高表达尿毒素分解酶基因工程菌的构建及酶活性测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的将肌酐水解酶基因克隆入乳酸菌NICE表达系统及乳酸菌pMG36e表达系统,构建能高效表达肌酐水解酶的乳酸工程菌,使之能产生肌酐水解酶,并测定比较其产酶活性。
     方法从斯氏假单胞菌A1501中提取基因组DNA,根据genbank上已知的固氮斯氏假单胞菌肌酐水解酶基因序列,设计引物PCR扩增肌酐水解酶基因片段,经测序鉴定后将其分别克隆入质粒pMG36e, PNZ8048构建成重组质粒pMG36e-Cr、PNZ8048-Cr,并分别转化大肠杆菌DH5α及MC1061,筛选鉴定,提取重组质粒PMG36e-Cr、PNZ8048-Cr,电穿孔转化乳酸菌L.lactis NZ9000,筛选鉴定。制备基因工程菌粗酶液,进行SDS-PAGE分析,并测定粗酶液肌酐水解酶的活性。
     结果
     1、以斯氏假单胞菌A1501基因组为模板PCR扩增的基因片段琼脂糖电泳大小约0.76kb,与Genbank肌酐水解酶基因片段大小符合。
     2、构建的含重组质粒pMD18-T-Crl, pMD18-T-Cr2的大肠杆菌DH5α进行菌液PCR扩出0.76Kb大小片段与目的片段大小符合。提取重组质粒pMD18-T-Crl以SpeⅠ和HindⅢ双酶切,pMD18-T-Cr2用SalⅠ和HindⅢ双酶切,两酶切产物电泳均示酶切片段大小为2.7Kb、0.76Kb与预期符合。基因测序结果比对示克隆片段序列与Genbank(序列号CP000304.1)肌酐水解酶基因序列完全一致。
     3、成功构建含pMG36e-Cr、PNZ8048-Cr的重组乳酸菌,提取重组质粒pMG36e-Cr、PNZ8048-Cr以质粒为模板PCR扩出0.76Kb大小片段与目的片段大小符合。PMG36e-Cr以SalⅠ和HindⅢ双酶切得片段大小为3.6Kb、0.76Kb与预期符合,PNZ8048-Cr以SpeⅠ和HindⅢ双酶切得片段大小为3.3Kb、0.76Kb与预期符合。
     4、粗酶液经不连续SDS-PAGE分析,重组乳酸菌表达重组蛋白的分子量约为27KD,与由肌酐水解酶253个氨基酸计算的理论分子量相符。经粗酶液活性测定,斯氏假单胞菌A1501粗酶液活性为0.32u/ml, L.lactis-pMG36e-Cr的基因重组乳酸菌酶活性0.24u/ml;L.lactis-PNZ8048-Cr的基因重组乳酸菌的酶活性为1.24u/ml,较斯氏假单胞菌A1501及L.lactis-pMG36e-Cr明显升高。
     结论利用乳酸菌NICE系统成功构建了高效表达肌酐水解酶的乳酸基因工程菌L.lactis-PNZ8048-Cr,比较原始菌及L.lactis-pMG36e-Cr表达肌酐水解酶活性明显提高,此工程菌的成功构建可以成为慢性肾衰肠道细菌疗法的重大进展,为进一步构建可以高效分解多种尿毒素的基因工程菌提供了可能。
     目的将尿酸氧化酶基因克隆入乳酸菌NICE表达系统及乳酸菌pMG36e表达系统,使之能产生尿酸氧化酶,并测定比较其产酶活性。
     方法从产朊假丝酵母菌中提取基因组DNA,根据genbank上已知的产朊假丝酵母菌尿酸氧化酶基因序列,设计引物PCR扩增尿酸氧化酶基因片段,经测序鉴定后将其分别克隆入质粒pMG36e,PNZ8048构建成重组质粒pMG36e-U、PNZ8048-U,并分别转化大肠杆菌DH5α及MC1061,筛选鉴定,提取重组质粒PMG36e-U、PNZ8048-U,电穿孔转化乳酸菌L.lactis NZ9000,筛选鉴定。制备基因工程菌粗酶液,进行SDS-PAGE分析,并测定粗酶液尿酸氧化酶的活性。
     结果
     1、以产朊假丝酵母菌基因组为模板PCR扩增的基因片段琼脂糖电泳大小约0.9kb,与Genbank尿酸氧化酶基因片段大小符合。
     2、构建的含重组质粒pMD18-T-U1, pMD18-T-U2的大肠杆菌DH5α进行菌液PCR扩出0.9Kb大小片段与目的片段大小符合。提取重组质粒pMD18-T-U1以NcoⅠ和SpeⅠ双酶切,PMD18-T-Cr2用SalⅠ和HindⅢ双酶切,两酶切产物电泳均示酶切片段大小为2.7Kb、0.9Kb与预期符合。重组菌经测序后序列比对示克隆片段序列与Genbank(序列号E12709)尿酸氧化酶基因序列完全一致。
     3、成功构建含pMG36e-U、PNZ8048-U的重组乳酸菌,提取重组质粒pMG36e-U、PNZ8048-U以质粒为模板PCR扩出0.9Kb大小片段与目的片段大小符合。PMG36e-U以SalⅠ和HindⅢ双酶切得片段大小为3.6Kb、0.9Kb与预期符合,PNZ8048-U以SpeⅠ和HindⅢ双酶切得片段大小为3.3Kb、0.9Kb与预期符合。
     4、粗酶液经不连续SDS-PAGE分析,重组乳酸菌表达重组蛋白的分子量约为34KD,与由尿酸氧化酶303个氨基酸计算的理论分子量相符。
     重组乳酸菌L.lactis-PNZ8048-U重组蛋白表达量明显高于L.lactis-pMG36e-U的基因重组乳酸菌。经粗酶液活性测定,产朊假丝酵母菌粗酶液活性为0.55u/ml, L.lactis-pMG36e-U的基因重组乳酸菌酶活性为0.29u/ml; L.lactis-PNZ8048-U的基因重组乳酸菌酶活性为1.92u/ml,较原始菌株及L.lactis-pMG36e-U明显升高。
     结论利用乳酸菌NICE系统成功构建了高效表达尿酸氧化酶的乳酸基因工程菌L.lactis-PNZ8048-U,比较产朊假丝酵母菌及L.lactis-pMG36e-U酶活性明显提高,此工程菌的成功构建可以成为慢性肾衰肠道细菌疗法的重大进展,为进一步构建可以高效分解多种尿毒素的基因工程菌提供了可能。
Objective Clone creatininase gene to NICE system of lactobacillus and PMG36e expression system. So that they could express creatininase. Testing and comparing its production activity.
     Methods Firstly, the genome DNA of Pseudomonas stutzeri A1501 was isolated. Then according to the creatininase gene sequence of Nitrogen-fixing Pseudomonas Steinmann in genbank, two pairs of primers were designed and the creatininase gene was cloned by PCR amplification with primers. After identification by sequencing, the creatininase gene fragment was digested with restriction endonucleases,and linked with the vector plasmid pMG36e and PNZ8048 digested with the same enzyme digestion to construct the recombinant expression vector pMG36e-Cr and PNZ8048-Cr, the recombinant plasmid pMG36e-Cr and PNZ8048-Cr was transformed into E.coli DH5αand MC1061 respectively. Then the recombinant Escherichia coli was screened and identified. Extract recombinant plasmids pMG36e-Cr and PNZ8048-Cr from DH5α,and transform the recombinant plasmids into Lactococcus lactis NZ9000 by electroportion respectively. Screen and identify the recombinant Lactococcus lactis NZ9000. The crude enzyme solution sample of the recombinant Lactococcus lactis NZ9000 was prepared and identified with SDS-PAGE analysis. Examine the creatininase activity of the crude enzyme solution.
     Results
     1. The gene fragment got from PCR amplification of Pseudomonas stutzeri A1501 genome, was 0.76kb, which was identical with the creatininase gene in Genebank.
     2. The gene fragment got from PCR amplification of the recombinant Escherichia coli (DH5 a) was 0.76Kb which was in accordance with the target fragment. The plasmid pMD18-T-Cr1 was digested with SpeⅠand HindⅢ, plasmid pMD18-T-Cr2 was digested with SalⅠand HindⅢ. Digestion products electrophoresis showed the fragment were 2.7Kb and 0.76Kb in line with expectations. The gene sequencing result was identical with creatininase gene in genebank (CP000304.1)
     3. The recombinant L.lactis-pMG36e-Cr and L.lactis-PNZ8048-Cr were constructed successfully. The fragment got from PCR amplification of pMG36e-Cr and PNZ8048-Cr was in accordance with target fragment. Plasmid PMG36e-Cr was digested with SalⅠand HindⅢ. Digestion products electrophoresis showed the fragment were 3.6Kb and 0.76Kb in line with expectations. Plasmid PNZ8048-Cr was digested with SpeⅠand HindⅢ. Digestion products electrophoresis showed the fragment were 3.3Kb and 0.76Kb in line with expectations.
     4. Discontinuous SDS-PAGE analysis of Crude enzyme solution showed:recombinant protein molecular weight was about 27KD, and in accordance with the theoretical molecular weight calculated from the 253 amino acid of creatininase. The crude enzyme activity assay showed, enzyme activity of Pseudomonas stutzeri A1501 was 0.32, L.lactis-pMG36e-Cr of recombinant lactic acid bacteria was 0.24u/ml; enzyme activity of L.lactis-PNZ8048-Cr was 1.24u/ml, significantly increased than the original strain and L.lactis-pMG36e-Cr.
     Conclusion Gene engineering L.lactis-PNZ8048-Cr that can express creatininase in high level was constructed successfully. Creatininase activity of L.lactis-PNZ8048-Cr was significantly increased than the original strain and L.lactis-pMG36e-Cr. The successful construction of this gene engineering bacteria can become significant progress in intestinal bacteria therapy of chronic renal failure, provide a basis for construction of gene engineering bacteria with multiple genes clone.
     Objective Clone uricase gene to NICE system of lactobacillus and PMG36e expression system, So that they could express uricase. Testing and comparing its production activity.
     Methods Firstly, the genome DNA of Candida utilis was isolated. Then according to the uricase gene sequence of Candida utilis in genbank, two pairs of primers were designed and the uricase gene was cloned by PCR amplification with primers. After identification by sequencing, the uricase gene fragment was digested with restriction endonucleases,and linked with the vector plasmid pMG36e and PNZ8048 digested with the same enzyme digestion to construct the recombinant expression vector pMG36e-U and PNZ8048-U, the recombinant plasmid pMG36e-U and PNZ8048-U was transformed into E. coli DH5 a and MC1061 respectively. Then the recombinant Escherichia coli was screened and identified. Extract recombinant plasmids pMG36e-U and PNZ8048-U from DH5α,and transform the recombinant plasmids into Lactococcus lactis NZ9000 by electroportion respectively. Screen and identify the recombinant Lactococcus lactis NZ9000. The crude enzyme solution sample of the recombinant Lactococcus lactis NZ9000 was prepared and identified with SDS-PAGE analysis. Examine the uricase activity of the crude enzyme solution.
     Results
     1. The gene fragment got from PCR amplification of Candida utilis genome was 0.9kb, which was identical with the uricase gene in Genebank.
     2. The gene fragment got from PCR amplification of the recombinant Escherichia coli (DH5 a) was 0.9Kb which was in accordance with the target fragment. The plasmid pMD18-T-U1 was digested with SpeⅠand NcoⅠ, plasmid pMD18-T-U2 was digested with SalⅠand HindⅢ. Digestion products electrophoresis showed the fragment were 2.7Kb and 0.9Kb in line with expectations. The gene sequencing result was identical with uricase gene in genebank (E12709)
     3. The recombinant L.lactis-pMG36e-U and L.lactis-PNZ8048-U were constructed successfully. The fragment got from PCR amplification of pMG36e-U and PNZ8048-U was in accordance with target fragment. Plasmid PMG36e-U was digested with SalⅠand HindⅢ. Digestion products electrophoresis showed the fragment were 3.6Kb and 0.76Kb in line with expectations. Plasmid PNZ8048-U was digested with SpeⅠand NcoⅠ,. Digestion products electrophoresis showed the fragment were 3.3Kb and 0.76Kb in line with expectations.
     4. Discontinuous SDS-PAGE analysis of Crude enzyme solution showed:recombinant protein molecular weight was about 34KD, and in accordance with the theoretical molecular weight calculated from the 303 amino acid of uricase. The crude enzyme activity assay showed, enzyme activity of Candida utilis was 0.55 u/ml, L.lactis-pMG36e-U of recombinant lactic acid bacteria was 0.29 u/ml; enzyme activity of L.lactis-PNZ8048-U was 1.92 u/ml, significantly increased than the original strain and L.lactis-pMG36e-U.
     Conclusion Gene engineering L.lactis-PNZ8048-U that can express uricase in high level was constructed successfully. Uricase activity of L.lactis-PNZ8048-U was significantly increased than the original strain and L.lactis-pMG36e-U. The successful construction of this gene engineering bacteria can become significant progress in intestinal bacteria therapy of chronic renal failure, provide a basis for construction of gene engineering bacteria with multiple genes clone.
引文
[1]. Jain, P., S. Shah, R. Coussa, et al., Potentials and limitations of microorganisms as renal failure biotherapeutics. Biologics,2009.3:p.233-43.
    [2]. Kolff, W. J., Artificial kidney and artificial heart:Further considerations. Int J Artif Organs,1990.13(7):p.404-6.
    [3]. TMS.., Chang, Artificial cells for artificial kidney, artificial liver and detoxification. In:Artificial kidney, artificial liver and artificial cells. New York, NY:Plenum Press,1978:p.57-77.
    [4]. Chang TMS, Malouf C, Ressurreccion E., Artificial cells containing multienzyme systems for the sequential conversion of urea into ammonia, glutamate, then alanine. Artif Organs.,1979.3(Suppl):p.284-287
    [5]. RE., Sparks, Review of gastrointestinal perfusion in the treatment ofuremia. Clin Nephrol.,1979.11(2):p.81-85.
    [6]. 郑法雷,章友康.,抓住机遇,迎接慢性肾病的严峻挑战,2007世界肾病日“向我们呼唤”.北京医学,2007.4:p.193-195.
    [7]. Schmitz, H., C. Barmeyer, M. Fromm, et al., Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology,1999.116(2):p.301-9.
    [8]. Sanaka, T., N. Sugino, S. Teraoka, et al., Therapeutic effects of oral sorbent in undialyzed uremia. Am J Kidney Dis,1988.12(2):p.97-103.
    [9]. O'Loughlin, J. A., J. M. Bruder, and M. J. Lysaght, Degradation of low molecular weight uremic solutes by oral delivery of encapsulated enzymes. ASAIO J,2004.50(3):p.253-60.
    [10]. 高虹,陈明,郑津辉.,医用尿酸酶菌的分离与选育.天津师范大学学报,2003,9.23(3).
    [11]. TMS., Chang, Living cells and microorganism immobilized by microencapsulation inside artificial cells. In:Fundamentals of Animal Cell Encapsulation and Immobilization. New York, NY:CRC Press,1992:p. 183-196.
    [12]. Le Loir, Y., V. Azevedo, S. C. Oliveira, et al., Protein secretion in lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb Cell Fact,2005.4(1):p.2.
    [13]. Mierau, I., P. Leij, I. van Swam, et al., Industrial-scale production and purification of a heterologous protein in lactococcus lactis using the nisin-controlled gene expression system nice:The case of lysostaphin. Microb Cell Fact,2005.4:p.15.
    [14]. Mierau, I. and M. Kleerebezem,10 years of the nisin-controlled gene expression system (nice) in lactococcus lactis. Appl Microbiol Biotechnol, 2005.68(6):p.705-17.
    [15].徐波,曹郁生.,乳酸乳球食品级诱导表达系统的构建及异源蛋白的表达微生物系统.2007.47(4):p.604-609.
    [16]. 徐义刚,崔丽春.,乳酸杆菌基因表达系统的研究进展.微生物杂志,2007.27(3):p.87-89.
    [17]. Holzapfel, W. H., R. Geisen, and U. Schillinger, Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol,1995.24(3):p.343-62.
    [18]. Koyama, Y., T. Ichikawa, and E. Nakano, Cloning, sequence analysis, and expression in escherichia coli of the gene encoding the candida utilis urate oxidase (uricase). J Biochem,1996.120(5):p.969-73.
    [19]. Yan, Y., J. Yang, Y. Dou, et al., Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated pseudomonas stutzeri a1501. Proc Natl Acad Sci U S A,2008.105(21):p.7564-9.
    [20]. Holo, H. and I. F. Nes, High-frequency transformation, by electroporation, of lactococcus lactis subsp. Cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol,1989.55(12):p.3119-3123.
    [21]. O'Loughlin, J. A., J. M. Bruder, and M. J. Lysaght, Oral administration of biochemically active microcapsules to treat uremia:New insights into an old approach. J Biomater Sci Polym Ed,2004.15(11):p.1447-61.
    [22]. O'Loughlin, J. A., J. M. Bruder, and M. J. Lysaght, In vivo and in vitro degradation of urea and uric acid by encapsulated genetically modified microorganisms. Tissue Eng,2004.10(9-10):p.1446-55.
    [23]. Jones, J. D. and P. C. Burnett, Implication of creatinine and gut flora in the uremic syndrome:Induction of "Creatininase" In colon contents of the rat by dietary creatinine. Clin Chem,1972.18(3):p.280-4.
    [24]. Ienaga, K., K. Nakamura, Y. Fukunaga, et al., Creatol and chronic renal failure. Kidney Int Suppl,1994.47:p. S22-4.
    [25]. Nakamura, K. and K. Ienaga, Creatol (5-hydroxycreatinine), a new toxin candidate in uremic patients. Experientia,1990.46(5):p.470-2.
    [26]. Aoyagi, K., S. Nagase, A. Koyama, et al., Products of creatinine with hydroxyl radical as a useful marker of oxidative stress in vivo. Methods Mol Biol,1998.108:p.157-64.
    [27]. Ienaga K, Nakamura K, Yamakawa M., The use of 13c-labeling to prove thecreatinine is oxidized by mammals into creatol and 5-hydroxy-1-methylhydantoin. J Chem Soc Chem Comman.,1991:p. 509-510.
    [28]. Nakamura K, Ienaga K., Stability of creatol an intermediate of methylguanidineproduction from creatinine and analysis in physiological fluids. In Guanidinoo compounds in Biology and Medicine,edited by Marescau B,Lodon,Libby,1991:p.329-337.
    [29]. Brosnan, J. T. and M. E. Brosnan, Creatine metabolism and the urea cycle. Mol Genet Metab,2010.100 Suppl 1:p. S49-52.
    [30]. Yokozawa T, Oura H, Ienaga K., Effect of creatinine,creatol and methylguanidine on renal function. Jpn J Nephrol,1992.34(973-977).
    [31]. Autore G, Marzocco S, Sorrentino R. and 121-127, In vitro and in vivo tnf-alpha synthesis modulation by methylguanidine,an uremic catabolyte. Life Sci 1999.65(11).
    [32]. Sorrentino R, Sauttebin L, Pinto A., Effect of methylguanidine guanidine and structurally related compounds on constitutive and inducible nitric oxide synthase activity. Life Sci,1997.61:p.1283-1291.
    [33]. De Deyn PP, Dhooge R, Van Bogaert PP., Endogenous guanidinoo compounds as uremic neurotoxins. Kidney Int.,2001.78(S):p. S77-S83.
    [34]. 贺丽娟,蒋哲峰,蒋云生.,乳酸菌对肠粘膜通透性及中小分子尿毒素清除
    的影响.中国血液净化,2008.7(2):p.78-80.
    [35]. Levanova LA, Aleshkin VA, Vorobev AA., Specitic biological features of opportunistic bacteria detrmining dysbacteriosis in the composition of the large intestine normal microflora. Zh Mikrobiol Epidemiol Immunobiol, 2002(5):p.48-53.
    [36]. 胡白瑛,蒋云生.,尿毒症患者与正常人肠道细菌利用肌酐的研究.中国医师杂志,2004.6(2):p.160-162.
    [37]. Jones JD, Burnett PC., Creatinine metabolism and toxicity. Kidney international,1975.7(5):p.294-298.
    [38]. Ito K, Kanada N, Inoue T., Preliminary crystallographic studies of the creatinine amidohydrolase from pseudomonas putida... Acta crystallogr D Biol Crystallogr,2002.58(pt12):p.2180-2181.
    [39]. Yoshimoto T, Tanaka N, Kanada N.2004;19;337(2):399-416, Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism Mol Biol.,2004.337(2):p.399-416.
    [40]. Beuth B, Niefind K, Schomburg D., Crystal structures of creatininase from pseudomonas putida:A novel fold and a case of convergene evolution. J Mol Biol,2003.332(1):p.287-301.
    [41]. Beuth B, Niefind K, Schomburg D., Crystallzation and preliminary crystallographic analysis of creatininase from pseudomonas putida. Acta crystallogr D BiolCrystallogr,2002.58(pt8):p.1356-1358.
    [42]. Yamamoto K, Oka M, Kikuchi T., Cloning of the creatinine amidohydrolase gene from pseudomaonas sp.Ps-7. Biosci Biotechnol Biochem,1995 Jul.59(7): p.1331-1332.
    [43]. Nishiya Y, Toda A, Imanaka T., Gene cluster for creatinine degradation in arthrobacter sp.Te1826. Mol Gen Genet,1998 Mar.257(5):p.581-586.
    [44]. Tang T.Y., C.J. Wen, W.H. Liu., Expression of the creatininase gene from pseudomonas putida rs65 in e. Coli. Ind. Microbiol. Biotechnol,2000.24:p. 2-6
    [45]. 丘元盛,周淑萍,莫小真,等.,水稻根际固氮细菌的研究.科学通报,1980.25(21):p.1008.
    [46]. 张晶晶,李泰明,谭树华,乳酸菌食品级nisin控制的基因表达系统nice.中国生物工程杂志,2006.26(3):p.68-72.
    [47]. Holzapfel W H, Geisen R, Schillinger U., Biological preservation of foods with refexence to protective cultttres, bacteriocins and foodgrade enzymes. International Journal of Food Microbiology,1995.24:p.343-362.
    [48].O. P. Kuiper s, P.G. de-Ruyter, M.kleerebezem, Quorum sensing controlled gene expression in lactic acid bacteria. Journal of Biotechnology,1998.64:p. 15-21.
    [49]. Kuipers O.P., M.M.Beerthuizen, R J.S iezen., Characterization of the nisin gene cluster nisabtclpr of lactococcus lactis requirement of expression of the nisa and nis 1 genes for development of immurity. J. Biochem,1993.2(16):p. 281-291.
    [50]. Chandrapati, S. and D. J. O'Sullivan, Characterization of the promoter regions involved in galactose-and nisin-mediated induction of the nisa gene in lactococcus lactis atcc 11454. Mol Microbiol,2002.46(2):p.467-77.
    [51]. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, et al., Autoregulation of nisin biosynthesis in lactococcus lactis by signal transduction. J Biol Chem, 1995.270(45):p.27299-304.
    [52]. 张晶,刘敬忠,潭淑珍.,苯丙氨酸脱氨酶在乳酸乳球菌nice系统的高效表达及其实验动物研究.生物工程学报,2Q02.18(6):p.713-717.
    [53]. de Ruyter, P. G., O. P. Kuipers, and W. M. de Vos, Controlled gene expression systems for lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol,1996.62(10):p.3662-7.
    [54]. McIntyre, D. A. and S. K. Harlander, Improved electroporation efficiency of intact lactococcus lactis subsp. Lactis cells grown in defined media. Appl Environ Microbiol,1989.55(10):p.2621-6.
    [55]. Oda, M., Y. Satta, O. Takenaka, et al., Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol,2002.19(5):p. 640-53.
    [56]. Nguyen T, Zele chowska M, Foster V., Primary structure of the soybean nodulincells of nodules Proc Natl Acad Sci USA 1985 Aug.82(15):p. 5040-5044.
    [57]. Wallrath, L. L., J. B. Burnett, and T. B. Friedman, Molecular characterization of the drosophila melanogaster urate oxidase gene, an ecdysone-repressible gene expressed only in the malpighian tubules. Mol Cell Biol,1990.10(10):p. 5114-27.
    [58]. Oestreicher N, Scazzocchio C., Sequence, regulation, and mutational analysis of the gene encoding urate oxidase in aspergillus nidullans. J Biochem,1993. 268(31):p.23382-23389.
    [59]. Yamamoto, K., Y. Kojima, T. Kikuchi, et al., Nucleotide sequence of the uricase gene from bacillus sp. Tb-90. J Biochem,1996.119(1):p.80-4.
    [60]. Ito, M., M. Suzuki, and Y. Takagi, Nucleotide sequence of cdna and predicted amino acid sequence of rat liver uricase. Eur J Biochem,1988.173(2):p. 459-63.
    [61]. Motojima K, Kaaaya S, Goto S., Cloning and sequence analysis of edna for rat liver uricase. J Biochem,1988.263(32):p.16677-16681.
    [62]. Suzuki, H. and D. P. Verma, Soybean nodule-specific uricase (nodulin-35) is expressed and assembled into a functional tetrameric holoenzyme in escherichia coli. Plant Physiol,1991.95(2):p.384-389.
    [63]. Alvares, K., M. R. Nemali, P. G. Reddy, et al., The nucleotide sequence of a full length cdna clone encoding rat liver urate oxidase. Biochem Biophys Res Commun,1989.158(3):p.991-5.
    [64]. Motojima, K. and S. Goto, Cloning of rabbit uricase cdna reveals a conserved carboxy-terminal tripeptide in three species. Biochim Biophys Acta,1989. 1008(1):p.116-8.
    [65]. Wu, X. W., C. C. Lee, D. M. Muzny, et al., Urate oxidase:Primary structure and evolutionary implications. Proc Natl Acad Sci U S A,1989.86(23):p. 9412-6.
    [66]. Wu, X. W., D. M. Muzny, C. C. Lee, et al., Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol, 1992.34(1):p.78-84.
    [67]. Legoux, R., B. Delpech, X. Dumont, et al., Cloning and expression in escherichia coli of the gene encoding aspergillus flavus urate oxidase. J Biol Chem,1992.267(12):p.8565-70.
    [68]. Darlington, A. J., C. Scazzocchio, and J. A. Pateman, Biochemical and genetical studies of purine breakdown in aspergillus. Nature,1965.206(984): p.599-600.
    [69]. Oestreicher, N., H. M. Sealy-Lewis, and C. Scazzocchio, Characterisation, cloning and integrative properties of the gene encoding urate oxidase in aspergillus nidulans. Gene,1993.132(2):p.185-92.
    [70]. Suzuki, K., S. Sakasegawa, H. Misaki, et al., Molecular cloning and expression of uricase gene from arthrobacter globiformis in escherichia coli and characterization of the gene product. J Biosci Bioeng,2004.98(3):p. 153-8.
    [71]. Saeed, H. M., Y. R. Abdel-Fattah, M. M. Berekaa, et al., Identification, cloning and expression of pseudomonas aeruginosa ps-x putative urate oxidase gene in escherichia coli. Pol J Microbiol,2004.53(4):p.227-36.
    [72]. Koyama Y, Ichikawa T, Nakano E., Cloning,sequencing and expression in escherichia coli of uricase gene from candida utilis. J.Biochem.120(5):p. 969-973.
    [73]. Liu JG, Li GX., Culture conditions for uricaser formation of candida utilis. Wei Sheng Wu Xue Bao,1989.Feb.29(1):p.45-50.
    [74]. Itaya K, YamamotoT, Fukumoto.J., Extraction of uricase from candida utilis Agr biol chem,1967.31:p.1256-1264.
    [75]. 辛渝,潭晓晶,杨波.,产朊圆酵母尿酸酶的分离纯化及其部分性质研究.四川大学学报(自然科学版),2005.42(6):p.1246-1251.
    [76]. 孟尧,辛渝,谭晓晶.,朊圆酵母尿酸酶的基本特性研究.四川大学学报(自然科学版),2006.43(2):p.414-419.
    [77]. 武文明,曾昭淳,李小彦.,产朊假丝酵母尿酸酶的纯化和特性研究.西南大学学报(自然科学版),2008.30(3):p.84-89.
    [78]. 杨红兰,王炜,包慧芳.,一株产朊假丝酵母菌表达体系的研究初报.新疆农业科学,2008.45(3):p.462-466.
    [1]. Mater C. Antimutagentic effect of milk fermented by lactobacillus helvticus I 89 and a protease deficient derviative. Dairy Sci 1997,80 (9):1965-1970.
    [2]. Min Zhang, Xiaomin Hang, Xiaobing Fan. Characterizationand selection of Lactobacillus strains for theireffect on bile tolerance, taurocholate deconjugation andcholesterol removal. World J Microbiol Biotechnol,2008, 24(1):7-14.
    [3]. 栾金水.乳酸菌的研究应用进展。 江苏调味副食品,2004,21(1):81.
    [4]. Pfeiler EA, Klaenhammer TR. The genomics of lactic acid bacteria. Trends Microbiol,2007,15(12):546-553.
    [5]. Klaenhammer T, Altermann E, Arigoni F. Discovering lacticacid bacteria by genomics. Antonie Leeuwenhoek,2002,82(1-4):29-58.
    [6]. Makarova K, Sleasarev A, Wolf Y, et al. Comparative genomicsof the lactic acid bacteria. Proc Natl Acad Sci U S A,2006,103(42):15611-15616.
    [7]. Claesson, M.J. Multireplicon genome architecture ofLactobacillus salivarius. Proc. Natl. Acad. Sci. U. S. A.2006,103:6718-6723.
    [8]. Chaillou, S. The complete genome sequence of themeatborne lactic acid bacterium Lactobacillus sakei 23K..Nat. Biotechnol.2005,23:1527-1533.
    [9]. Altermann, E. Complete genome sequence of the probioticlactic acid bacterium Lactobacillus acidophilusNCFM. Proc. Natl. Acad. Sci. U. S. A. 2005,102:3906-3912.
    [10]. Loir YL, Asevedo V, Oliveira SC. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microbial Cell.2005.4(2):336-341,
    [11]. 陈丽珊。任大明主译,分子生物技术.重组DNA的原理与应用.2005,北京:化学工业出版社.
    [12]. Lin, M. YS Harlander, D Savaiano, Construction of an integrative food-grade cloning vector for lactobacillus acidophilus. Appl Microbiol Biotechnol,1996. 45(4):p.484-9.
    [13]. Holzapfel W H, Geisen R, Schillinger U. Biological preservation offoods with reference to protective cultttres, bacteriocins arid foodgradeenzymes. International Journal of Food Microbiology 1995.24:p.343-362.
    [14]. Takala TM, Saris PE, Tynkkynen SS. Food grade hostPvectorexpression systemfor Lactobacillus casei based on complementation of plasmid associated phosphobetagalactosidase gene lacG. Appl Microbiol Biotechnol, 2003.60(5):p.564-570.
    [15]. Leenhouts K, Bolhuis A, Venema G, et al. Construction of a food grade multiple copy integration system for Lactococcus lactis. Appl Microbiol Biotechnol,1998.49(4):p.417-423.
    [16]. O'Sullivan D. The majority of lactococcal plasmids carry a highly related repliconAppl Environ Microbiol,2001,67(2):929-937.
    [17]. de Ruyter PG, Kuipers OP, Beerthuyzen MM. Functional analysis of promoters in the nisin gene cluster of lactococcus lactis. J Bacteriol 1996.178: p.3434-3439.
    [18]. Kees Leenhouts, Albert Bolhuis, Johan Boot., Cloning, expression, and chromosomal stabilization of the propionibacterium shermanii proline iminopeptidase gene (pip) for food-grade application in lactococcus lactis Applied and Environmental Microbiology,1998.64(12):p.1123-1129.
    [19]. Maguin E., P Duwat, T Hege, et al. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol,1992.174(17):p.5633-8.
    [20]. Takala TM, Saris PE, Tynkkynen SS. Food-gradehostPvector expression systemfor Lactobacillus casei basedon complementation of plasmid-associated phosphor-P-galactosidase gene lacG. Appl Microbiol Biotechnol,2003,60 (5):564-570.
    [21]. Gosalbes, MJ. CD. Esteban, J., Integrative food-grade expression system based on the lactose regulon of lactobacillus casei. Appl Environ Microbiol, 2000.66(11):p.4822-8.
    [22]. 肖薇,张义正.乳酸杆菌食品级表达系统的构建与鉴定.应用与环境生物学报,2008.14(4):p.566-570.
    [23]. Prakash, S. TM. Chang, In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered e. Coli dh5 cells. Int J Artif Organs,2000.23(7):p.429-35.
    [24]. Sasaki Y, Ito Y, Sasaki T. ThyA as a selection marker inconstruction of food grade host vector and integration systems forStreptococcus thermophilus Appl Environ Microbiol,2004.70(3):p.1858-1864.
    [25]. Bron PA. Use of the alr Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria Appl Environ Microbiol,2002,68(11):5663-5670.
    [26].MacCormick C A, Griffin H G, Gasson MJ. Construction of a food grade hostPvector system for Lactococcus lactis based on the lactoseoperon. FEMS Microbiol Lett,1995.127(1-2):p.105-109.
    [27]. Platteeuw C, van Alen Boerrigter I, van SS, et al. Food gradecloning and expression system for Lactococcus lactis. ApplEnviron Microbiol,1996. 62(3):p.1008-1013.
    [28]. Boucher I, Vadeboncoeur C, Moineau S. Characterization of genesinvolved in the metabolism of alpha galactosides by Lactococcusraffinolactis. Appl Environ Microbiol,2003.69(7):p.4049-4056.
    [29]. Boucher I, Parrot M, Gaudreau H,et al. Novel food grade plasmidvector based on melibiose fermentation for the genetic engineering ofLactococcus lactis. Appl Environ Microbiol,2002.68(12):p.6152-6161.
    [30]. Prakash, S. TM. Chang, Artificial cell microcapsules containing genetically engineered e. Coli dh5 cells for in-vitro lowering of plasma potassium, phosphate, magnesium, sodium, chloride, uric acid, cholesterol, and creatinine: A preliminary report. Artif Cells Blood Substit Immobil Biotechnol,1999. 27(5-6):p.475-81.
    [31]. Sridhar VR, Smeianov VV, Steele JL., Construction and evaluation of food-grade vectors for lactococcus lactis using aspartate aminotransferase and alpha-galactosidase as selectable markers. J Appl Microbiol,2006.101(1):p. 161-171.
    [32]. Jensen PR, Hammer K. The sequence of spacers between theconsensus sequences modulates the strength of prokaryotic promoters. Appl Envirl,1998 64 (1):p.82-87.
    [33]. de Vos WM, Kleerebezem M, Kuipers OP., Expression systemsfor industrial gram-positive bacteria with low guanine and cytosine content. Curr Opin Biotech,1997 8(5):p.547-553.
    [34]. Makrides S, Strategies for achieving high-level expression ofgenes in escherichia coli Micr Rev 1996 60(3):p.512-538.
    [35]. Van Rooijen, Dechering KJ, Wilmink CN, et al. Lysines 72,80 and 213, and aspartic acid 210 of the lactococcus lactislacr repressor are involved in response to the inducer tagatose-6-phosphate leading to induction of the lac operon expression. Prot Eng,1993 6(2):p.201-206.
    [36]. Wells JM, Wilson PW, Norton PM, et al., Lactococcus lactis:High level expression of tetanus toxin fragment c and protection against lethal challenge. Mol Micr,1995 8(6):p.1155-1162.
    [37]. Gosalbes MJ. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei Appl Environ Microbiol,2000,66 (11):4822-4828.
    [38]. van Sinderen D, Karsens H, Kok J, et al., Sequence analysis andmolecular characterization of the temperate lacococcal bacterio phage rlt Mol Microb, 1996 19(6):p.1343-1355.
    [39]. Nauta A, van Sinderen D, Karsens H, et al, Inducibile gene expression mediated by a repressor operator system isolated from lactococcus lactis bacteriophage rlt Mol Microb,1996 19(6):p.1331-1341.
    [40]. Nauta A, van Burg B, Karsens H, et al. Design of thermolabile bacteriophage repressor mutants by comparative molecularmodeling Nat Biotech 1997 15(10):p.980-983.
    [41]. Neu T, Henrich B., New thermosensitive delivery vector and itsuse to enable nisin-controlled gene expression in lactobacillusgasseri. Applied and Environmental Microbiology 2003.69(3):p.1377-1382.
    [42]. O'Sullivan DJ, Walker S A, West S G, et al., Development of anexpression strategy using a lytic phage to trigger explosive plasmidamplification and gene expression. Biotech,1996 14(1):p.82-87.
    [43]. MV.Willem, Gene expression systems for lactic acid bacteria Curr Op Micro, 19992(3):p.289-295.
    [44]. Israelsen H, Madsen SM, Vrang A, et al., Cloning and partialcharacterization of regulated promoters from lactococcus lactistn91721acz integrants with the new promoter probe vector pak80 Appl Environ Microbiol,1995 61(7):p. 2540-2547.
    [45]. Madsen SM. Lactococcus lactis, an Alternative System for Functional Expression of Peripheral and Intrinsic Arabidopsis Membrane Proteins.Mol Microbiol,2005,56(3):735-746.
    [46]. Sanders J W, Venema G, Kok J. A chloride inducible gene expression cassette and its use in induced lysis of lactococcus lactis. Appl Environ Microbiol, 199763 (12):p.4877-4882.
    [47]. Soren M, Madsen, Jose Arnau, et al. Molecular characterizationof the ph inducible and growth phase dependent promoter p170 of lactococcus lactis. Mol Microb,1999 32(1):p.75-87.
    [48]. Morello E. HtrA Is Essential for Efficient Secretion of Recombinant Proteins by Lactococcus lactis.Appl Environ Microbiol,2008,14(1-3):48-58.
    [49]. Loir Y L, Asevedo V, Oliveira S C. Protein secretion inLactococcus lactis an efficient way to increase the overall heterologous protein production. Microbial Cell Factories,2005.4(3):599-611.
    [50]. Mierau I, Leij P, van Swam I, et al. Industrial-scale production and purification of a heterelogous protein inLactococcus lactis using the nisin-controlled gene expressionsystem NICE. Appl Environ Microbiol,2006, 17(1-3):48-58
    [51]. Miyoshi A, Poquet I, Azevedo V., Controlled productionof stable heterologous proteins in lactecoccas lactis. Applied andEnvironmental Microbiology,2002. 68(6):p.3141-3146.
    [52]. Liull D, Poquet I, New expression system tightly controlled byzinc availability in lactococcu lactis.. Applied and Environmental Microbiology,2004.70(9):p. 5398-5406.
    [53]. Eichenbaum Z et al. Use of the Lactococcal nisA Promoter To Regulate Gene Expression in Gram-Positive Bacteria:Comparison of Induction'Level and Promoter Strength.Appl Environ Microbiol,1998,64(8):2763-2769.
    [54]. Mierau I et al. Complete Genome Sequence of the Prototype Lactic Acid Bacterium Lactococcus lactis subsp. cremoris MG1363.Appl Microbiol Biotechnol,2005,68(6):705-717.
    [55]. Zhou XX et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods.Appl Microbiol Biotechnol,2008,78(6):947-953.
    [56]. J.Eichenbaum. Federle M, Marrad use of the lactococcal nisa promoter to regulate gene expression in grampositive bacteria:Comparison of induction level and promoter strength. Applied and Environmental Microbiology 1998. 8(1):p.1234-1237.
    [57]. Johansen, Eric. Challenges when transferring technique from lactasis laboratory strains to industrial strains. Gent Mol Res,2003.2(1):p.112-116.
    [58]. WM. Kuipers, de Ruyter, Kleerebezem M, de Vos. Quorumsensing-control led gene expression in lactic acid bacteria. Journal of Biotechnology,1998. 64(1):p.15-21.
    [59]. M. Kuipers OP, de Ruyter PG, Kleerebezem, Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology,1998.64(5): p.15-21.
    [60]. Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisabtcipr of lactococcus lactis. Requirement of expression of the nisa and nisi genes for development of immunity. Eur J Biochem,1993.216:p.281-291.
    [61]. Kuipers OP, de Ruyter, Kleerebezem M. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol,1998.64:p.15-21.
    [62]. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S. Food-grade cloning and expression system for lactococcus lactis. Appl Environ Microbiol 1996.62:p. 1008-1013.
    [63]. de Ruyter PG, Kuipers OP, Beenhuyzen M, Functional analysis of promoters in the nisin gene cluster oflactococcus lacti. Journal of Bacteriology,1996. 178(12):p.3434-3439.
    [64]. Kleerebezem M, Beerthuyzen MM, Vaughan EE, Controlled gene expression systems for lactic acid bacteria:Transferable nisin-inducible expression cassettes for lactococcus, leuconostoc, and lactobacillus spp. Appl Environ Microbiol 1997.63:p.4581-4584.
    [65]. Rodriguez J M, Martinez M I, Horn N. Heterologousproduction of bacterioeins by lactic acid bacteria. InternationalJournal of Food Microbiology,2003.80(3):p.101-119.
    [66]. Mierau I, Leij P, van Swam I. Industrial-scaleproduction and purification of a heterelogous protein inlactococcus lactis using the nisin-controlled gene expressiosystem nice: the case of lysostaphin. Microbial Cell Factories,2005. 4(15):p.1115-1118.
    [67]. Miyoshi A, Poquet I, Azevedo V. Controlled productionof stable heterologous proteins in lactecoccas lactis. Applied andEnvironmental Microbiology,2002. 68(6):p.3141 3146.
    [68]. Chandrapati S, Sullivan, Characterization of the promoterregions involved in galactose-and nisin-mediated induction of the nisa gene in lactococcus lactis atcc. Molecular Microbiology,2002.2:p.467-477.
    [69]. Loir YL, Asevedo V, Oliveira S, Protein secretion inlactococcus lactis: an efficient way to increase the overallheterologous protein production. Microbial Cell Factories,2005.4(6):p.22-29.
    [70]. Mierau I, Olieman K, Mond, Optimization of the lactococcus lactis nisin-controlled gene expression system nicefor industrial applications. Microbial Cell Factories,2005.4(16):p.116-119.
    [71]. Ribeiro LA, Azevedo V, Loir Y, Production andtargeting of the brucella abortus antigen 17/112 in lactococcu lactis:a first step towards food-grade live vaccines againstbrucellosis. Applied and Environmental Microbiology,2002. 68(2):p.910-916.
    [72]. Enonf V, Langella P, Commissaire, Bovine rotavirusnonstructural protein produced by lactodocc lactis isantigenic and immunogenic. Applied and Environmental Microbiology,,2001.67(4):p.1423-1428.
    [73]. Drouault S, Corthier G, Ehrlich S D, Exp ression of the s taphy lococcus hy icus l ipase in lactococcus lactis. Appl Environ B iotechnol,2000.66(2):p. 588-598.
    [74]. Mierau I, Leij P, Swam I, Industrial scalep roduction and purification of a heterologous protein in lactococcus lactis using the nisin-controlled gene exp ression system n ice:The case of lysostaphin. Microb Cell Fact,2005.4(1): p.15-23.
    [75]. Turner MS, Waldherr F, Loessner MJ. Antimicro bial activity of lysostaphin and a listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Appl M icrobiol,2007.30(1):p.58-67.
    [76]. Bermudez-Humardn LG, Langella P, Miyoshi, Production of human papillomavirustype 16e7 protein in lactococcus.Lactis. Applied and Environmental Microbiology,2002.68(2):p.917-922.
    [77]. Bermudez-Humarrn LG, Langella P, Commissaim, Controlled intra-or extra-cellular production of staphylococcalnuclcase and ovine omega interferon in lactococcus lactis. FEMS Microbiology Letters,2003.8(8):p. 307-313.
    [78]. Chatel M, Langella P, Adel-Patient, Induction ofmucosal immune response after intranasal or oral inoculation ofmice with lactococcus lactis prttucing bovine betalactoglobulin. Clinical and Diagnostic Laboratory Immunology 2001.8(3):p.545-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700