yang M, Kim WH. Epstein-Barr virus and microsatellite instability in gastric carcinogenesis. J Pathol,2003; 199:447-452.
    134. Vo QN, Geradts J, Gulley ML, Boudreau DA, Bravo JC, Schneider BG. Epstein-Barr virus in gastric adenocarcinomas:association with ethnicity and CDKN2A promoter methylation. J Clin Pathol,2002; 55:669-675.
    135.Osawa T, Chong JM, Sudo M, Sakuma K, Uozaki H, Shibahara J, Nagai H, Funata N, Fukayama M. Reduced expression and promoter methylation of p16 gene in Epstein-Barr virusassociated gastric carcinoma. Jpn J Cancer Res,2002; 93:1195-1200.
    136. Sakuma K, Chong JM, Sudo M, Ushiku T, Inoue Y, Shibahara J, Uozaki H, Nagai H, Fukayama M. High-density methylation of p14ARF and p16INK4A in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer,2004; 112:273-278.
    137. Ushiku T, Chong JM, Uozaki H, Hino R, Chang MS, Sudo M, Rani BR, Sakuma K, Nagai H, Fukayama M. p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer,2007; 120:60-66.
    138. Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest,2008; 88:161-170.
    139. Sudo M, Chong JM, Sakuma K, Ushiku T, Uozaki H, Nagai H, Funata N, Matsumoto Y, Fukayama M. Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer.2004 Mar 20; 109(2):194-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700