微丸和自微乳新制剂的吸收预测与处方优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物制剂的合理设计有赖于制剂评价。在新制剂研发早期要筛选许多处方,需要有简便、快速的体外或体内评价方法。本研究选择具有代表性的缓释制剂丁螺环酮微丸和克服难溶性问题的速释制剂卡马西平微乳作为研究对象,比较了体外释放度测定、细胞筛选、离体组织评价、大鼠和比格犬药动学实验等评价结果的可靠性和相关性,希望能为合理设计新制剂提供早期预测模型和评价策略。
     1.建立了灵敏度高、专属性强、方法简便的LC/MS/MS和GC-NPD盐酸丁螺环酮检测方法,分别用于大鼠血浆样品和比格犬/人血浆样品的检测。在LC/MS/MS中,内标选用盐酸曲马多,正离子检测模式,扫描方式为选择反应监测(SRM),用于定量分析的离子反应分别为m/z386.2→121.97(丁螺环酮)和m/z264.3→58.0(内标,曲马多)。该方法简便、快速、准确、血浆用量少,可测定24小时以上的盐酸丁螺环酮的血药浓度。
     2.建立了简便、灵敏、专一性强的卡马西平LC/MS检测方法。卡马西平有较大的色谱峰和分离度,无杂质干扰,卡马西平和普奈洛尔(内标)的保留时间分别为7min和3min。在0.05-25μg/ml浓度范围内建立了标准曲线,定量检测限可达0.05μg/ml。精密度高,基质效应小,误差均小于10%,可满足卡马西平的微量检测和大量样品的快速定量要求。
     3.根据相似因子f2,筛选具有区分能力的释放介质和桨法转速,并获得不同释放条件下的微丸释放度;通过释放曲线拟合证明微丸体外释药符合一级释放过程(r>0.99),通过Peppas方程证明体外释放机制为药物扩散和骨架溶蚀共同作用(n=0.62~0.81);通过单种微丸的释放度预测了混合微丸的释放度。
     4.用不同释放速度的丁螺环酮缓释微丸进行在体实验,比较了大鼠、比格犬和人体药代动力学。结果反映,不同种属间药动学参数(Cmax、Tmax、AUC、MRT)差异的规律性,如大鼠、犬、人的达峰时间Tmax、平均驻留时间MRT逐步增大,达峰浓度Cmax逐步降低,说明微丸在人体内的缓释效果更加明显;进一步通过人体预试验,设计了由速释微丸和两种不同膜厚缓释微丸组成混合微丸。
     5.根据微丸的血药浓度数据,采用Wagner-Nelson法求得体内吸收分数,与体外释放度通过最小二乘法回归得到有显著意义的直线回归方程,建立丁螺环酮缓释微丸的体内外相关模型,用反Wagner-Nelson法求得预测血药浓度,通过犬外部预测评估(Cmax和AUC误差为22.0%和5.01%)和人体内部预测评估(Cmax和AUC误差为17.6%和2.78%),证明相关模型具有较强的预测能力,并确定了pH6.8磷酸盐缓冲液,50rpm为最佳释放条件。同时,比较了不同种属间体内吸收分数的相关性(比格犬/人r>0.76,大鼠/人r>0.51,大鼠/比格犬r>0.57)。
     6.自微乳处方(50μg/ml)显著提高了卡马西平的Coca-2细胞表观渗透系数(提高2~4倍),自微乳比片剂显著增加了药物的透过率和透过量,由高至低依次为处方C、A、B。MTT法考察自微乳的细胞毒性实验中,三种自微乳处方稀释100倍和500倍时的OD值与对照无显著差异,而稀释10倍即高浓度(1.2mg/ml)时均出现显著降低,处方C比处方A和B降低更明显,这种变化与空白自微乳作用一致而与原料药无关。说明自微乳产生的细胞毒性主要来自自微乳处方中辅料的毒性,可能与表面活性剂吐温80有关(处方C中含量最大)。
     7.免疫荧光法研究自微乳(50μg/ml)对Caco-2细胞紧密连接蛋白ZO-1的影响时发现处方A使细胞个别区域出现不连续分布,处方C使蛋白分布呈现不连续性,节点明显增多,细胞间边线比较模糊,处方B与原料药及片剂对细胞的影响与对照组无显著差异。表明自微乳具有潜在破坏细胞单层完整性的作用,这可能是导致处方C透过量最高以及TEER值降低的原因。
     8.在大鼠肠外翻模型中,卡马西平自微乳三种处方在十二指肠的吸收量均明显高于片剂,处方B的吸收量最高。处方B在不同肠段的吸收量按十二指肠、空肠、回肠、结肠的顺序依次降低;处方B在十二指肠的摄取量随药物浓度的增加而增加,呈线性关系(r=0.997),吸收机制为被动扩散。
     9.采用“大鼠快速筛选法”快速测定AUC,卡马西平自微乳三种处方的生物利用度均高于片剂。自微乳处方在大鼠上的药动学参数AUC(0-t)、Cmax均比参比片剂显著增高,其中处方B最高。综合分析自微乳体内外的实验结果,以处方B作为较优处方进行比格犬药代动力学实验,发现处方B的生物利用度比片剂的提高了5倍。
     以上结果说明:(1)体外释放度能较好预测丁螺环酮缓释微丸在人体的吸收过程;(2)大鼠的药代动力学能反映口服微丸的缓释特性,可用于早期的处方筛选;(3)Caco-2细胞模型和大鼠快速筛选法可用于快速预测新制剂处方的生物利用度;(4)种属间的胃肠道药物吸收过程存在一定的规律性差异,如能进一步研究和总结这些规律,小动物的试验结果可以用于预测人体的药物吸收。
There has been a concerted effort towards better prediction of pharmacokinetic properties in optimized formulation efforts. However, reliable estimation of oral bioavailability requires in vivo experimentation, and it is time-consuming and material-consuming. Instead, surrogate parameters for oral bioavailability are estimated from a battery of in silico, in vitro or in situ experiments. Hence, a systematic approach including various in vitro, in situ and in vivo approaches is required in predicting oral bioavailability and other PK properties of new formulation in screening and optimization efforts. This study was divided into two part as follows.
     PART ONE
     OBJECTIVE: The aim of the first part study was to develop an in-vitro–in-vivo correlation (IVIVC) for buspirone hydrochloride sustained release pellets formulations.
     METHODS: The datus of buspirone hydrochloride in vitro dissolution were obtained for each formulation using the ChP 2005(Ⅱ), method(Ⅱ), paddle stirrer at 50, 75 and 100 rpm in 0.1M HCl, pH6.8 phosphate buffer and other release conditions. The datus of buspirone hydrochloride in vivo absorption were obtained from pharmacokinetics of each formulation in beagles, rats, healthy subjects given a single oral dose.
     RESULTS: A sensitive and specific LC/MS/MS method for rat plasma and a GC-NPD method for beagles and human plasma for direct determination of buspirone hydrochloride have been achieved. The similarity factor f2 (<50) was used to discriminate dissolution method. The in vitro in vivo correlation was generated using pooled mean fraction of dose dissolved (FRD) and pooled mean fraction of dose absorbed (FRA) from two or more formulations. Predicted buspirone hydrochloride concentrations were obtained by derivation of equation for back calculation of Wagner–Nelson Equation. Prediction error for Cmax and AUC established the predictability of the IVIVC. The percent prediction error of the fianal formulation was 2.78% for AUC, and 17.6% for Cmax, respectively. pH6.8 phosphate buffer,50rpm was presented as the best dissolution method. We also demonstrated here that the linear correlation of fraction of oral dose absorbed of buspirone hydrochloride sustained release pellets formulations existed between human and beagle dogs(r=0.85), and also was shown between human and rats(r=0.65) which was lower.
     PART TWO
     OBJECTIVE: The aim of the second part study was to screen and investigate the effect of three novel self-microemulsifying drug delivery systems (SMEDDS) formulations (A, B, C) containing carbamazepine with poor solubility in water.
     METHODS: Changes in barrier properties of Caco-2 cell monolayers, including transepithelial electrical resistance (TEER) and permeability of carbamazepine, were assessed in response to three diffferent formulations. The cytotoxicity of SMEDDS on Caco-2 cells were evaluated by MTT assay. Changes in subcellular localization of the tight junction protein ZO-1, were examined by immunofluorescence. The absorption characteristics of SMEDDS in rat everted gut sac system (different intestinal sections) was studied. The pharmacokinetic behaviors of three different SMEDDS formulations were investigated in rats and beagle dogs.
     RESULTS: We have established a sensitive and specific LC/MS method in rat plasma/HBSS/Krebs for direct determination of carbamazepine. SMEDDS was shown to increase the permeability of carbamazepine by 2-fold to 4-fold higher than the control group. The results of MTT assay indicated that SMEDDS formulations at lower dilutions (1:100, 1:500) did not induce any toxic effect prior to 1.5h incubation. However, three formulations showed cytotoxicity with dilution of 1:10 as similar with SMEDDS without carbamazepine, but carbamazepine did not show any toxic effect itself. In immunoflourescence studies, we also found the formulation B showed no significant difference compared with the control group by detection of ZO-1 protein, they both exhibited a predominantly continuous fluorescence patterns associated with plasma membrane. However, formulation A and formulation C appeared to cause a redistribution of ZO-1protein, loss of continuous fluorescence and strong fluorescence density of cell-cell adhension point. Treatment with the SMEDDS (50μg/ml) resulted in the TEER of Caco-2 cells significantly reduction up to 40% compared with the control group. When the apical HBSS containing formulations was replaced with fresh cell culture medium after 1.5h treated by formulations, the TEER values of monolayers showed slow recovery to 70~90% after 3~6h. The effect of SMEDDS formulations on the tight junctions of Caco-2 cell monolayers is reversible. We demonstrated that the whole intestine was the good absorption segment for SMEDDS formulations. The absorption dose of formulation B at duodenum, jejunum, ileum and colon was higher than pellet significiantly. The results indicated that the absorption of carbamazepine complied with the passive transport mechanism. The bioavailability was also evaluated by the rat pharmacokinetic parameters, formulation B has the higher bioavailability. The same results were also observed in beagle dogs with high bioavailability up to 5-fold higher than control pellet.
     CONCLUSION: (1)In-vitro dissolution could make a good prediction of in-vivo absorption of buspirone hydrochloride sustained releas pellets. (2) The pharmacokinetic behaviors in rat could elucidate the characteristic of oral sustained release pellets, which could be used for screening of initial formulations. (3) Caco-2 cell model and rat quick-screening method could be used for prediction of new formulations in bioavailability. (4) The absorption of intestine demonstrates the regular differences in species, the datus obtained in small animals will be used for in-vivo absorption prediction of medicine in human.
引文
[1]胡炅,陈汇,药物代谢动力学在药物研究中的应用与进展,中国药师, 2007, 10(7): 651-658
    [2]刘昌孝,缓释制剂的药物动力学原理及其评价,天津药学,1999, 11(1):1-3
    [3]Liu FY, Sambol NC , Giannini RP , et al, Pharmacokinetics of oral extended-release dosage forms Release kinetics , concentration , and absorbed fraction, Pharmaceutical Research , 1995, 12 (5) :720.
    [4]国家药监局颁布的《化学药物口服缓释制剂药学研究技术指导原则》,2007,9,指导原则编号[H]GHP10-1
    [5]黄钦,马玉楠,从技术审评角度看药品的体内外相关性研究,中国临床药理学与治疗学,2007, 12(9):961-964
    [6] Pravin R Chaturvedi, Caroline J Decker, Aleksandrs Odinecs, Prediction of pharmacokinetic properties using experimental approaches during early drug discovery, Current Opinion in Chemical Biology, 2001, 5(4):452–463
    [7]R.F. mayol, B.S. Adamson, R.E. Gammans, Pharmcokinetics and disposition of 14C-buspirone HCl after intravenous and oral dosing in man, Clinical Pharmacology & Therapeutics, 1985, 37:210-215
    [8]Gammans RE, Mayol RF, LaBudde JA, Metabolism and disposition of buspirone, The American journal of Medicine, 1986, 80(3B):41-51.
    [9]Sevgi Takka, Adel Sakr, Arthur Goldberg, Development and validation of an in vitro–in vivo correlation for buspirone hydrochloride extended release tablets, Journal of Controlled Release, 2003, 88 (1):147–157
    [10]常翠,杨宏图,毛世瑞,毕殿洲,口服缓释、控释制剂的体外释放度测定方法和体内外相关性的研究进展,中国药学杂志,1999, 34(12):796-799
    [11]吕长淮,药物释放度研究概述,安徽医药,2007, 11(1):76-78
    [12]刘清飞,罗国安,王义明,缓控释制剂释放度相似性评价方法的应用进展,中国药学杂志,2006, 41(15):1121-1124
    [13]朱颖,程宁,王雨青,郑梁元,硫酸沙丁胺醇脉冲微丸释放特性的模型拟合和比较,中国医药工业杂志,2006, 37(1):20-22
    [14]马萍,孙淑英,辛艳茹,硝苯地平缓释微丸的体外释药机制,解放军药学学报,2003, 19(6):424-426
    [15]阳明,黄建耿,雷小光,醋氯芬酸结肠靶向微丸在大鼠体内的药物动力学,中南药学,2008, 6(1):25-28
    [16]Du Q, Sun J, Kang L J, et al. Determination of buspirone hydrochloride and its active metabolite in plasma by HPLC. Chinese Journal of Pharmaceutical Analysis, 2003, 23(1): 56-58
    [17] Zhao W J, Bian J M, Xu J F. Determination serum concentration of buspirone by HPLC in Rabbits. Chinese Pharmacy, 2003, 14(10): 590-591
    [18] Liu X, Zhang X L, Qi L X. Determination of buspirone hydrochloride in serum by RP-HPLC with electrochemical detector. Chinese Journal of Clinical Pharmacology, 2002, 11(6): 332-333
    [19]孙进,口服吸收药物与转运,人民卫生出版社,2006,第一版:428-457
    [20]US Department of Health, Food and Drug Administration, Guidance for the Industry: Extended Release Solid Oral Dosage Forms: Development, Evaluation and Application of In Vitro / In Vivo Correlations,US Department of Health Food and Drug Administration, Center for Drug Evaluation and Research (CDER), September 1997.
    [21]张继稳,李川,正确使用Wagner - Nelson法评价缓释、控释制剂吸收度,中国药学杂志,2007, 42(3):632,732,832
    [22] Wang Y, Nedelman J, Bias in theWagner-Nelson estimate of the fraction of drug absorbed , Pharmaceutical Research, 2002, 19 (4) : 470-476.
    [23] Chiou WL, Brave A, Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharmaceutical Research, 1998, 15:1792
    [24] Chiou WL, Jeong HY, Chung SM, et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharmaceutical Research, 2000, 17:135
    [25]Gohel M., Delvadia RR, Parikh DC, Zinzuwadia MM, Soni CD, Sarvaiya KG, Joshi R, Dabhi AS. Simplified Mathematical Approach for Back Calculation in Wagner-Nelson Method. Pharmaceutical information, 3(2): http://www.pharmainfo.net/reviews/simplified-mathematical-approach-back-calculation-wagner-nelson-method
    [26]斯陆勤,黄建耿,李高,生物药剂学分类系统及其应用,中国药师,2008,11(2): 160-166
    [27]杨明世,游本刚,杨明华,寸冬梅,陶安进,崔福德,脱卷积法进行自制尼群地平缓释制剂体内外相关性研究,药学学报,2004, 39(9):738—741
    [28]许小红,李铜铃,李莉,王玮,孙健,盐酸伐昔洛韦缓释片体外释放与体内吸收的相关性,中国医药工业杂志,2003, 34(9):451-453
    [29]李凌冰,李琇,应用人工神经网络研究制剂体内外相关性,山东生物医学工程,2002, 21(3):22-24
    [30]李凌冰,张娜,人工神经网络结合药动学模型设计氯氮平非pH依赖型缓释片,中国药学杂志,2005, 40(17):1323-1326
    [31]沈松,徐希明,余江南,难溶性药物的增溶及其缓/控释制剂研究进展,中国药事,2007, 21(3):691-991
    [32]冯耀荣,程巧鸳,李范珠,自乳化药物传递系统的研究进展,国际药学研究杂志,2007, 34(4):280-284
    [33]Hong JY, Kim JK, Song YK, et al. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption, Journal of Controlled Release, 2006, 110 (2):332 - 338.
    [34]Gao P, Morozowich W, Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs, Expert Opinion on Drug Delivery, 2006, 3 (1): 97-110.
    [35]Araya H, Nagao S, TomitaM, et al. The novel formulation design of self-emulsifying drug delivery systems ( SEDDS) type O /W microemulsion I: enhancing effects on oral bioavailability of poorly water soluble compounds in rats and beagle dogs, Drug Metabolism and Pharmacokinetics, 2005, 20 (4):244 - 256.
    [36]高坤,孙进,何仲贵,Caco-2细胞模型在口服药物吸收研究中的应用,沈阳药科大学学报,2005, 22(6),469-474
    [37]Er-li MA, Hong MA, Zheng LIU, Chang-xue ZHENG, Ming-xing DUAN,In vitro and in vivo evaluation of a novel oral insulin formulation, Acta Pharmacologica Sinica, 2006, 27 (10): 1382–1388
    [38]Makoto Kataoka, Yoshie Masaoka, ShinJI Sakuma, ShinJI Yamashita, Effect of Food Intake on the Oral Absorption of Poorly Water-Soluble Drugs: In Vitro Assessment of Drug Dissolution and Permeation Assay System, Journal of Pharmaceutical Sciences, 2006, 95(9), 2051-2061
    [39]克莱尔.怀斯,上皮细胞培养指南,科学出版社,2005,第一版,169-194
    [40]Neslihan Gursoy, Jean-Sebastien Garrigue, Alain Razafindratsita, Gregory Lambert, Simon Benita, Excipient Effects on In Vitro Cytotoxicity of a Novel Paclitaxel Self-Emulsifying Drug Delivery System, Journal of Pharmaceutical Sciences, 2003, 92(12):2411-2418
    [41] Yongxin Zhu, Hwa Chiang, M.Wulster-Radcliffe, Rita Hilt, PhilipWong, Candice B. Kissinger,Peter T. Kissinger, Liquid chromatography/tandem mass spectrometry for the determination of carbamazepine and its main metabolite in rat plasma utilizing an automated blood sampling system,Journal of Pharmaceutical and Biomedical Analysis, 2005, 38:119–125
    [42] J. L. MAGGS, M. Pirmohamed, N. R. Kitteringham, B. K. Park,Characterization Of The Metabolites Of Carbamazepine In Patient Urine By Liquid Chromatography/Mass Spectrometry, Drug Metabolism And Disposition, 25(3):275-280
    [43] Xianyi Sha, Guijun Yan, Yunjuan Wu, Junchan Li, Xiaoling Fang,Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells,European Journal of Pharmaceutical Sciences, 2005, (24): 477–486
    [44]李昊,孙建国,谢海棠,王睿,吕华,王广基,大鼠肠管外翻模型对人参皂苷Rg1吸收机制的研究,中国临床药理学与治疗学,2004, 9(5):510 - 513
    [45] LP Ruan, S Chen, BY Yu, DN Zhu, GA Cordell, SX Qiu, Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model, European Journal of Medicinal Chemistry, 2006, (41): 605–610
    [46]万英,邹梅娟,郝秀华,刘丰,于杰,程刚,卡马西平大鼠在体肠吸收动力学,沈阳药科大学学报,2006, 23(3):136-138
    [1] Rege BD , Yu LX , Hussain AS , et al . Effect of common excipients on Caco-2 transport of low-permeability drugs [J] . J Pharm Sci, 2001, 90 (11) :1776
    [2] Cano-Cebr Ian M J, Zornoza T, Granero L, et al. Intestinal absorption enhancement via the paracellular route by fatty acids, Chitosans and others: a target for drug delivery [J] Curr Drug Deliv, 2005, 2 (1) : 9
    [3] Zerrouk N, Corti G, Ancilloti s, et al. Influence of cyclodextrins and chitosan, separately or in combination, on Glyburide solubility and permeability [J] Eur J Pharm Biopharm , 2006, 62 (3) : 241
    [4] Vandermerwe Sm, Verhoef J C, Verheijden J H, et al. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs[J] Eur J Pharm Biopharm , 2004, 58 (2) : 225
    [5] Ventura C A, Giannone I, Paol Ino D, et al. Preparation of celecoxib-dimethyl-beta-cyclodextrininclusion complex: characterization and in vitro permeation study [J] Eur J Med Chem , 2005, 40 (7) : 624
    [6] Prabhu s, Ortegam, MA C. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam [J] Int J Pharm, 2005, 301 (1-2) : 209
    [7] Liang J F, Yang V C. Insulin-cell penetrateing peptide hybrids with improved intestinal absorption efficiency[J]. Biochem Biophys Res Commun, 2005, 335 (3):734
    [8] Mao S, Gernershaus O, Fischer D, et al. Up take and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells [J] Pharm Res, 2005, 22 ( 12 ) :2058
    [9] Lim c J, Shen W C. Comparison of monomeric and oligomeric transferring as potentialcarrier in oral delivery of protein drugs[J]. J Controlled Release, 2005, 106 (3) : 273
    [10] Malkov D, Angelo R, Wang H Z, et al. Oral delivery of insulin with the eligen technology: mechanistic studies[J] Curr Drug Deliv, 2005, 2 (2) : 191
    [11] Wang Y, L i z r, Pan f y, et al. A study on transcellular transportation of insulin liposomes using Caco-2 cell mode [J]. Chin Pharm Bull, 2005, 21 (1) : 78
    [12] Gan L L, Dhiren R T. Application of Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium [J] . Adv Drug Deliv Rev , 1997,23 (1- 3):77
    [13] Xianyi Sha , Guijun Yan , Yunjuan Wu, Junchan Li, Xiaoling Fang. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells[J]. European Journal of Pharmaceutical Sciences 2005,24 (5) :477
    [14] Sha Xian-yi, Fang Xiao-ling. Effect of self-microemulsifying system on cell tight junctions[J]. Acta Pharmaceutica Sinica 2006, 41 (1):30
    [15] Stephan A. Motz , Ulrich F. Schaefer , Stefan Balbach , Thomas Eichinger , Claus-Michael Lehr. Permeability assessment for solid oral drug formulations based on Caco-2 monolayer in combination with a flow through dissolution cell [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66 (2):286
    [16] Mark J. Ginski, James E. Polli. Prediction of dissolution–absorption relationships from a dissolution:Caco-2 system[J]. International Journal of Pharmaceutics, 1999,177 (1):117
    [17] M. Kataoka,Y. Masaoka,Y.Yamazaki, T. Sakane, H. Sezaki, S.Yamashita. In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drug [J]. Pharm. Res. 2003,20 (10):1674
    [18] Mitsuru Sugawara, Shota Kadomura, Xin He, Yoh Takekuma, Naonori Kohri, Katsumi Miyazaki. The use of an in vitro dissolution and absorption system to evaluate oral absorption of two weak bases in pH-independent controlled-release formulations[J]. European Journal of Pharmaceutical Sciences, 2005,26 (1):1
    [19] Stephan A. Motza, Jana Klimundov′a, Ulrich F. Schaefer, Stefan Balbach,Thomas Eichinger, Petr Solich, Claus-Michael Lehr. Automated measurement of permeation and dissolution of propranolol HCl tablets using sequential injection analysis[J]. Analytica Chimica Acta, 2007,581 (1):174
    [20] K-C. Cheng, Cheng Li, Yunsheng Hsieh, Diana Montgomery, Tongtong Liu, Ronald E. White. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats[J]. Journal of Pharmacological and Toxicological Methods 2006,53 (3):215
    [21] Zelihagq Degim, Nilay U¨nal, Dinc? EYsiz, Ufuk Abbasoglu.The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer [J]. Life Sciences 2004,75 (23):2819
    [22] Er-li Ma, Hong Ma, Zheng LIU, Chang-xue Zheng, Ming-xing Duan. In vitro and in vivo evaluation of a novel oral insulin formulation [J]. Acta Pharmacologica Sinica 2006, 27 (10):1382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700