脲醛树脂壁材微胶囊的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脲醛树脂(UF)微胶囊具有较好的力学性能、耐热性、阻隔性等优点,已经被广泛地应用于许多领域。近年来,随着微胶囊在复合材料自修复中的应用,使得合成可应用于树脂基复合材料微胶囊的研究意义更加突出。本文首先考察了脲醛树脂微胶囊的一步法合成机理,制备了具有较好强度和阻隔性能的微胶囊,然后探讨了微胶囊的加入对环氧树脂(EP)和聚氨酯(PU)阻尼性能的影响,主要包括以下内容:
     选用经过疏水处理、粒径分布窄的玻璃微珠作为制备微胶囊的囊芯,采用一步法工艺制备了脲醛树脂微胶囊。利用光学显微镜(OM)、扫描电子显微镜(SEM),考察了反应过程中的初始pH值、囊壁材料的浓度、乳化剂浓度以及搅拌速率等工艺参数对脲醛树脂微胶囊表面形貌的影响。结果表明:溶液终点的pH值对微胶囊的表面形貌有显著的影响,随着反应终点的pH值的升高微胶囊表面的粗糙度降低。通过调节乳化剂和壁材的浓度以及搅拌速率可以制备出表面形貌可控的脲醛树脂微胶囊。氯化铵对脲醛树脂微胶囊的形成有重要影响,在反应过程中加入适量氯化铵可以促进囊壁材料在芯材表面的沉积。
     以四氯乙烯为囊芯,采用一步法工艺制备了脲醛树脂微胶囊。考察了小分子、合成和天然高分子等6种表面活性剂对微胶囊的影响。通过正交试验研究了壁材浓度、初始pH值、升温速率和氯化钠浓度等工艺参数对微胶囊合成状态、阻隔性能的影响规律,并利用OM和SEM进行了表征。结果表明:表面活性剂的类型对微胶囊的合成状态有较大的影响。采用天然高分子阿拉伯胶(GA)为乳化剂可以制备出表面光滑透明、强度较好的微胶囊。正交试验结果表明:壁材的浓度对微胶囊的力学强度和壁材利用率有显著影响。适当降低升温速率和提高反应的初始pH值,有利于制备出球形度良好、粒径较小且分布窄的微胶囊。在反应过程中加入适量的氯化钠有助于提高微胶囊的阻隔性能。优化的工艺条件为:初始pH值3.5、壁材浓度3.6×10-2g/ml、升温速率0.5℃/min、NaCl浓度2.5×10-2g/ml。
     为了提高脲醛树脂微胶囊囊壁的阻隔性能,本文在制备脲醛树脂微胶囊的过程中,在囊壁内加入了具有较大径厚比的蒙脱土(MMT),并利用红外光谱(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和SEM对微胶囊进行了表征。结果表明,MMT被成功地引入到了脲醛树脂微胶囊囊壁当中,且在囊壁内已经完全剥离,得到的是剥离型的MMT/UF复合囊壁微胶囊。微胶囊的芯材释放测试表明,片状MMT的引入能够显著降低芯材双环戊二烯(DCPD)向外界扩散的速率,从而提高了壁材的阻隔性能。
     制备了两种不同粘度芯材的脲醛树脂微胶囊,研究了微胶囊的加入对EP阻尼性能的影响,并利用SEM和动态力学热分析仪(DMA)进行了表征。研究表明:加入微胶囊的含量、粒径以及囊芯液体的粘度对EP的阻尼性能有显著的影响。在微胶囊含量为10vol%时,微胶囊/环氧复合材料在玻璃化温度(Tg)下的损耗因子(tanδ)达到最大。相同的含量下,随着加入微胶囊的粒径的增大、芯材液体粘度的提高,复合材料阻尼性能也不断提高。复合材料的频率谱测试表明,微胶囊的加入提高了EP在低频下的阻尼性能。同时,微胶囊的引入降低了EP的压缩强度且改变了EP压缩破坏的形式,在微胶囊/环氧复合材料的的压缩破坏过程中出现了应力-应变的平台区。
     制备了包含粘性液体的脲醛树脂微胶囊,并将其应用到PU体系中,探讨了PU的合成工艺和微胶囊的引入对PU动态力学性能的影响。研究表明:选择PU预聚体中-NCO的理论含量为6%,控制预聚体合成的温度为75-80℃,反应时间1h,可以制得室温下具有较好力学性能和阻尼性能的PU弹性体。微胶囊的引入使PU在Tg下的tanδ的峰值提高约28%—54%,且拓宽了PU的高阻尼温域。通过时-温叠加得到了复合材料在宽频范围的动态力学参数,结果表明:微胶囊的加入能够有效提高PU在1000Hz以内低频段范围内的tanδ,且在微胶囊含量为10vol%时最高。压缩测试表明复合材料中的微胶囊可以在较高的压力环境下保持完整的形态结构而不破裂,可以满足材料在水下压力环境下的使用要求。
Urea-formaldehyde Microcapsules are widely used in many fields due to their excellent mechanical property, thermal stability and sealing property, etc. In recent years, with the application of microcapsules into self-healing materials, it makes the preparation of microcapsules that applied to polymeric matrix composites more prominent. In this work, the mechanism of urea-formaldehyde microcapsules prepared by one-step process was studied. Microcapsules with good strength and barrier property were prepared and then used to epoxy (EP) and polyurethane (PU) system. The addition of microcapsules on the damping properties of EP and PU were discussed. The main contents are listed as follows:
     A series of microcapsules were prepared by in-situ polymerization with poly (urea-formaldehyde) as the shell material and glass beads as the core material. Glass beads were chosen as the core material because their size distribution was narrow and their surface was easily changed to be hydrophobic. OM and SEM were used to investigate the respective effects of process parameters, such as initial pH value, concentration of wall material and surfactant, stirring rate etc, on the surface morphology of microcapsules. The results showed that the surface morphology of the microcapsules depends mainly on the final pH value and a high final pH value corresponded to a smooth-surface microcapsule. Controlled surface morphology of UF microcapsules can be prepared by adjusting the concentration of the emulsifier and wall material and the stirring rate. Addition of ammonium chloride was found to be very important in the process preparation of PUF microcapsules. The involvement of ammonium chloride can cause a drop in the pH value substantially during the course of reaction and enhance the deposition of the UF nanoparticles onto the surface of microcapsule.
     The effects of emulsifier on the physical properties of poly (urea-formaldehyde) (PUF) encapsulated tetrachroloethylene (TCE) microcapsules were investigated by anionic, synthetic and natural macromolecular emulsifier. The properties of microcapsules were investigated by optical-photographic microscope (OM) and scanning electron microscope (SEM). Experimental results showed that: GA is a favorable emulsifier for preparing smooth-surface and good-strength microcapsule. The orthogonal test indicated that the concentration of the shell material has a great effect on the microcapsules'mechanical strength. A Slow heating rate and high initial pH value can help to prepare microcapsules with high degree of sphericity, small size and narrow distribution. The addition of Sodium chloride during the reaction is favor to increase the sealing property of the capsules. The optimizing conditions are initial PH value 3.5, concentration of the shell material 3.6×10-2g/ml, heating rate 0.5℃/min and concentration of Sodium chloride 2.5×10-2 g/m.
     To improve the microcapsules' barrier properties, layered silicates were dispersed in the wall of microcapsule. TEM, SEM, XRD and FTIR were used to investigate the physical property of microcapsules. The tests showed that, MMT is successively introduced to the wall of microcapsule and exfoliate completely. Compared with conventional microcapsules (CMs), nano-composite microcapsules (NCMs) have better barrier property. This can be attributed to nano-composite structure of the microcapsules, in which nano-sized montmorillonite dispersed in UF to decrease core material cross-over.
     A series of epoxy composites filled with microcapsule of different core materials were prepared in this work. Microstructure analysis as well as damping properties of microcapsule/ EP composites was made by SEM and DMTA. The results showed that the content and diameter as well as viscosity of the core material of the filled microcapsules have a significant effect on the damping properties of microcapsule/EP composite. The loss factor (tan8) of composite at Tg temperature reached to the maximum value under 10vol% content of microcapsule. The larger diameter and higher viscosity of the core material are, the damping property of the EP/microcapsule composite is better. The tan8-f cure showed that the composite has excellent low-frequency damping property. However, the involvement of the capsules decreases the compressive strength of EP and changes the damager forms of EP.
     PUF microcapsules with viscous liquid core were prepared and applied to PU system. The synthetic process and involvement of capsules on the dynamic mechanical property of PU were studied. The studies showed that choosing the theory content of-NCO in the PU pre-polymer as 6%, and controlling the reaction temperature as 75-80℃and time as 1h can synthesis the PU polymers with good mechanical and dumping properties. The addition of capsules improves the peak value of tanδof PU at Tg temperature by about 28%—54%, and widened the range of temperatures of tanδabove 0.7. The dynamic mechanical parameters of the composites in broadband were achieved through time-temperature superposition principle.The results indicated that the addition of capsules improves the tanδof PU over the low-frequency ranged from 0-1000Hz. Compression test showed that the microcapsules embedded in the PU can maintain intact structure and not rupture at a high pressure, which meet the material requirement of being used in underwater pressure environment.
引文
[1]Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients:An overview[J]. FOOD RESEARCH INTERNATIONAL.2007,40(9):1107-1121.
    [2]Shahidi F, Han X. Encapsulation of food ingredients[J]. Critical Reviews in Food Science and Nutrition.1993,33(6):501-547.
    [3]Biju S S, Saisivam S, Rajan N, et al. Dual coated erodible microcapsules for modified release of diclofenac sodium[J]. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS.2004,58(1):61-67.
    [4]Putney S D, Burke P A. Improving protein therapeutics with sustained-release formulations[J]. Nature Biotechnology.1998,16(2):153-157.
    [5]Sawada K, Urakawa H. Preparation of photosensitive color-producing microcapsules utilizing in situ polymerization method[J]. DYES AND PIGMENTS.2005,65(1):45-49.
    [6]Cho S H, White S R, Braun P V. Self-Healing Polymer Coatings[J]. ADVANCED MATERIALS.2009,21(6):645.
    [7]Ji H B, Kuang J G, Qian Y. Development of an immobilization method by encapsulating inorganic metal salts forming hollow microcapsules [J]. CATALYSIS TODAY.2005, 105(3-4):605-611.
    [8]Rule J D, Brown E N, Sottos N R, et al. Wax-protected catalyst microspheres for efficient self-healing materials[J]. ADVANCED MATERIALS.2005,17(2):205.
    [9]Kim C A, Joung M J, Ahn S D, et al. Microcapsules as an electronic ink to fabricate color electrophoretic displays[J]. SYNTHETIC METALS.2005,151(3):181-185.
    10] Wang J P, Zhao X P, Guo H L, et al. Preparation of microcapsules containing two-phase core materials[J]. LANGMUIR.2004,20(25):10845-10850.
    [11]宋健,陈磊,李效军.微胶囊化技术及应用[M].化学工业出版社,2001.
    [12]Yuan L, Liang G Z, Xie J Q, et al. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins[J]. POLYMER.2006,47(15): 5338-5349.
    [13]李岚,袁莉,梁国正,等.工艺参数对聚脲甲醛包覆环氧树脂微胶囊物性的影响[J].复合材料学报.2006,23(5).
    [14]王建平,赵晓鹏.蓝色电子墨水微胶囊的制备及其电场响应行为[J].液晶与显示.2004,19(6).
    [15]Cosco S, Ambrogi V, Musto P, et al. Properties of poly(urea-formaldheyde) microcapsules containing an epoxy resin[J]. JOURNAL OF APPLIED POLYMER SCIENCE. 2007,105(3):1400-1411.
    [16]Cosco S, Ambrogi V, Musto P, et al. Urea-formaldehyde microcapsules containing an epoxy resin: Influence of reaction parameters on the encapsulation yield[J]. MACROMOLECULAR SYMPOSIA.2006,234:184-192.
    [17]Sgraja M, Blomer J, Bertling J, et al. In Situ Encapsulation of Tetradecane Droplets in Oil-in-Water Emulsions Using Amino Resins[J]. JOURNAL OF APPLIED POLYMER SCIENCE.2008,110(4):2366-2373.
    [18]Park S J, Shin Y S, Lee J R. Preparation and characterization of microcapsules containing lemon oil[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE.2001, 241(2):502-508.
    [19]李岚,袁莉,梁国正,等.表面活性剂对聚脲甲醛包覆双环戊二烯微胶囊的影响[J].精细化工.2006,23(5).
    [20]谢建强,张岩,王毅飞,等.乳化剂对自修复微胶囊合成的影响[J].中国胶粘剂.2007,16(5).
    [21]White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. NATURE.2001,409(6822):794-797.
    [22]Blaiszik B J, Caruso M M, Mcilroy D A, et al. Microcapsules filled with reactive solutions for self-healing materials[J]. POLYMER.2009,50(4):990-997.
    [23]Yin T, Rong M Z, Zhang M Q, et al. Self-healing epoxy composites-Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent[J]. COMPOSITES SCIENCE AND TECHNOLOGY.2007,67(2):201-212.
    [24]Suryanarayana C, Rao K C, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings[J]. Progress in Organic Coatings. 2008,63(1):72-78.
    [25]Dai X, Shen X D. Research on microcapsules of phase change materials[J]. RARE METALS.2006,25(Sp. Iss. SI):393-399.
    [26]Jin Z, Wang Y, Liu J, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer.2008,49(12):2903-2910.
    [27]Kwon J Y, Kim H D. Preparation and application of polyurethane-urea microcapsules containing phase change materials[J]. FIBERS AND POLYMERS.2006,7(1):12-19.
    [28]Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. THERMOCHIMICA ACTA.2007, 452(2):149-160.
    [29]Yu F, Chen Z H, Zeng X R. Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier[J]. COLLOID AND POLYMER SCIENCE.2009,287(5):549-560.
    [30]Brown E N, White S R, Sottos N R. Microcapsule induced toughening in a self-healing polymer composite[J]. JOURNAL OF MATERIALS SCIENCE.2004,39(5):1703-1710.
    [31]Blaiszik B J, Sottos N R, White S R. Nanocapsules for self-healing materials[J]. COMPOSITES SCIENCE AND TECHNOLOGY.2008,68(3-4):978-986.
    [32]Brown E N, Kessler M R, Sottos N R, et al. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene[J]. JOURNAL OF MICROENCAPSULATION. 2003,20(6):719-730.
    [33]Yoshizawa H, Kamio E, Kobayashi E, et al. Investigation of alternative compounds to poly(E-MA) as a polymeric surfactant for preparation of microcapsules by phase separation method[J]. JOURNAL OF MICROENCAPSULATION.2007,24(4):349-357.
    [34]Yoshizawa H, Kamio E, Hirabayashi N, et al. Membrane formation mechanism of cross-linked polyurea microcapsules by phase separation method[J]. JOURNAL OF MICROENCAPSULATION.2004,21(3):241-249.
    [35]杨毅,王亭杰,裴广玲,等.一步法制备脲醛树脂微胶囊过程的研究[J].高校化学工程学报.2005,19(3).
    [36]Kage H, Yada N, Kunimasa M, et al. Membrane thickness of microcpasules generated by complex coacervation method[J]. Kagaku Kogaku Ronbunshu.1996(22):342-349.
    [37]Kage H, Yada N, Kunimasa M, et al. operating condition and membrane thickness of microcapsules generated by complex coacervation method [J]. Kagaku Kogaku Ronbunshu. 1996(22):365-371.
    [38]Kage H, Kawahara H, Hamada N, et al. Effects of core material, operating temperature and time on microencapsulation by in situ polymerization method[J]. ADVANCED POWDER TECHNOLOGY.2002,13(4):377-394.
    [39]Pratt T J, Johns W E, Rammon R M, et al. A Novel Concept on the Structure of Cured Urea-Formaldehyde Resin[J]. The Journal of Adhesion.1985,17(4):275-295.
    [40]Zhang X X, Tao X M, Yick K L, et al. Structure and thermal stability of microencapsulated phase-change materials[J]. COLLOID AND POLYMER SCIENCE.2004, 282(4):330-336.
    [41]Meyer B. Urea-formaldehyde resins[M]. MA: Addison-Wesley,1979.
    [42]Pizzi A. In Wood Adhesives:Chemistry and Technology[M].1983:Marcel Dekker, 1983.
    [43]Scopelitis E, Pizzi A. Urea-resorcinol-formaldehyde adhesives of low resorcinol content[J]. Journal of Applied Polymer Science.1993,48(12):2135-2146.
    [44]Jr Foris P L A W. Capsule manufacture[Z].1978.
    [45]Dietrich K, Bonatz E, Nastke R, et al. Amino resin microcapsules. Ⅳ. Surface tension of the resins and mechanism of capsule formation[J]. Acta Polymerica.1990,41(2):91-95.
    [46]Riede A, Helmstedt M, Sapurina I, et al. In situ polymerized polyaniline films 4. Film formation in dispersion polymerization of aniline[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE.2002,248(2):413-418.
    [47]Saeki K F J M. Method for preparing microcapsules[Z].1981.
    [48]Sriram S R. Development of self-healing polymer composites and photoinduced ring opening metathesis polymerization[D]. Urbana-champaign:University of illinois,2002.
    [49]Foris P L A W. Capsule manufacture[Z].1977.
    [50]Yuan L, Gu A J, Liang G Z. Preparation and properties of poly(urea-formaldehyde) microcapsules filled with epoxy resins[J]. MATERIALS CHEMISTRY AND PHYSICS. 2008,110(2-3):417-425.
    [51]Yuan Y C, Rong M Z, Zhang M Q. Preparation and characterization of microencapsulated polythiol[J]. POLYMER.2008,49(10):2531-2541.
    [52]Yuan L, Liang G Z, Xie J Q, et al. Thermal stability of microencapsulated epoxy resins with poly(urea-formaldehyde)[J]. POLYMER DEGRADATION AND STABILITY.2006, 91(10):2300-2306.
    [53]Yuan L, Liang G Z, Xie J Q, et al. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formaldehyde resins[J]. COLLOID AND POLYMER SCIENCE.2007,285(7):781-791.
    [54]Yuan L, Liang G Z, Xie J Q, et al. The permeability and stability of microencapsulated epoxy resins[J]. JOURNAL OF MATERIALS SCIENCE.2007,42(12):4390-4397.
    [55]Boisvert J, Persello J, Castaing J, et al. Dispersion of alumina-coated TiO2 particles by adsorption of sodium polyacrylate[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,178(1-3):187-198.
    [56]Hua F, Qian M. Synthesis of self-crosslinking sodium polyacrylate hydrogel and water-absorbing mechanism[J]. Journal of Materials Science.2001,36(3):731-738.
    [57]何静,吴玉英,刘六军,等.低分子量聚丙烯酸钠的合成及分散性能研究[J].北京 林业大学学报.2002,24(5).
    [58]Wang H P, Yuan Y C, Rong M Z, et al. Microencapsulation of styrene with melamine-formaldehyde resin[J]. COLLOID AND POLYMER SCIENCE.2009,287(9): 1089-1097.
    [59]甄朝晖,陈中豪,等.保护胶体对三聚氰胺甲醛树脂微胶囊成囊性影响的研究[J].陕西科技大学学报(自然科学版).2005,23(5).
    [60]邹旷东,傅相锴,龚永锋,等.苯乙烯.马来酸酐共聚物的合成及其在微胶囊制备中的乳化分散作用[J].西南大学学报(自然科学版).2007,29(3).
    [61]甄朝晖,陈中豪,等.乳化剂对原位聚合蜜胺甲醛树脂微胶囊成囊性的机理研究[J].中国造纸学报.2006,21(1).
    [62]田薇.基于微胶囊技术的自修复材料的研究[D].东华大学,2005.
    [63]Gamier G, Duskova-Smrckova M, Vyhnalkova R, et al. Association in solution and adsorption at an air-water interface of alternating copolymers of maleic anhydride and styrene[J]. LANGMUIR.2000,16(8):3757-3763.
    [64]李沃源,毋伟,彭旭慧,等.一步原位聚合法制备电泳显示微胶囊的研究[J].功能材料.2006,37(3).
    [65]李金换,王秀峰,朱宛琳,等.原位沉积法制备脲醛树脂电子墨水微胶囊[J].液晶与显示.2007,22(3).
    [66]Ye A, Flanagan J, Singh H. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic[J]. Biopolymers.2006,82(2): 121-133.
    [67]Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers[J]. FOOD HYDROCOLLOIDS.2009,23(6Sp. Iss. SI):1473-1482.
    [68]陈默.含有阴、非离子基团的可聚合乳化剂的研究[D].大连理工大学,2009.
    [69]丁振军.表面活性剂的复配及应用性能研究[D].江南大学,2007.
    [70]谭晶,曹绪龙,李英,等.油/水界面表面活性剂的复配协同机制[J].高等学校化学学报.2009,30(5).
    [71]许晓鹏,魏慧贤,麻建国,等.乳化剂的复配对w/o/w型复乳稳定性影响的研究[J].哈尔滨商业大学学报(自然科学版).2007,23(3).
    [72]杜官本.酸性环境下脲醛树脂结构形成特征[J].西南林学院学报.1999,19(2).
    [73]郑立辉,方美华,程四清,等.微胶囊化石蜡的制备和热性能[J].应用化学.2004,21(2).
    [74]Qiao R, Zhang X L, Qiu R, et al. Synthesis of functional microcapsules by in situ polymerization for electrophoretic image display elements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2008,313-314:347-350.
    [75]Zhang L, Dong X P, Zhang H. Application research on self-healing technology with microcapsules for automobile brake pad[J]. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION.2009,24(1):91-94.
    [76]Yuan Y C, Yin T, Rong M Z, et al. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review[J]. EXPRESS POLYMER LETTERS.2008,2(4): 238-250.
    [77]Yuan Y C, Rong M Z, Zhang M Q, et al. Self-healing polymeric materials using epoxy/mercaptan as the healant[J]. MACROMOLECULES.2008,41(14):5197-5202.
    [78]Yang J L, Keller M W, Moore J S, et al. Microencapsulation of Isocyanates for Self-Healing Polymers[J]. MACROMOLECULES.2008,41(24):9650-9655.
    [79]Xing F, Ni Z, Han N X, et al. SELF-HEALING MECHANISM OF A NOVEL CEMENTITIOUS COMPOSITE USING MICROCAPSULES[J]. ADVANCES IN CONCRETE STRUCTURAL DURABILITY, PROCEEDINGS OF ICDCS2008,VOLS 1 AND 2.2008:195-204.
    [80]Lee Y H, Kim C A, Jang W H, et al. Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins[J]. POLYMER. 2001,42(19):8277-8283.
    [81]Lee S J, Rosenberg M. Preparation and properties of glutaraldehyde cross-linked whey protein-based microcapsules containing theophylline[J]. JOURNAL OF CONTROLLED RELEASE.1999,61(1-2):123-136.
    [82]Makino K, Mack E J, Okano T, et al. A microcapsule self-regulating delivery system for insulin[J]. Journal of Controlled Release.1990,12(3):235-239.
    [83]Mori T, Tosa T, Chibata I. Enzymatic properties of microcapsules containing asparaginase[J]. Biochimica et Biophysica Acta (BBA)-Enzymology.1973,321(2): 653-661.
    [84]van H O. An Introduction to Clay Colloid Chemistry[M].2nd ed ed. New York:Whiley, 1977.
    [85]Thomassin J M, Pagnoulle C, Caldarella G, et al. Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application[J]. JOURNAL OF MEMBRANE SCIENCE.2006,270(1-2):50-56.
    [86]Bharadwaj R K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites[J]. Macromolecules.2001,34(26):9189-9192.
    [87]杨海霞.单体配位插层聚合法制备脲醛树脂/蒙脱土纳米复合物的研究[D].沈阳化工学院,2004.
    [88]Wang H, Zhao T, Zhi L, et al. Synthesis of Novolac/Layered Silicate Nanocomposites by Reaction Exfoliation Using Acid-Modified Montmorillonite[J]. Macromolecular Rapid Communications.2002,23(1):44-48.
    [89]Interpenetrating Polymer Networks[M]. Washington, DC:American Chemical Society, 1994:638.
    [90]Sung P, Lin C. POLYSILOXANE MODIFIED EPOXY POLYMER NETWORK--Ⅱ. DYNAMIC MECHANICAL BEHAVIOR OF MULTICOMPONENT GRAFT-IPNs (EPOXY/POLYSILOXANE/POLYPROPYLENE GLYCOL)[J]. European Polymer Journal. 1997,33(3):231-233.
    [91]Rogers J, Zachary L, Mcconnell K. Damping characterization of a filled epoxy used for dynamic structural modeling[J]. Experimental Mechanics.1986,26(3):283-291.
    [92]Biggerstaff J M, Kosmatka J B. Damping Performance of Cocured Graphite/Epoxy Composite Laminates with Embedded Damping Materials[J]. Journal of Composite Materials. 1999,33(15):1457-1469.
    [93]Hori M, Aoki T, Ohira Y, et al. New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin[J]. Composites Part A:Applied Science and Manufacturing.2001,32(2):287-290.
    [94]Sound and Vibration Damping with Polymers, Copyright, ACS Symposium Series, Foreword[J].1990:ⅰ-ⅳ.
    [95]黄微波,战凤昌.聚氨酯阻尼材料动态力学性能的研究[J].1992:7.
    [96]何曼君.高分子物理[M].上海:复旦大学出版社,2006.
    [97]姜晓波.含双组分微胶囊聚合物基自修复材料的研究[D].中山大学,2008.
    [98]袁莉.微胶囊增韧树脂基复合材料的研究[D].西北工业大学,2007.
    [99]顾健,武高辉,赵骁,等.高阻尼空心微珠/环氧复合材料的制备及性能研究[J].功能材料.2007,38(5).
    [100]卢玲茹.用于聚合物复合材料自修复的微胶囊的制备及性能研究[D].华东理工大学,2007.
    [101]陶殷.基于环氧微胶囊和潜伏固化剂的自修复型环氧复合材料[D].中山大学,2007.
    [102]卢子兴,袁应龙.高应变率加载下复合泡沫塑料的吸能特性及失效机理研究[J].复合材料学报.2002,19(5).
    [103]周成飞.浅谈聚氨酯声学材料及其吸声制品的应用[J].聚氨酯工业.2003,18(2).
    [104]Easwaran V, Munjal M L. Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers:A finite element approach[J]. The Journal of the Acoustical Society of America.1993,93(3):1308-1318.
    [105]Gaunaurd G. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. The Journal of the Acoustical Society of America. 1977,62(2): 298-307.
    [106]Jackins P D, Gaunaurd G C. Resonance reflection of acoustic waves by a perforated bilaminar rubber coating model[J]. The Journal of the Acoustical Society of America.1983, 73(5):1456-1463.
    [107]Pedersen P C, Tretiak O, He P. Impedance-matching properties of an inhomogeneous matching layer with continuously changing acoustic impedance[J]. The Journal of the Acoustical Society of America.1982,72(2):327-336.
    [108]Kerr F H. The scattering of a plane elastic wave by spherical elastic inclusions[J]. International Journal of Engineering Science.1992,30(2):169-186.
    [109]Gaunaurd G C, Uberall H. Theory of resonant scattering from spherical cavities in elastic and viscoelastic media[J]. The Journal of the Acoustical Society of America.1978, 63(6):1699-1712.
    [110]Gaunaurd G C, Barlow J. Matrix viscosity and cavity-size distribution effects on the dynamic effective properties of perforated elastomers [J]. The Journal of the Acoustical Society of America.1984,75(1):23-34.
    [111]Sgard F C, Olny X, Atalla N, et al. On the use of perforations to improve the sound absorption of porous materials[J]. Applied Acoustics.2005,66(6):625-651.
    [112]Ivansson S. Numerical modeling for design of viscoelastic coatings with favorable sound absorbing properties[J]. Nonlinear Analysis.2005,63(5-7):el541-el550.
    [113]王学川,卢先博,强涛涛,等.聚氨酯预聚体中异氰酸酯基团含量的测定[J].西部皮革.2009,31(5).
    [114]Slack W E M W. Freeze-stable allophanate-modified toluene diisocyanate trimers[Z]. 2000.
    [115]詹中贤,朱长春,等.影响热塑性聚氨酯弹性体力学性能的因素[J].聚氨酯工业.2005,20(1).
    [116]文庆珍,朱金华,姚树人,等.聚合物的水声声衰减能力与动态力学性能的关系[J].高分子材料科学与工程.2006,22(5).
    [117]文庆珍,龚沈光,朱金华,等.聚合物的水声吸声与动态力学性能关系的研究[J].武汉理工大学学报.2006,28(10).
    [118]文庆珍,朱金华,王源升,等.材料的动态力学对水声声吸收的影响[C].四川绵阳:2006.
    [119]文庆珍,朱金华,姚树人,等.聚合物的水声声衰减能力与动态力学性能的关系[J].高分子材料科学与工程.2006,22(5).
    [120]Keller M W, Sottos N R. Mechanical properties of microcapsules used in a self-healing polymer[J]. EXPERIMENTAL MECHANICS.2006,46(6):725-733.
    [121]刘天中.脲醛树脂微胶囊机械特性的表征[J].过程工程学报.2005,5(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700