聚甲醛、尼龙6和聚碳酸酯回收料的阻燃和高强超韧化改性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国工程塑料工业发展与国外先进水平有较大差距,虽然国内企业通过引进成套生产技术,在通用料生产方面其生产规模不断扩大,产品牌号不断增加,已经和国外企业相差无几。但是,在改性产品开发上国内企业远远落后于国外公司,至今没有改性产品上市。国内工程塑料市场基本为国外企业所垄断。本文以国产聚甲醛(POM)、聚酰胺(PA)6以及聚碳酸酯(PC)回收料为基料,选择有代表性的改性专用料体系进行改性技术的研究与开发,将有助于国内企业提高产品的附加值以及我国工程塑料改性技术水平的提升和行业的发展。本文的研究内容主要包括三大部分。第一,无卤阻燃POM复合物的制备及其阻燃机理研究
     POM的阻燃历来是一个难题,这与其自身特殊的分子结构和燃烧机理有关。本文采用磷系阻燃剂聚磷酸铵(APP)或微胶囊红磷(MRP)与三聚氰胺氰尿酸盐(MC)复配的磷-氮协效阻燃剂;此外,针对POM燃烧过程中难以成炭的特性,利用双季戊四醇(DPER)和热塑性酚醛树脂(novolak)协效成炭作用辅助其成炭;利用热塑性聚氨酯(TPU)作为无机粉体阻燃剂的载体及包覆材料,不仅可提高阻燃剂与基体树脂之间的相容性,还可降低因添加粉体阻燃剂对其力学性能造成的影响。综合上述技术,通过熔融共混法制备了性能优良的无卤阻燃POM复合物。测试了阻燃POM的阻燃性能、力学性能,并采用红外光谱仪(FTIR)分析了阻燃POM燃烧残炭的成分,用扫描电子显微镜(SEM)观测燃烧残炭的形貌,用热失重分析仪(TGA)表征了POM及阻燃POM的热稳定性,用热裂解-气相色谱-质谱联用仪(Py-GC-MS)分析了POM及阻燃POM的热降解机理。
     结果表明,MRP/MC/DPER/novolak复配阻燃POM的阻燃性可达到UL94V-1级,而APP/MC/DPER/novolak复配阻燃POM的阻燃级别可达UL94V-0级,其LOI最高达到52.8。垂直燃烧测试后样条表面剩余炭层的SEM照片显示,该炭层为外表面致密坚固、内部呈蜂窝状的焦化炭层,可有效阻止热和氧的传递,有助于减缓或终止燃烧。TGA测试结果表明,在阻燃POM燃烧过程中,复配阻燃剂在POM未分解之前就可起到阻燃作用,并促使体系的炭化使残炭量大幅提高。FTIR和Py-GC-MS分析表明,所加阻燃剂在气相和凝聚相同时起到阻燃作用。并且根据测试结果分析了阻燃机理。第二,尼龙6高强超韧化改性研究
     尼龙6改性研究一直是人们关注的焦点。本文分别采用甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)和甲基丙烯酸甲酯-甲基苯基硅氧烷-苯乙烯共聚物(MSiS)对尼龙6进行增韧改性研究,这两种共聚物均为具有“核-壳”结构的增韧剂,并用双酚A型环氧树脂(DGEBA)作为增容剂。这两种体系的SEM及TEM照片显示,增容剂的添加可显著提高MBS(或MSiS)粒子在基体中的分散性,使其形成单分散分布。结果表明,当尼龙6/MBS/DGEBA的质量比为80/20/3,体系的缺口冲击强度达到92kJ/m2,而尼龙6/MSiS/DGEBA(80/20/3)体系的缺口冲击强度达到66kJ/m2,MBS的增韧效果明显好于MSiS的。并且这两种试样冲击断面的SEM照片显示,基体发生了大范围的剪切屈服,为韧性断裂,其增韧机理为粒子的空穴化以及基体的剪切屈服。在增韧效果较好的MBS增韧体系中分别添加有机蒙脱土(OMMT)和针状硅灰石作为增强剂,以提高共混体系的强度和刚性。X-射线衍射仪(XRD)分析表明,OMMT被充分剥离分散在尼龙6基体中。透射电镜(TEM)照片显示,MBS和OMMT各自均匀分散在尼龙6基体中,OMMT的存在不会干扰MBS粒子空穴化以及引起基体的剪切屈服而起到增韧作用。第三,PC回收料的增韧及无卤阻燃改性研究
     PC是一种综合性能优良的工程塑料,其产量和消费量仅次于尼龙,位列五大通用工程塑料第二位。随着PC消费量的迅速增加,不可避免地产生大量废弃PC制品及废料,它既是宝贵的再生资源,处理不当又会对环境造成无法弥补的危害,所以对PC的回收再利用是节约资源,保护生态环境的有效处理方法。
     本文分别用具有“核-壳”结构的增韧剂MBS和MSiS粒子来对PC回收料进行改性研究。结果表明,由于MBS或MSiS与PC回收料相容性较差而没有达到增韧效果,当分别添加双酚A型环氧树脂(DGEBA).苯乙烯-马来酸酐共聚物(SMA)或聚双酚A羟基醚(Phenoxy)作为增容剂,其缺口冲击强度得到大幅提高。试样的SEM照片显示,增容剂的添加可使MBS(或MSiS)粒子在基体中形成单分散分布,这是取得优异增韧效果的关键因素。并根据实验结果分析了增韧机理。MSiS粒子不仅能有效提高PC回收料的冲击性能,还能赋予其优异的阻燃性能,当添加7wt.%MSiS和3wt.%的增容剂,可使PC回收料达到UL94 V-0的阻燃级别。垂直燃烧测试后残炭的FTIR分析表明,添加MSiS的PC共混物在燃烧时生成富含Si-C键和Si-O-Si键的隔氧绝热残炭层,起到隔热隔氧的作用。通过上述方法对PC回收料进行改性,为其再利用创造了条件,达到了充分利用回收料、节约资源的目的。
At present, there are the huge gaps in development of engineering plastics technologies between domestic and international industries. The production scales of general grade engineering plastics are continuously expanding and product categories of general grade engineering plastics are increasing by introducing the complete sets of technique in the domestic enterprises. However, the domestic enterprises lag far behind many countries in the technologies of engineering plastics modification; there are no modified products in market. The almost all domestic market of engineering plastics is monopolized by the foreign enterprises. To promote the improvement of the modification techniques of engineering plastics and the development of the domestic industries, polyoxymethylene(POM), polyamide 6(PA6), and recycled polycarbonate(PC) were modified for achievement of high performance in this work. The studies contain three parts in this paper.
     Firstly, Preparation and study on flame-retardant mechanism of halogen-free flame-retarded POM compounds
     POM is considered as the most difficultly flame-retarded thermoplastic polymer because of its special chemical structure as well as its thermal stability and chemical degradation characteristics. In this paper, the flammability characteristics and thermal stability of halogen-free flame-retardant POM were studied, and two very effective flame retarding formulation for POM were developed from a combination of ammonium polyphosphate (APP), melamine cyanurate (MC), novolak, and dipentaerythritol(DPER), and the other combination of microencapsulated red phosphorus(MRP), MC, novolak, and DPER. The decomposition behavior of the POM compounds was evaluated by thermogravimetric analysis(TGA). The compound shows optimal flame retardancy with a limiting oxygen index of 52.8 and flammability rating of UL94 V-0, when 27wt.%APP,9wt.%MC,4 wt.% novolak, and 4wt.% DPER are simultaneously incorporated into POM. The MRP/MC/DPER/novolak flame retarded system achieved UL94 V-1 rating. The presence of novolak and DPER as char-forming agents results in a dense and compact multicellular char residue for the test bar after combustion, while Fourier transform infrared(FTIR) spectra confirm a characteristic phosphorous-and carbon-rich char resulting from the APP/MC formulation. The pyrolysis-gas chromatography-mass spectrometry(Py-GC-MS) analysis indicates that highly flammable formaldehyde gas, the main pyrolysis product of POM, is annihilated by amide derivatives produced by the pyrolysis of MC, imparting better flame retardancy. The comprehensive flame-retardant mechanisms based on phosphorus-nitrogen synergism promote the high flame retardancy of POM to reach the non-flammability of the V-0 rating. Secondly, Study on modification of nylon 6 for enhancement of impact resistance and strength
     Modification of nylon 6 is the focus all the time.This work is focused on a new route to achieve both high fracture toughness and high strength for nylon 6. A series of nylon 6-matrix composites were prepared via melting extrusion by compounding with poly(methyl methacrylate-co-butadiene-co-styrene) (MBS) latex particles as an impact modifier and diglycidyl ether of bisphenol-A (DGEBA) as a compatibilizer. Layered organic montmorillonite and fibrillar wollastonite were also incorporated into the nylon 6 compounds for the reinforcement of materials. Morphology study suggests that the MBS latex particles could achieve a mono-dispersion in nylon 6 matrix with aid of 3wt.% DGEBA, which improves the compatibilization and an interfacial adhesion between the matrix and the shell of MBS using a melt-extrusion technique. A high impact toughness was also obtained but with a corresponding reduction in tensile strength and stiffness. A moderate amount of the layered organic montmorillonite and fibrillar wollastonite as a nonofiller could gain a desirable balance between tensile strength and toughness of the materials, and the flexural strength, tensile strength, and stiffness achieved an improvement. The thermal stability and thermal resistance were also enhanced. This suggests that the combination of nanofillers and core-shell latex particlesis a useful strategy to optimize and enhance the properties of PA6. The structure and morphology of the nanocomposites studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the layered organic montmorillonite was exfoliated within nylon 6 matrix. It was found that the core-shell latex particles and the nanofillers were dispersed respectively in the nylon 6 matrix. The study indicates that the presence of the nao fillers in the nylon 6 matrix cannot disturb the latex particles to promote high fracture toughness via particle cavitation and subsequent matrix shear yielding, in addition, provided maximum reinforcement to the polymer. Thirdly, Study on modification and mechanism of recycled PC in improvement in impact resistance and flame retardancy
     PC is one of the most important engineering thermoplastics used in a wide variety of applications; the annually consumed amount of this polymer exceeds several million metrictons. In recent years, the interest in recycling of PC has expanded dramatically and this is a trend that will undoubtedly continue into the future, which may be explained by (i) limited natural resources, (ⅱ) rising waste-handling costs, and (ⅲ)environmental regulations related to land-filling and incineration of plastics. In this paper, two types of core-shell structured latexes, poly(methyl methacrylate-co-butadiene-co-styrene) (MBS) and poly(methyl methacrylate-co-methylphenyl siloxaneco-styrene) (MSiS) were used to modify recycled polycarbonate(PC) for the enhancement of toughness and flame retardancy. The impact strength of the modified PC blends was not improved after melt-blending recycled PC with these two kinds of latexes, probably because the latex particles were not evenly dispersed in the PC matrix because of the incompatibility between PC and PMMA shell of the latexes. Addition of a compatibilizer, e.g. DGEBA, SMA, or Phenoxy can effectively enhance the toughening effect of recycled PC with core-shell structured modifiers. The presence of compatibilizer in the blends reduces the interfacial tension and introduces a steric hindrance to coalescence, and thus enhances the interfacial adhesion between PC domain and PMMA shell, and improves the dispersion of core-shell structured particles in the PC matrix. The ternary blends achieve a high impact resistance by cavitation of the particles, which relieves the triaxial stress and promotes massive shear yielding of the matrix, and then enables the matrix to fracture by the plane stress ductile tearing mode. Additionally, MSiS has a silicone-based core and can effectively retard the combustion of recycled PC. The blends containing 7wt.% MSiS and 3wt.% compatibilizer can achieve a UL94 V-0 rating in vertical burning test. We proposed that, during combustion, a fine dispersion of MSiS particles in the PC matrix facilitates the rapid migration of MSiS and formation of a uniform and highly flame resistant char barrier on the surface of the modified PC.
引文
[1]黄锐.工程塑料手册[M].第一版,北京:机械工业出版社,2000,132-142
    [2]罗毅,削勤莎.聚甲醛工程塑料及其发展方向[J].工程塑料应用,1998,26(2):27-30
    [3]杨明菊,王亚.多聚甲醛的生产工艺及技术进展[J].四川化工,2009,12(4):26-28
    [4]邓如生.共混改性工程塑料[M].第一版,北京:化学工业出版社,2003,408-410
    [5]王志刚.国内外聚甲醛生产进展[J].化工中间体,2005,(4):17-21
    [6]韩忠明.聚甲醛生产、消费及技术进展[J].化学工业与工程技术,2001,22(3):14-17
    [7]吴步军.国内外聚甲醛的生产现状与市场分析[J].广东化工,2008,35(186):3-5
    [8]郭莉,于千.我国聚甲醛的生产与应用[J].石油化工应用,2008,27(4):12-15
    [9]汪晓东.多相高分子材料高强超韧化机理与群子标度间相关性的研究[D].北京:北京化工大学,1996,4
    [10]Flexman E A, Huang D D, Snyder H L. Polym. Perpr.,1988,29(2):189-192
    [11]Chiang W Y, Huang C Y. The effect of the soft segment of polyurethane on copolymer-type polyacetal/polyurethane blends[J].J. Appl. Polym. Sci.,1989,38(5): 951-968
    [12]刘春林,周如东,吴盾,等.TPU增韧改性POM的研究[J].聚氨酯工业,2008,23(4):12-15
    [13]任显诚,张勤英,杨德文.聚氨酯增韧聚甲醛的研究[J].塑料工业,2004,32(6):14-16
    [14]Mehrabzaden M, Rezaie D. Impact modification of polyacetal by thermoplastic elastomer polyurethane[J]. J. Appl. Polym. Sci.,2002,84:2573-2582
    [15]徐卫兵,朱士旺,蔡琼英.均聚甲醛对共聚甲醛成核作用的研究[J].中国塑料,2000,14(3):39-42
    [16]汪晓东,金日光.尼龙6超韧化[J].合成树脂及塑料,1996,13:48-51
    [17]冯定松,过俊石,谢洪泉.用顺酐化EPDM增容的EPDM改性聚甲醛[J].合成工业橡胶,1997,20(3):166-168
    [18]于建,王书武,黄国峰,等.丁腈橡胶对聚甲醛树脂的增韧机理研究[J].高分子学报,2000,1:90-94
    [19]丁军,刘维民,潘广勤,等.不同热塑性弹性体增韧聚甲醛[J].合成橡胶工业,2005,28(3):195-199
    [20]徐卫兵,朱士旺,蔡琼英.尼龙-12增韧改性聚甲醛的研究工程塑料应用[J].1995,23(1):9-11
    [21]谢代义,刘渊,王琪.三聚氰胺氰尿酸盐/聚氨酯复合阻燃聚甲醛的研究[J].塑料工业,2006,34(4):17-19
    [22]Polyplastics Co.Ltd. Fire-resistant polyoxymethylene compositions [P].Patent, JP 55-35421.1980-09-13
    [23]Masazumi C, Hideo A, Michihiro A, et al. 1,3,6-Tris(4,6-diamino-1,3,5-triazin-2-yl)hexane and resin verbindung enthaltende herzmassen[P].Patent, DE 2733564.1978-02-02
    [24]Liu Y, Liu M, Xie D, et al.Thermoplastic Polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene[J]. Polym. Plast. Technol. Eng.,2008,47:330-334
    [25]Hatsuhiko Harashina, Yoshihisa Tajima, Takahito Itoh. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly(oxymethylene)[J]. Polym. Degrad. Stab.,2006,91:1996-2002
    [26]樊真,赵小平.膨胀型阻燃剂MPP在塑料中的应用[J].塑料工业,1996,(5):92-93
    [27]Celanese Corp of America. Self-extinguishing polyoxymethylene compositions[P].Patent, NL 6503940.1965-09-28
    [28]Komazawa H. Fire-resistant polyoxymethylene compositions[P].Patent, JP 48-07044. 1973-09-29
    [29]Froemming B W, Martin B W. Flame retardant polyoxymethylene composition[P].Patent, US 3485793.1969-12-23
    [30]王建祺,等.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005,48-72
    [31]徐东,贺永,迟宏宇.一种无卤环保阻燃的聚甲醛树脂及其制备方法[P].中国专利,CN 1995130A.2007-07-11
    [32]王琪,刘渊,谢代义.聚氨酯基复合阻燃聚甲醛材料的制备[P].中国专利,CN1810881A.2006-08-02
    [33]谢代义.聚氨酯基复合阻燃剂阻燃POM的研究[D].成都:四川大学高分子研究所,2006,10-56
    [34]Tanigawa. Flame-retardant polyacetal resin composition[P].Patent, US 6699923. 2004-05-02
    [35]刘鹏波,徐闻,李英杰.聚甲醛阻燃的研究[J].高分子材料科学与工程,2004,20(6):120-123
    [36]冯定松,谢洪泉,何平.用A1(OH)3提高共聚甲醛阻燃性能的研究[J].石化技术与应用,1999,17(2):79-99
    [37]赵小平,李绍文,丁向东,等.阻燃级聚甲醛的研究[J].安徽化工,1997,86(1):13-18
    [38]Shida S. Flame-retardant polyacetal compositions[P].Patent, JP 48-43446.1973-06-32
    [39]Mastushita Electric Industry Co. Ltd. Fire-resistant acetal resin compositions[P]. Patent, JP 55-84348.1980-06-25
    [40]杨伟,刘正英,杨明波.聚碳酸酯合金技术与应用[J].北京:机械工业出版社,2008,15-17
    [41]张玉龙,李萍.工程塑料改性技术[M].北京:机械工业出版社,2006,70-74
    [42]白杉.聚碳酸酯发展概况[J].国际化工信息,2003,6:10-11
    [43]柴国梁.聚碳酸酯发展动向[J].化工新型材料,1999,27(6):9-12
    [44]李四红.国内外聚碳酸酯的生产现状分析[J].安徽化工,2009,35(1):11-14
    [45]冯继云,李松,张增民.PC/弹性体体系的性能、结构及应用[J].中国塑料,1992,6(2):25-33
    [46]Yee A F. The Yield and deformation behavior of some polycarbonate blends[J]. J. Mater.Sci.,1977,12:757
    [47]贾宝山,等.PC/SBS共混物力学性能与形态的研究[J].塑料科技,2005,165:9-12
    [48]孙清,郑昌仁,吴石山,等.TPU改性PC的研究[J].高分子材料科学与工程,1999,15(3):139-141
    [49]刘诤,刘佑习.核壳粒子增韧工程塑料[J].现代塑料加工应用,1998,10(4):56-59
    [50]王丽琴,何大勇.PBA-PMMA核壳增韧剂改性聚碳酸酯的研究[J].高分子科学与工程,1998,1(1):98-100
    [51]Tanrattanakvl V, Baer E, Hiltner A.Toughening polycarbonate with core-shell structured latex particles[J]. J. Appl. Polym. Sci.,1996,62:2005-2013
    [52]Cho K,Yang J,Yoon S, et al. Toughening of polycarbonate:Effect of particle size and rubber phase contents of the core-shell impact modifier[J]. J. Appl. Polym. Sci.,2005,95:
    748-755
    [53]邱宏斌,董丽松,冯之榴.一种新型塑料增韧剂-核壳结构聚合物[J].高分子通报,1997,3:179-183
    [54]Kayano Y, Keskkula H, Paul D R. Fracture behaviour of polycarbonate blends with a core-shell impact modifier[J]. Polymer,1998,39:821-834
    [55]Lu D, Dong L, Feng Z, et al. Effect of the core-shell latex polymer content on the compatibility,morphology and mechanical properties of PC/PBA-cs-PMMA[J].Macromol. Chem. Phys.,1998,199:1709-1714
    [56]lji M, Serizawa S. Silicone derivatives as new flame retardants for aromaic thermoplastics used in electronic devices[J].Polym. Adv. Technol.,1998,9:593-600
    [57]Mercado L A, Galia M, Reina J A. Silicon-containing flame retardant epoxy resins: Synthesis,characterization and properties [J]. Polym. Degrad. Stab.,2006,91(11): 2588-2594
    [58]Hayashida K. Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques[J] Polym. Bull.,2002, 48(6):483-490
    [59]Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography[J].Polymer,2003,44(19):5611-5616
    [60]Furukawa H, Hatanaka H, Shiromoto K, etal. Flame-resistant thermoplastic resin composition[P].Eur Patent Application, EP 1094093.2001-04-25
    [61]Iji M, Serizawa S, Yamamoto A, etal. Flame retardant polycarbonate resin compositions [P].Patent, US 6284824.2001-09-04
    [62]Saito A, Kitamura T, Ishida H, etal. Flame-retardant resin composition and molded article consisting of the same[P].Patent, US 6451906.2002-09-17
    [63]Saito A, Ishida H, Takezawa Y, et al. Flame-retardant resin molding[P]. Eur Patent Application, EP 1272565.2003-01-08
    [64]Asano T, Shimizu K. Flame retardant resin composition[P]. Patent, US 6649680. 2003-11-18
    [65]周文君,杨辉.甲基苯基硅树脂的制备工艺优化及阻燃性能[J].化工学报,2006,57(9):2218-2222
    [66]李晓俊,刘小兰,刘宪增,等.硅树脂阻燃聚碳酸酯的研究[J].工程塑料应用,2005,33(2):16-18
    [67]欧育湘.新型无卤阻燃工程塑料[J],现代化工,2000,20(12):59-61
    [68]Davis G C, Lewis L N. Flame retardance additives for aromatic-based polymers and related polymer compositions[P]. Patent, US 5955542.1999-09-21
    [69]王江波,辛忠.聚甲基苯基硅氧烷微球对聚碳酸酯性能的影响[J].中国塑料,2008,22(1):25-28
    [70]Miyatake N, Takikawa K, Nakamori D, et al. Flame retardant for thermoplastic resin and flame-retardant resin composition[P]. Patent, US 6545116.2003-04-08
    [71]Romanesko D, Schmidt R, Togashi A, ea al. Flame retardant compositions[P]. PCT Patent, WO 03097745.2003-11-27
    [72]Rajagopalan P, Campbell J R, Lewis L N. Flame retardant polycarbonate-silsesquioxane compositions, method for making and articles made thereby[P]. Patent, US 6518357. 2003-02-11
    [73]Camino G, Costa L, Martinasso G. Intumescent fire-retardant system[J]. Polym. Degrad. Stab.,1989,23:159-276
    [74]邓如生,魏运方,陈步宁.聚酰胺树脂及其应用[M].北京:化学工业出版社,2002
    [75]宋波.聚酰胺6/无机刚性粒子/POE-g-MAH超韧化研究[D].成都:四川大学高分子材料科学与工程学院,2004
    [76]Dijkstra K, Laoe J, Gaymans R J. Nylon-6/rubber blends:6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber) blends[J]. Polymer,1995,35:315-322
    [77]Okada O, Keskkla H, Paul D R. Fracture toughness of nylon-6 blends with maleated rubbers[J]. J. Polym. Sci., Part B:Polym. Phys.,2004,42:1739-1758
    [78]张甲敏,王雪静,连照勋.尼龙6/MBS反应共混物的形态结构与性能[J].高分子材料科学与工程,2009,25(8):87-89
    [79]杨明山.尼龙6与改性PP的共混研究[J].高分子材料科学与工程,1996,(12):78-89
    [80]Lu M, Keakkula H, Paul D R. Toughening of nylon 6 with core-shell impact modifiers: effect of matrix molecular weight[J]. J. Appl. Polym. Sci.,1996,59:1467-1477
    [81]Soh Y S. Phenoxy and diglycidyl ether of bisphenol-A as compatibilizers for nylon 6/methyl methacrylate-styrene-butadiene graft polymer blends [J]. Polymer,1994,35: 2764-2773
    [82]Wu C, Kuo J, Chen C. Rubber toughened polyamide 6:The influences of compatibilizer on morphology and impact properties [J]. Polym.Eng. Sci.,1993,33(20):1329-1335
    [83]汪晓东,金东吉,金日光.增容剂对“壳-核”型共聚物增韧尼龙6的亚微形态与性能的影响[J].高分子学报,1996,4:494-498
    [84]宋平安.膨胀阻燃、纳米阻燃及其协同阻燃聚丙烯的研究[D],杭州:浙江大学高分子科学与工程学系,2009
    [85]Arthur F G, Charles A W. Fire retardancy of polymeric materials[M].Press:Marcel Dekkel,2000
    [86]张军,纪奎江,夏延致.聚合物燃烧与技术[M].北京:化学工业出版社,2005,2-6
    [87]王德义.含磷共聚酯/无机纳米复合材料的制备、性能与阻燃机理研究[D].成都:四川大学,2007
    [88]Kern W. Chemische Elementarvorga" nge bei der Alterung von Kunststoffen[J]. Chemiker-Ztg/Chem Apparatur,1967,91(8):255-262
    [89]Kern W, Cherdron H. Der abbau von polyoxymethylenen. Poloxymethylene. 14.Mitteilung[J].Makromol.Chem.,1960,40(1):101-107
    [90]Cherdron H, Hohr L, Kern W. Der acidolytische abbau von polyoxymethylenen.18. Mitt. uber polyoxymethylene[J].Makromol.Chem.,1962,52(1):48-58
    [91]Masamoto J, Matsuzaki K, Iwaisako T, et al. Development of a new advanced process for manufacturing polyacetal resins. Part Ⅲ. End-capping during polymerization for manufacturing acetal homopolymer and copolymer[J]. J. Appl. Polym. Sci.,1993,50(8): 1317-1329
    [92]Duan Y, Li H, Ye L, Liu X. Study on the Thermal Degradation of Polyoxymethylene by Thermogravimetry-Fourier Transform Infrared Spectroscopy(TG-FTIR)[J].J. Appl.Polym. Sci.,2006,99:3085-3092
    [93]Dudina L A, Karmilova L V, Yenikolopyan N S. Thermo and thermo-oxidative degradation of polyformaldehyde-IV. Kinetics of the thermo-oxidative reaction[J].Polym.
    Sci. U.S.S.R.,1964,5(2):222-227
    [94]Dudina L A, Enikolopyan, N S. Thermal and thermo-oxidative degradation of polyformaldehyde.Ⅱ. Temperature dependence of the thermal degradation rate[J]. Polym. Sci. U.S.S.R.,1963,4(6):1678-1679
    [95]Kelleher P G, Jassie L B. Investigation of thermal oxidation and photooxidation of acetal plastics by infrared spectroscopy [J]. J.Appl.Polym.Sci.,1965,9(7):2501-2510
    [96]Cherdron Von H, Hohr L, Kern W. Der acidolytische abbau von polyoxymethylenen.18. Mitt. iiber polyoxymethylene[J].Makromol.Chem.,1962,52(1):48-58
    [97]Oba K, Ishida Y, Ito Y, Ohtani H, ea al. Characterization of Branching and/or Cross-Linking Structures in Polycarbonate by Reactive Pyrolysis-Gas Chromatography in the Presence of Organic Alkali [J]. Macromolecules,2000,33:8173-8183
    [98]Oba K, Ohtani H, Tsuge S. Confirmation of the xanthone structure in thermally treated polycarbonates by reactive pyrolysis gas chromatography/mass spectrometry [J]. Polym. Degrad. Stab.,2001,74:171-176
    [99]Davis A, Golden J H. Thermally-induced cross-linking of poly[2.2-propane-bis-(4-phenyl carbonate)][J]. Makromol. Chem.,1967,110(1):180-184
    [100]Davis A, Golden J H. Degradation of polycarbonates.Ⅲ. Viscometric study of thermally-induced chain scission[J]. Makromol. Chem.,1964,77(1):185-190
    [101]Jang B N, Wilkie C A. A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate[J]. Polym. Degrad. Stab.,2004,86(3):419-430
    [102]王永强.阻燃技术与阻燃材料[M].北京:化学工业出版社,2003.14-43
    [103]Broadbent J R A, Hirschler M M. Red phosphorus as a flame retardant for a thermoplastic nitrogen-containing polymer[J]. Eur. Polym. J.,1984,20(11):1087-1093
    [104]Chiu S H, Wang W K. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives[J]. Polymer,1998,39(10): 1951-1955
    [105]Merz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems[J].J. Polym. Sci.,1956,22(101):325-341
    [106]Schmitt J A, Keskkula H. Short-time stress relaxation and toughness of rubber-modified polystyrene[J]. J. Appl. Polym. Sci.,1960,3(7):132-142
    [107]Newman S, Strella S. Stress-strain behavior of rubber-reinforced glassy polymers [J]. J. Appl. Polym. Sci.,1965,9(6):2297-2310
    [108]Strella S. Rubber reinforcement of glassy polymers[J]. J. Polym. Sci.,Part A-2:Polym. Phys.,1966,4(3):527-528
    [109]Buchnall C B. Fracture and failure of multiphase polymers and polymers composites [J]. Adv. Polym. Sci.,1987,27:121-148
    [110]Donald R, Buchnall C. Pure and Appl Chem,1976,46:277.
    [111]Bichnall C B, Clayton D, Keast W E. Rubber-toughening of plastics, Part 2:Creep mechanisms in HIPS/PPO blends [J].J. Mater. Sci.,1972,7(12):1443-1453
    [112]Perkins W G. Polymer toughness and impact resistance[J].Polym.Eng.Sci.,2004,39(12): 2445-2460
    [113]Pearson R A, Yee A F. Toughening mechanisms in elastomer-modified epoxies[J]. J. Mater. Sci.,1986,21(7):2475-2488
    [114]刘浩,杨锋,肖朝晖,等.PA6工程塑料的生产及市场概况与展望[J].中国塑料, 2003,17(1):10-14
    [115]陈信忠.我国聚甲醛产业发展策略的探讨[J].现代化工,2000,20(10):50-52
    [1]Camino G, Martinasso G, Costa L. Thermal degradation of penterythritol diphosphate[J]. Polym. Degrad. Stab.,1990,27:285-296
    [2]Liu Y, Liu M, Xie D, et al. Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene[J]. Polym. Plast. Technol. Eng.,2008,47:330-334
    [3]傅明源,孙酣经.聚氨酯弹性体及其应用[M].第2版.北京:化学工业出版社,1999,93
    [4]Harashina H, Tajima Y, Itoh T. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly(oxymethylene)[J]. Polym. Degrad. Stab.,2006,91:1996-2002
    [5]Silverstein R M, Webster F X. Spectrometric identification of organic compounds[M].6th ed. New York:Wiley,1998
    [6]Kopf P W. Encyclopedia of polymer science and engineering[M]. vol.11.New York:Wiley, 1985,45
    [7]Cherdron H, Hohr L, Kern W. Der acidolytische abbau von polyoxymethylenen.18. Mitt. uber polyoxymethylene[J].Makromol.Chem.,1962,52(1):48-58
    [8]Casu A, Camino G, De Giorgi M, et al. Fire-retardant mechanistic aspects of melamine cyanurate in polyamide copolymer[J].Polym.Degrad.Stab.,1997,58(3):297-302
    [9]欧育湘.阻燃剂[M].北京:国防工业出纳社,2009,146-182
    [10]徐晓楠,卢林刚,殷全明,等.四苯基双酚A二磷酸酯及复配纳米Si02体系阻燃PC/ABS的热动力学分析[J].火灾科学,2009,18(2):95-100
    [11]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001,127-131
    [12]廖艳芬,王树荣,骆仲泱,等.纤维素热裂解过程动力学的试验分析研究[J].浙江大学学报(工学版),2002,36(2):172-176
    [13]曲雯雯,夏洪应,彭金辉,等.核桃壳热解特性及动力学分析[J].农业工程学报,2009,25(2):194-198
    [1]王国全.聚合物共混改性原理与应用[M].北京:中国轻工业出版社,2008,151
    [2]王玉东,郭方方,杨前华,等.尼龙1212/MBS/环氧乙烷共混体系的制备和性能研究[J].塑料工业,2007,35(12):17-19
    [3]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,3:135-143
    [4]Fu X, Qutubuddin S.Polymer-clay nanocomposites:exfoliation of organophilic montmorillonite nanolayers in polystyrene[J].Polymer,2001,42:807-813
    [5]Arimitsu Usuki, Akihiko Koiwai, Yoshitsugu Kojima, et al. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid[J].J.Appl.Polym.Sci.,1995, 55:119-123
    [6]李珍,姚书振,沈上越,等.硅灰石/环氧树脂增强体系性能研究[J].合成树脂及塑料,2004,21(1):58-61
    [7]刘玲,殷宁,亢茂青,等.晶须补强复合材料机理的研究[J].材料导报,2000,14(6):46-48
    [8]Lim S-H, Dasari A, Yu Z, et al. Fracture toughness of nylon 6/organoclay/elastomer nanocomposites[J]. Compos. Sci. Technol.,2007,67:2914-2923
    [9]Hao X, et al. Flame retardancy and antidripping effect of OMT/PA nanocomposites[J]. Mater. Chem. Phys.,2006,96:34-41
    [10]郝向阳,刘吉平,冯顺山.插层剂对蒙脱土/PA6纳米塑料性能的影响[J].塑料工业,2002,30(3):48-51
    [11]Lin L, Argon A S. Deformation resistance in oriented nylon 6[J].Macromolecules,1992, 25,4011-4024
    [12]宋波.聚酰胺6/无机刚性粒子/POE-g-MAH超韧化研究[D].2004,成都:四川大学高分子材料科学与工程学院,39,40
    [13]张志英,曹振林.PA6/PET共混物的非等温结晶动力学研究[J].合成纤维工业,1995,18(6):14-17
    [1]Hahnsen H, Hucks U, Kratschmer S, et al. Process for the recycling of polycarbonates[P]. Patent, US 2003/0065130A1.2003-04-03
    [2]Lieberman M. Blend composition containing recycled polycarbonate and recycled polymethylmethacrylate[P].Patent, US 5569713.1996-10-29
    [3]汪克风,岳瑟,杨得志.由PC次料改性的PC/ABS合金[P].中国专利,CN 101024720A.2007-08-29
    [4]岳瑟,刘济林.聚碳酸酯/丙烯腈丁二烯苯乙烯共聚物次料回收配方[P].中国专利,CN101210104A.2008-07-02
    [5]Wang X H, Wang Z G, Jiang W, et al. Toughened blend of polycarbonate and epoxidized ethylene propylene eiene rubber [J]. Polymer,1997,38(25):6251-6253
    [6]Tanrattanku V, Baer E, HilanerI A, et al. Toughening polycarbonate with core-shell structured latex particles [J]. J. Appl. Polym. Sci.,1996,62:2005-2013
    [7]Stretz H A, Cassidy P E, Paul D R, et al. Blends of polycarbonate and rubber-toughened styrene-maleic anhydride copolymers[J]. J. Appl. Polym. Sci.,1999,74:1508-1515
    [8]欧育湘,赵毅,韩廷解,等.无卤阻燃聚碳酸酯新进展[J].工程塑料应用,2009,37(1):79-83
    [9]邱宏斌.一种新型塑料增韧剂-核壳结构聚合物[J].高分子通报,1997,9:179-183
    [10]Abbas K B. Reprocessing of thermoplastics. Ⅱ. Polycarbonate[J]. Polym. Eng. Sci.,1980, 20:376-382
    [11]蒋文真,等.PC/PET共混体系的动态流变性能研究[J].工程塑料应用,2009,37(8):65-67
    [12]Favis B D, Willis J M. Phase size/composition dependence in immiscible blends: Experimental and theoretical considerations[J].J.Polym.Sci.,Part B:Polym.Phys.,1990,28 (12):2259-2269
    [13]Wu S. Formation of dispersed phase in incompatible polymer blends:Interfacial and rheological effects[J].Polym.Eng.Sci.,1987,27:335-343
    [14]Schneider M, Plth T, et al. J Mater Sci,1997,32:6331
    [15]Kayano Y, Keskkula H, Paul D R. Fracture behaviour of polycarbonate blends with a core-shell impact modifier[J].Polymer,1998,39:821-834
    [16]李希俊,李凤红,崔冬梅.MBS树脂增韧PC的研究[J].塑料工业,2007,35(12):25-27
    [17]张权,施用晞,李洋,等.橡胶增韧塑料机理的探讨[J].分析测试学报,1995,14:86-89
    [18]温变英,马泽仁,于建.低摩尔质量PC/PP共混体系的增韧机理研究[J].塑料工业,2005,33(7):10-13
    [19]Horiuchi S, Matchariyakul N,Yase K,et al. Compatibilizing effect of a maleic anhydride functionalized SEBS triblock elastomer through a reaction induced phase formation in the blends of polyamide 6 and polycarbonate:1. Morphology and interfacial situation[J].Polymer,1996,37:3065-3078
    [20]欧育湘.阻燃剂[M].北京:国防工业出版社,2009,46
    [21]Hayashida K. Flame retarding mechanism of polycarbonate containing trifunctional phenylsilicone additive studied by analytical pyrolysis techniques[J]. Polym. Bull., 2002,48(6):483-490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700