聚L-乳酸电纺纤维和中空微球中药物的酶降解释放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了聚酯高分子并进行干法静电纺丝试验:采用熔融开环聚合L-丙交酯制备得到分子量较高,多分散系数较小的聚乙二醇嵌段的聚L-乳酸,聚乙二醇嵌段的聚ε-己内酯和乙醇引发聚合的聚L-乳酸。采用改进的工艺合成得到α-羟基辛酸,产率较文献报道提高至77%,并通过脱水环合成辛交酯,采用熔融开环聚合辛交酯得到聚乙二醇嵌段的聚α-羟基辛酸。对聚乙二醇嵌段聚L-乳酸进行了纺丝试验,通过扫描电镜观察纤维形态确定了纺丝的条件,同时将聚乙二醇嵌段聚α-羟基辛酸和聚乙二醇嵌段聚ε-己内酯共混进聚乙二醇嵌段聚L-乳酸进行了纺丝试验。电子扫描显微镜观察发现复合高分子纺丝能够得到无相分离的纤维。
     采用单一高分子PEG-PLLA溶液直接纺丝法制备了厚朴酚超细纤维:制备了相对于高分子材料质量的载药量为10%,20%和30%的纤维,经过电镜观察和广角X-射线衍射观察,发现药物能够完好包裹在纤维中,药物突释量较小,药物释放曲线在初期阶段符合α=kt1/2公式,发现随着载药量的逐渐增高,纤维在酶降解下的降解速率逐步变慢,相对于载药量为10%的纤维毡,载药量为20%和30%的纤维毡中药物的释放速率明显变慢。厚朴酚的亲脂的化学结构导致了随着厚朴酚的含量增高,释放介质对纤维表面及更深处的浸润程度变低,纤维降解变慢,药物释放变慢。
     采用单一高分子PLLA和PEG-PLLA溶液直接纺丝法制备了布洛芬超细纤维:制备了相对于高分子材料质量的载药量为10%和20%的纤维,经过电镜观察和广角x-射线衍射观察,发现药物能够完好包裹在纤维中,实验结果显示PLLA纤维中的药物突释较小,而PEG-PLLA纤维中药物突释明显。两种高分子纤维中的药物均随着蛋白酶K浓度的增高而释放加快。除突释阶段外,对于不同高分子材料制备所得纤维和同种高分子材料而不同载药量的纤维,药物释放均分两个阶段符合α=kt1/2公式,PEG-PLLA纤维中包裹的布洛芬的释放速率比PLLA纤维中的要快,20%载药量的纤维中的药物释放速率比10%载药量的要快。由于布洛芬具有亲水的羧基,所以载药量多时,释放介质对纤维的浸润变得更容易,药物释放便加快了。
     采用PEG-PLLA和PEG-PHO复合高分子溶液直接纺丝法制备了布洛芬超细纤维,并且采用该复合材料并用乳化-纺丝法制备了阿霉素超细纤维:发现当纤维中掺入质量百分比为5%的质均分子量为5000左右的PEG-PHO时,后者就会阻碍纤维对酶的降解,即阻碍蛋白酶K对纤维的降解,对于直接干法电纺的含有布洛芬的纤维和经过乳化-纺丝的包裹有盐酸阿霉素的纤维来说,使得药物的释放在末期受阻;1周后释放百分率较没有加入的低。主载体材料中加入小部分非降解的材料即对整个体系的降解性能产生影响,这种现象为首次报道。
     分别用PEG-PLLA和PLLA两种材料,采用复乳化法制备了包载有水溶性药物盐酸吉西他滨的中空微球。采用PLLA制备得到的微球表面有孔洞缺陷存在,采用PEG-PLLA制备得到的微球表面仅有有规律的细小格状花纹出现,剖面显示,两种微球内部均成蜂窝状结构。所得微球粒径分别为270+109.7μm和279±127.2μm, PEG-PLLA微球中PEG嵌段的存在导致微球中药物的突释,PLLA微球无药物突释;PEG嵌段的存在使得微球中包裹的药物释放更为完全,尤其是在释放介质中有蛋白酶K存在的条件下,而PLLA微球。1个月后,在释放介质中无蛋白酶K存在的情况下,PLLA微球中的药物释放少于载药量的40%,而PEG-PLLA中释放的为载药量的70%。在含有蛋白酶K的释放介质中,PLLA微球的释放量在50%左右。而PEG-PLLA微球中药物的释放量在70%以上,尤其是在蛋白酶K为10μg/mL时,释放量为100%。
Synthetic method of a-hydroxyl octanoic acid and 3,6-dihexyl-1,4-dioxane-2,5-dione was improved and optimized by using heptaldehyde as the starting material via the process of nucleophilic substitution,displacement reaction,acid hydrolysis,deaminization by alkalinization and the process of dehydration of acid catalysis respectively. The improved method increased the yield of a-hydroxyl octanoic acid to 77%. The improved method ensured the material to react thoroughly at every step for synthesizing a-hydroxyl octanoic acid therefore increasing the utilance of material and decreasing the waste of reactant.
     Polyester polymer was synthesized and electrospinned by dry method:poly L-lactide with high molecular weight and low poly dispersitu index was prepared by melting-polymerization method. a-hydroxyl octanoic was synthesized by dehydration modified process.and its was synthesized by ring opening polymerization at melting state. PEG blocked poly L-lactic acid was electrospun and condition for spinning was optimized by scanning electronic microscope observation. Meanwhile, PEG-PHO and PEG-PCL was respectively mixed with PEG-PLLA and electrospun. Fibers with no phase separation was obtained by mixture organic solution electrospinning.
     Ultra-fine fibers with magnolol entrapped was prepared by solution from single polymer PEG-PLLA.Fibers with 10%,20% and 30% mass ratio of drug loading was prepared. By SEM onservation and WAXD detection, magnolol could be entrapped in fibers perfectly. Drug burst release amount was small. At prior period of drug release experiment, profiles fitted to a=kt1/2 equation. As the drug amount became bigger, degradation of fibers become slower. And compared to fibers with 10% magnolol loaded release, fibers with 20% and 30% drug loaded release drug slower. Lipophilicity of magnolol lead to weak moisturation of release media onto fiber surface and into fibers inner part. As degradation of fibers became slower, drug release speed became slower.
     PLLA and PEG-PLLA was used to prepare ultra-fine fibers by solution direct electrospinning.10% and 20% drug to mass ratio of drug loading was prepared. By observation of SEM, ibuprofen was perfectly entrapped in the fibers. Drug release experiment indicated that drug burst release was obvious for that in PEG-PLLA fibers but not for that in PLLA fibers. As higher as concentration of proteinase K in release media became, drug release became faster and PEG blocked PLLA fibers was more easily be affected by proteinase K and release drug faster than that of PLLA fibers. The release profile could be fitted for a=kt1/2 at two stage except for burst release phase. Fibers with 20% drug loaded release drug more faster than that with 10% drug loaded irrespect of the fiber was spun from PLLA or PEG-PLLA.
     Ultra-fine fibers with ibuprofen entrapped was spun from PEG-PLLA和PEG-PHO composite organic solution. And ultra-fine fibers was also spun from this kind of composite solution to entrap doxorubicin hydrochloride by emulsification-electrospinning process. It was found that as though as 5% mass ratio of PEG-PLLA was replaced by PEG-PHO with molecula weight of about 5000,the fibers would block the fibers from being degradated.For this kind of fibers,1 week cumulated drug release amount was lower than that of with no PEG-PHO added. Just a little addition of low molecula weight polymer into PLLA fibers could prohibit fibers from being degradated.
     PEG-PLLA and PLLA was used respectively to prepare hollow microspheres with Gemcitabine entrapped by double emulsification process.There were holes existing on microspheres prepared from PLLA. And there were only tiny grid-like patterns on microspheres. From microsphere's cross section by ESEM observation, honeycomb structure was found in both kind of mirospheres. Particle size of two kind of microspheres are almostly the same which were 270±109.7μm and 279±127.2μm respectively. PEG segment in spheres lead to burst release of drug at the beginning and thorough release in the end especially for that there was enzyme in releae media. There was no burst release in PLLA sphere and although under proteinase K degradation, there was unreleased drug remained in inner sphere in the end. After about one month, when there was no proteinase K in release media, less than 40% of loaded drug was released from PLLA sphere and about 70% from PEG-PLLA. When there was proteinase K in release media, about 50% of loaded drug was released from PLLA sphere and more than 70% release from PEG-PLLA and even 100% for that in release media with 10μg/mL proteinase K added.
引文
[1]Seal K J, Chem. and Tech. of Biod. Polym.1994,7:116
    [2]朱常英,由英才,寇小娣,含淀粉生物降解材料,离子交换与吸附,2000,16(2):182-187
    [3]黄汉生,日本生物降解性塑料开发近况,现代化工.1994,9:38-43
    [4]Lenz RW., Adv Polym Sci.,1993,107:1
    [5]Raghavan D., Polym-Plast Technol Eng,1995,34 (1):41
    [6]王国建,刘琳,特种与功能高分子材料,中国石化出版社.2004:224
    [7]Leong K.W., Langer R., Polymeric controlled drug delivery, Adv. Drug Deliv. Rev.,1988,1(3):199-233
    [8]杨记,张佩华,几种常用的可生物降解医用材料[J],上海纺织科技,2001,29(4):10-11
    [9]Jain R A, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials,2000,21(23):2475-2490
    [10]Leong K W, Langer R, Polymeric controlled drug delivery, Adv. Drug Deliv. Rev.,1988,1(3):199-233
    [11]Hayashi T, Biodegradable polymers for biomedical uses, Prog. Polym. Sci.,1994,19(4):663-702
    [12]杨安乐,孙康,吴人洁,聚ε-己内酯的合成改性和应用进展,高分子通报,2000(2):52-54
    [13]李梅,李志强,聚3-羟基丁酸酯/大豆分离蛋白共混电纺丝性能研究,生物医学工程学杂志,2007,24(3):607-611
    [14]Korte F, Gelt WJ, Hochdruckreaktionen. II Die polymerization von y-butyrolacton und δ-valerolactam bei hohen driichen, Polym. Sci, Part B.1966,4:685-689.
    [15]刘炼,魏志勇,张步峰,等,聚-3-羟基丁酸酯及其共聚物的合成与表征,功能材料,2006,7(37):1087-1090
    [16]Zan J, Zhu DQ, Tan FP, et al., Preparation of thermosensitive chitosan formulations containing 5-fluorouracil poly 3-ydroxybutyrate microparticles used as injectable drug delivery system, Chinese J. Chem. Eng.,2006,14(2): 235-241
    [17]Ashammakhi N, Rokkanen P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials, 1997,18:3-9
    [18]Barrows T., Degradable implant materials:A review of synthetic absorbable polymers and their applications, Clinical Materials,1986,1(4):233-257
    [19]Bogle G. Locally delivered doxycycline hyclate:case selection, preparation and application, Compend Contin Educ Dent,1999,20 (4 suppl):26-33
    [20]Hayashi T., Biodegradable polymers for biomedical uses, Progress in Polymer Science,1994,19(4):663-702
    [2l]卓仁喜,祝磊,尹超等,聚乳酸眼科植入材料的制备及其降解性能.应用化学,1997,14:102-104
    [22]Martin C, Winet H, Bao JY, et al., Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibal bone chambers. Biomaterials,1996,17:2373-2380
    [23]Leenslag JW, Pennings AJ, Bos RM, et al., Resorbable materials of poly(L-lactide).Ⅵ.Plates and screws for internal fracture fixation.Biomaterials,1987,8:70-73
    [24]Agarwal CM, Athanasiou KA et al. Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research,1997,38:105-114
    [25]Smith K.L., Schimpf M.E., Thompson K. E., Bioerodible polymers for delivery of macromolecules, Adv. Drug Deliv. Rev.,1990,4(3):343-357
    [26]Biondi, M., Ungaro, F.,Quaglia, F., Netti, P. A., Controlled drug delivery in tissue engineering, Adv. Drug Deliv. Rev.,2008,60:229-242
    [27]Sun Y, Wang J C, Zhang X,et al., Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres:In vitro and in vivo studies, J. Control. Release,2008,129 (3):192-199
    [28]艾国,程远国,长效微球注射剂及其在糖尿病治疗领域中的应用,中国药剂学杂志,2008,6(4):206-213.
    [29]Eldridge JH, Staas JK, Meulbroek JA, et al., Biodegradable microspheres as a vaccine delivery system, Molecular Immunology,1991,28(3):287-294
    [30]Eliaz RE, Szoka FC Jr, Robust and prolonged gene expression from injectable polymeric implants, Gene Ther, 2002,18:1230-1237
    [31]Agrawal S. K., DeLong N. S., Coburn J. M., Tew G. N., Bhatia S. R., Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers, J. Control. Release,2006,112:64-71
    [32]Lee ES., Oh KT, Kim D, et al., Tumor pH-responsive flower-like micelles of poly(1-lactic acid)-b-poly (ethyleneglycol)-b-poly(1-histidine), J. Control. Release,2007,123:19-26
    [33]Blanco E., Bey E. A., Dong Y., Weinberg B. D., Sutton D. M., Boothman D. A., Gao J., β-Lapachone-containing PEG-PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells, J. Control. Release,2007,122:365-374
    [34]Nishiyama N., Kataoka., Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery, Pharmacology and Therapeutics,2006,112:630-648.
    [35]Kim SY, Lee YM, Shin HJ, Kang JS, Indomethacin-loaded methoxy poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanosphere:pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats, Biomaterials,2001,22:2049-2056.
    [36]Kim SC, Kim DW, Shim YH, et al., In vivo evaluation of polymeric micellar paclitaxel formulation:toxicity and efficacy, J. Control. Release,2001,72:191-202
    [37]李珺婵,方晓玲,嵌段共聚物胶束作为抗肿瘤药物载体的研究进展,国外医学-药学,2004,31(1):48-49
    [38]Jeong B, Bae Y. H., Lee D. S., Kim S. W., Biodegradable block copolymers as injectable drug-delivery system, Nature,1997,388:860-862
    [39]Jeong B, Choi YK, Bae YH, Zentner G, Kim SW, New biodegradable polymers for injectable drug delivery systems, J Control. Release.,1999,62:109-114
    [40]Jeong B., Bae Y. H., Kim S. W., Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers, J Control. Release.,2000,63:155-163
    [41]Qiao M. X., Chen D. W., Ma X. C., Liu Y. J., Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers:Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels, Int. J. Pharm.,2005,294:103-112
    [42]林浩,田华雨,孙敬茹等,温度敏感的PLGA-PEG-PLGA水凝胶的合成、表征和药物释放,2006,27(7):1385-1388
    [43]Zentner G. M., Rathi R., Shih C., et al., Biodegradable block copolymers for delivery of proteins and water-insoluable drugs, J. Control. Release,2001,72:203-215
    [44]Johnson OL, Cleland JL, Lee HJ, et al., A month-long effect from a single injection of microencapsulated human growth hormone, Nat Med,1996,2(7):795-799
    [45]Negrin CM, Delgado A, Llabres M, Evoca C, In vivo-in vitro study of biodegradable methadone delivery systems, Biomaterials,2001,22:563-570
    [46]Freitas S, Merkle H P, Gander B, Microencapsulation by solvent extraction/evaporation:reviewing the state of the art of microsphere preparation process technology, J. Control. Release,2005,102:313-332
    [47]苏德森,王思玲.物理药剂学.北京:化学工业出版社,2004:363-366.
    [48]Woo BH, Kostanski JW, Gebrekidan S, et al., Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres, J. Control. Release,2001,75:307-315
    [49]Reza Arshady, Preparation of biodegradable microspheres and microcapsules:2. Polyactides and related polyesters, J. Control. Release.,1991,17(1):1-21
    [50]Izumikawa S, Yoshioka S, Aso Y, et al, Preparation of poly(1-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate, J. Control. Release.,1991,15(2):133-140
    [51]Benoit J.P., Courteille F., Thies C., A physicochemical study of the morphology of progesterone-loaded poly (d,l-lactide) microspheres, Int. J. Pharm.,1986,29(2-3):95-102
    [52]Berkland C, King M, Cox A, Kim K, Pack D W, Precise control of PLG microsphere size provides enhanced control of drug release rate, J Control Release,2002,82 (1):137-147
    [53]Yamaguchi K., Anderson J., Biocompatibility studies of naltrexone sustained release formulations, J. Control. Release.,1992,19 (1-3):299-314
    [54]Rosa G D, Iommelli R, La Rotonda M I, Miro A, Quaglia F, Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres, J Control Release, 2000,69(2):283-295
    [55]Wischke C., Schwendeman SP, Principles of encapsulating hydrophobic drug in PLA/PLGA microparticles, Int. J. Pharm.,2008,364:298-327
    [56]Al-Maaieh A, Flanagan DR, Salt and cosolvent effects on ionic loading into microspheres using an O/W method. J. Control. Release,2001,70:169-181
    [57]Blanco-Prieto MJ, Campanero MA, Besseghir K, et al., Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres, J. Control. Release,2004,96:437-448
    [58]Matsumoto A, Matsukawa Y, Suzuki T, et al., Drug release characteristics of multi-reservoir type microspheres with poly(DL-lactide-co-glycolide) and poly(DL-lactide), J. Control. Release,2005,106:172-180.
    [59]Kakinoki S, Yasuda C, Kaetsu I, Preparation of poly-lactic acid microspheres containing the angiogenesis inhibitor TNP-470 with medium-chain triglyceride and the in vitro evaluation of release profiles, Eur. J. Pharm. Biopharm,2003,55:155-160.
    [60]Morita T, Horikiri Y, Suzuki T, Yoshino H, Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres, Eur. J. Pharm. Biopharm.,2001,51: 45-53.
    [61]Williams D.F., Zhong S.P., Biodeterioration/biodegradation of polymeric medical devices in situ, International Biodeterioration and Biodegradation,1994,34(2):95-130
    [62]Spenlehauer G., Vert M., Benoit J.P., et al., In vitro and In vivo degradation of poly(D,L-lactide/glycolide) type microspheres made by solvent evaporation method, Biomaterials,1989,10(8):557-563
    [63]Ciftci K, Hincal A A, Kas H.S., et al., Microspheres of 5-fluorouracil using poly(dl-lactic acid):in vitro release properties and distribution in mice after i.v. administration, Eur. J. Pharm. Sci.,1994,5(1):249-258
    [64]Gupta P K, Johnson H, Allexon C, In vitro and in vivo evaluation of clarithromycin/poly(lactic acid) microspheres for intramuscular drug delivery, Journal of Controlled Release,1993,26(3):229-238
    [65]Anselme K, Flautre B, Hardouin P, et al., Fate of bioresorbable poly(lactic acid) microbeads implanted in artificial bone defects for cortical bone augmentation in dog mandible, Biomaterials,1993,14(1):44-50
    [66]Ike O., Shimizu Y., Ikada Y., et al., Biodegradation and antitumour effect of adriamycin-containing poly(1-lactic acid) microspheres, Biomaterials,1991,12 (8):757-762
    [67]李瑛,李炎清,辉瑞公司单剂量阿奇霉素微球剂提出上市申请,中国药师,2006,9(1):80
    [68]Jilek S., Merkle H. P. and Walter E., DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells, Adv. Drug Deliv. Rev.,2005,57:377-390
    [69]Alonso MJ, Gupta R K, Min C, et al, Biodegradable microspheres as controlled-release tetanus toxoid delivery systems, Vaccine,1994,12(4):299-306
    [70]Yamaguchi K., Anderson J., Biocompatibility studies of naltrexone sustained release formulations, Journal of Controlled Release,1992,19(1-3):299-314
    [71]Hyvonen S, Peltonen L, Karjalainen M, Hirvonen J, Effect of nanoprecipitation on the physicochemical properties of low molecular weight poly(1-lactic acid) nanoparticles loaded with salbutamol sulphate and beclomethasone dipropionate, Int. J. Pharm.,2005,295 (1-2):269-281
    [72]Caliceti P, Salmaso S, Elvassore N, Bertucco A, Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques, J Control. Release,2004,94(1):195-205
    [73]Ishihara T., Izumo N., Higaki M., Shimada E., Hagi T., Mine L., Ogawa Y., Mizushima Y., Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile, J. Control. Release,2005,105:68-76
    [74]Sinha V R, Bansal K, Kaushik R, et al., Poly-ε-caprolactone microspheres and nanospheres:an overview, Int. J.Pharm.,2004,278(1):1-23
    [75]Chen C, Yu C H, Cheng Y C, et al., Biodegradable nanoparticles of amphiphilic triblockcopolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers, Biomaterials,2006,27:4804-4814
    [76]Sasatsu M, Onishi H, Machida Y, In vitro and in vivo characterization of nanoparticles made of MeO-PEG amine/PLA block copolymer and PLA, Int. J. Pharm.,2006,317(2):167-174
    [77]Csaba N, Sanchez A, Alonso M J, PLGA:Poloxamer and PLGA:Poloxamine blend nanostructures as carriers for nasal gene delivery, J. Control. Release,2006,113(2):164-172
    [78]Muthu M S, Rawat M K, Mishra A, Singh S, PLGA nanoparticle formulation of risperidone:preparation and neuropharmacological evaluation, Nanomedicine:Nanotechnology, Biology and Medicine,2009,5(3):323-333,
    [79]Hamoudeh M, Al Faraj A, Canet-Soulas E,et al., Elaboration of PLLA-based superparamagnetic nanoparticles: Characterizaion, magnetic behaviour study and in vitro relaxivity evaluation, Int. J. Pharm.,2007,338,248-257
    [80]Dzenis Y, Spinning continuous fibers for nanotechnology, Science,2004,304:1917-1919.
    [81]Li WJ, Cato T, Laurencin, et al., Electrospun nanofibous structure:A novel scaffold for tissue engineering, J Biomed Mater Res,2002,60(4):613-621.
    [82]Doshi J, Reneker DH, Electrospinning process and applications of electrospun fibers, J Electrostat,1995, 35:151-160
    [83]Reneker DH, Chun I, Nanometre diameter fiber of polymer produced by electrospinning, Nanotechnology, 1996,7:216
    [84]任杰,董博,聚乳酸纤维制备的研究进展,材料导报,2006,20(2):82-85
    [85]Deitzel JM, Kleinmeyer, Harris D, et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer,2001,42:261-272.
    [86]孟洁,孔桦,朱广瑾,许海燕,纳米纤维结构支架的构建及其对再生医学的意义,基础医学与临床,2006,26(7):689-693
    [87]Li WJ, Cooper JA Jr, Mauck RL, Tuan RS, Fabrication and characterization of six electrospun poly(a-hydroxyester)-based fibrous scaffolds for tissue engineering applications, Acta Biomater,2006, 2:377-385
    [88]Li WJ, Tuli R, Huang X, Laquerriere, Tuan RS, Multilineage differentiation of human mesenchymal stem in a three-dimentional nanofibrous scaffold, Biomaterials,2005,26:5158-5166
    [90]Maretschek S, Greiner A, Kissel T, Electrospun biodegradable nanofiber nonwovens for controlled release of proteins, J. Control. Release,2008,127:180-187
    [91]Luu Y K, Kim K, Hsiao B S, et al., Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers, J. Control. Release,2003,89:341-353
    [92]张文奇,化纤无纺布生产简介,化学纤维,52-56
    [93]李博,刘铜军,梁显军等,担载阿霉素的可降解静电纺丝纤维毡对小鼠H22肝癌移植瘤的抑制作用,吉林大学学报(医学版),2007,33(2):227-230
    [94]Kenawy E R, Bowlin G L, Mansfield K, et al., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid),and a blend, J. Control. Release,2002,81:57-64
    [95]Kim K, Luu Y K, Chang C, et al., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based eletrospun nanofibrous scaffolds, J. Control. Release.,2004,98:47-56
    [96]Jiang H, Hu Y, Li Y, et al., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, J. Control. Release,2005,108:237-243
    [97]Xu X L,Yang L X, Xu X Y, et al., Ultrafine medicated fibers electrospun from W/O emulsions, J. Control. Release,2005,108:33-42
    [98]Chen H L, Chen J X, Research on the new one rod conceptive implant containing gestodene, J Reproduction Contraception,2007,18 (2):86-88,
    [99]Barrows T., Degradable implant materials:A review of synthetic absorbable polymers and their applications Clin. Mater.,1986,1(4):233-257
    [100]高昊,平其能,顾月清,生物可降解载药纤维的制备、特征表征及释药特征的研究,生物医学工程学杂志,2008,25(4):870-873
    [101]Kang J, Lambert O, Ausborn M, Schwendeman SP, Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders, Int J Pharm,2008,357:235-243
    [102]Ruan G, Feng S S, Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel, Biomaterials,2003,24(27):5037-5044
    [103]Okada M, Chemical syntheses of biodegradable polymers, Prog. Polym. Sci.,2002,27(1):87-133
    [104]Jeong B, Choi YK, Bae YH, et al., New biodegradable polymers for injectable drug delivery systems, J. Control. Release,1999,62:109-114
    [105]Bae YH, Huh KM, Kim Y, Park KH, Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications, J. Control. Release,2000,64:3-13
    [106]Gao M., Yang Y., Fan Y., Ma J., Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems, J. Control. Release,2006,112:301-311.
    [107]苏德森,王思玲,物理药剂学,化学工业出版社,北京,241-242
    [108]Choi Y, Kim S Y, Kim S H, et al., Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/ PEG-PLLA blended microspheres, Int. J. Pharm.,2001,215 (1-2):67-81
    [109]Lee E S, Park K H, Park I S, Na K, Glycol chitosan as a stabilizer for protein encapsulated into poly(lactide-co-glycolide) microparticle, Int. J. Pharm.,2007,338(1-2):310-316
    [110]Burt H M, Jackson J K, Bains S K, et al., Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid), Cancer Lett.,1995,88(1):73-79
    [111]Mu L, Feng S S, Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers, J. Control. Release,2001,76 (3):239-254
    [112]Yoo H S, Preparation of biodegradable polymeric hollow microspheres using O/O/W emulsion stabilized by Labrafil, Colloid. Surface. B:Biointerface,2006,52(1):47-51
    [113]Cerral P, Tricoli M, Lelli L, Guerra G D, Block copolymers of L-lactide and poly(ethylene glycol) for biomedical applications, J. Mater. Sci., Mater. Med.1994,5:308-313
    [114]Vila A, Gill H, McCallion O, Alonso M J, Transport of PLA-PEG particles across the nasal mucosa:effect of particle size and PEG coating density, J. Control. Release.,2004,98:231-244
    [115]Gray A W, Davies M E, Jeffcott L B, Localisation and activity of cathepsins K and B in equine osteoclasts, Res. Vet. Sci.,2002,72:95-103
    [116]D'Alonzo R C, Selvamurugan N, Krane S M, Partridge N C, Bone Proteinases, Principles of Bone Biology (Second Edition),2002:251-264
    [117]Soderstrom M, Ekfors T, Bohling T, et al., Cysteine proteinases in chondrosarcomas, Matrix Biol.,2001,19: 717-725
    [1]曾敬,陈学思,景遐斌,电纺丝与聚合物超细纤维,高分子通报,2003(6):44-47
    [2]Ghaderi R, Sturesson C, Carlfors J, Effect of preparative parameters on the characteristics of poly-D,L-lactide-co-glycolide) microspheres made by the double emulsion method, Int. J. Pharm.,1996,141 (1-2):205-216
    [3]Schugens Ch, Laruelle N, Nihant N, et al., Effect of the emulsion stability on the morphology and porosity of semicrystalline poly 1-lactide microparticles prepared by w/o/w double emulsion-evaporation, J. Control. Release, 1994,32(2):161-176
    [4]Bae YH, Huh KM, Kim Y, Park KH, Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications, J. Control. Release,2000,64:3-13
    [5]苏德森,王思玲,物理药剂学,化学工业出版社,北京,240-242
    [6]Zhu KJ, Xiangzhou L, Shilin Y, Preparation,characterization,and properties of plylactide (PLA)-poly(ethylene glycol)(PEG) copolymers:a potential drug carrier, J. Appl. Polym. Sci.,1990,29:1-9
    [7]Xu X.L.,Yang L.X.,Xu X.Y.,Wang X.,Chen X.S.,Liang Q.Z.,Zeng J.,X.B. Jing, Ultrafme medicated fibers electrospun from W/O emulsions, J. Control. Release.,2005,108:33-42
    [8]Lee J H, Go A K, Oh S H, Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films, Biomaterials,2005,26:671-678
    [9]林浩,田华雨,孙敬茹等,温度敏感的PLGA-PEG-PLGA水凝胶的合成,表征和药物释放,高等学校化学学报,2006,27(7):1385-1388
    [10]刘立建,廖立琼,宋英,等,己内酯和丙交酯的微波辅助开环聚合反应,2003,5:1-6
    [11]李爱萍,李光吉,聚羟基脂肪酸酯生物合成的研究进展,高分子通报,2004(5):20-27
    [12]杨记,张佩华,几种常用的可生物降解医用材料,上海纺织科技,2001,29(4):10-11
    [13]羊依金,李志章,张雪乔,微生物降解塑料的研究进展,化学研究与应用,2006,18(9):1015-1021.
    [14]倪沛洲,有机化学,人民卫生出版社,北京,第十一章:338
    [15]苏德森,王思玲,物理药剂学,化学工业出版社,北京,243
    [16]阮建明,刘莹,张海坡,等,高分子量聚L-乳酸(PLLA)的合成研究[J],湖南科技大学学报(自然科学版),2007,22(1):81-85.
    [17]赵三平,尹玥,冯增国,PCL-PEG-PCL嵌段共聚物的合成与性能,功能高分子学报,2002,1(14):67-71
    [18]Shiosaki K., Papoport H., a-Amino acids as chiraleducts for asymmetric products chirospecific syntheses of the 5-butyl-2-heptylpyrrolidines from glutamic acid. J. Org. Chem.1985,50:1229-1239.
    [19]Thomas Trimaille, Michael Moller, Robert Gurny. Synthesis and ring-openning polymerization of new monoalkyl-substituted lactides, J. Poly. Sci:Part A:Poly. Chem.2004,42:4379-4391.
    [20]葛鹏飞,葛明桥,魏取福等,聚乳酸纤维的静电纺丝及其形态结构研究,合成纤维,2007,1:1-4.
    [21]何晨光,高永娟,赵莉等,静电纺丝的主要参数对PLGA纤维支架形貌和纤维直径的影响,中国生物工程杂志,2007,27(8):46-52
    [22]董存海,段斌,袁晓燕,姚康德,静电纺丝制备聚丙交酯超细纤维,生物医学工程学杂志,2005,22(6):1245-1248
    [23]Xu X, Chen X, Xu X,et al., BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells, J. Control. Release,2006,114:307-316
    [24]Doshi J, Reneker DH, Electrospinning process and applications of electrospun fibers, J Electrostat,1995, 35:151-160
    [1]彭怀仁,中华名医方剂大全,北京:金盾出版社,1990:58
    [2]Richard F, Squires, Jinglu A, et al., Honokiol and magnolol increase the number of [3H] muscimol binding sites three-fold in rat forebrain membranes in vitro using a filtration assay, by allosterically increasing the affinities of low-affinity sites, Neurochem Res,1999,24:1593-1602
    [3]Kaplan M., Mutlu E. A., Benson M., et al., Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders, Complement. Ther. Med.,2007,15(3):207-216
    [4]Lin Y.-R., Chen H.-H., Ko C.-H., Chan M.-H., Effects of honokiol and magnolol on acute and inflammatory pain models in mice, Life Sci.,2007,81(13):1071-1078
    [5]Jawan B., Goto S., Pan T.-L., et al., The protective mechanism of magnolol, a Chinese herb drug, against warm ischemia-reperfusion injury of rat liver, J. Surg. Res.,2003,110(2):378-382
    [6]Tseng S.-H., Chien T.-Y., Tzeng C.-F., et al., Prevention of hepatic oxidative injury by Xiao-Chen-Chi-Tang in mice, J. Ethnopharmacol.,2007,111(2):232-239
    [7]Bang KH, Kim YK, Min BS, et al., Antifungal activity of magnolol and honokiol, Arch. Pharm. Res.,2000, 23(1):46-49
    [8]Xu Q., Yi L.-T., Pan Y., Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents, Prog. in Neuro-Psychopharm. Biol. Psych.,2008,32 (3):715-725
    [9]Li J.-M., Kong L.-D., Wang Y.-M., Cheng C. H. K., et al., Behavioral and biochemical studies on chronic mild stress models in rats treated with a Chinese traditional prescription Banxia-houpu decoction, Life Sciences, 2003,74(1):55-73
    [10]沈映君.中药药理学.上海:上海科学技术出版社,1997:448
    [11]李玲玲,厚朴挥发油化学成分研究,中草药,2001,32:686-687
    [12]Chang B, Lee Y, Ku Y, et al., Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms, Planta Med,1998,64(4):367-369
    [13]Lewis D.A., Hanson P.J.,4 Anti-Ulcer Drugs of Plant Origin, Prog. in Med. Chem.,1991,28:201-231
    [14]国家中医药管理局《中华本草》编委会,中华本草,上海:上海科技出版社,1999.
    [15]贾晖,陈世忠,静脉注射和厚朴酚的药代动力学及组织分布研究,北京大学学报(医学版),2003,35(3):328
    [16]Zeng J, Yang L X, Liang Q Z, et al., In flunce of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation, J. Control. Release,2005,105:43-51.
    [17]Xu X, Chen X, Xu X,et al., BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells, J. Control. Release,2006,114:307-316
    [18]Xu X L, Yang L X, Xu X Y, et al., Ultrafine medicated fibers electrospun from W/O emulsions, J. Control. Release,2005,108:33-42.
    [19]苏德森,王思玲,物理药剂学,北京:化学工业出版社,2004:29-31
    [20]苏德森,王思玲,物理药剂学,北京:化学工业出版社,2004:20-23
    [2l]钟小群,蔡庆顺,李玉云,余华,HPLC测定藿香正气胶囊厚朴酚及和厚朴酚含量,中成药,2006,28(2):288-290
    [22]崔福德,药剂学,北京:中国医药科技出版社,2002:517-519.
    [23]Miyajima M., Koshika A., Okada J., Kusai A., Ikeda M., Factors influencing the diffusion-controlled release of papaverine from poly(L-lactic acid)matrix, J. Control. Release.,1998,56:85-94
    [1]刘永琼,刘桂桂,刘永红.布洛芬新剂型研究与应用,医药导报,1996,15(1):5-7.
    [2]Lee J.H., Gu A.K., Oh S.H., et al. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films, Biomaterials,2005,26:671-678.
    [3]卓仁喜,祝磊,尹超等.聚乳酸眼科植入材料的制备及其降解性能.应用化学,1997,14:102-104
    [4]Xu X.L.,Yang L.X.,Xu X.Y.,Wang X.,Chen X.S.,Liang Q.Z.,Zeng J.,X.B. Jing, Ultrafine medicated fibers electrospun from W/O emulsions, J. Control. Release.,2005,108:33-42
    [5]Xu X.L., Chen X. S., Xu X. Y., et al., BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells, J. Control. Release,2006,114:307-316.
    [6]Kenawy E.-R., Bowlin G. L., Mansfield K., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release,2002,81:57-64.
    [7]陈莉,张莉,李亚,齐刚.RP-HPLC法测定布洛芬离子导入凝胶剂的含量.解放军药学学报,2007,23(2):138-140.
    [8]Thompson C. J., Hansford D., Higgins S., et al. Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters, Int. J. Pharm.,2007,329:53-61.
    [1]Kang J, Lambert O, Ausborn M, Schwendeman S P, Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders, Int. J. Pharm.,2008,357(1-2):235-243
    [2]Gao H, Yang Y, Fan Y, Ma J, Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems, J. Control. Release,2006, 112:301-311
    [3]Cui W, Qi M, Li X, et al., Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers, Int. J. Pharm.,2008,361:47-55.
    [4]Trimaille T, Moller M, Gurny R. Synthesis and ring-openning polymerization of new monoalkyl-substituted lactides, J Polym Sci:Pol Chem,2004,42:4379-4391.
    [5]Trimaille T., Mondon K., Gurny R., M. Moller, Novel polymeric micelles for hydrophobic drug delivery based on biodegradable poly(hexyl-substituted lactides). Int. J. Pharm.,2006,319:147-154.
    [6]Kenawy E R, Bowlin G L, Mansfield K, Layman J, Simpson D G, Sanders E H,Wnek G E, Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend, J. Control. Release.,2002,81:57-64
    [7]Kim K, Luu Y K, Chang C, et al., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based eletrospun nanofibrous scaffolds, J. Control. Release.,2004,98:47-56
    [8]Morita T., Horikiri Y., Suzuki T., Yoshino H., Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres, Eur. J. Pharm. Biopharm., 2001,51:45-53
    [9]Urata T., Arimori K., Nakano M., Modification of release rates of cyclosporin A from poly(L-lactic acid) microspheres by fatty acid esters and in-vivo evaluation of the microspheres, J. Control. Release,1999, 58:133-141
    [10]Zeng J., Yang L.X., Liang Q.Z., Zhang X.F., Guan H.L., Xu X.L., Chen X.S., Jing X.B., Influnce of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation, J. Control. Release., 2005,105:43-51
    [11]Luu Y K, Kim K, Hsiao B S, et al., Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers, J. Control. Release,2003,89:341-353
    [12]Maretschek S, Greiner A, Kissel T, Electrospun biodegradable nanofiber nonwovens for controlled release of proteins, J. Control. Release,2008,127:180-187
    [13]Xu X.L.,Yang L.X.,Xu X.Y.,Wang X.,Chen X.S.,Liang Q.Z.,Zeng J.,X.B. Jing, Ultrafine medicated fibers electrospun from W/O emulsions, J. Control. Release.,2005,108:33-42
    [14]xxx Choi Y, Kim S Y, Kim S H, et al., Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres, Int. J. Pharm.,2001,215 (1-2):67-81
    [15]xxx Burt H M, Jackson J K, Bains S K, et al., Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d,l-lactic acid), Cancer Lett.,1995,88(1):73-79
    [16]童珊珊,余江南,徐希明,杨琴,沈玉萍,朱源,反相高效液相色谱法测定阿霉素在小鼠血清中的含量[J],江苏大学学报(医学版),2002,12(6):563-565
    [17]Gray A W, Davies M E, Jeffcott L B, Localisation and activity of cathepsins K and B in equine osteoclasts, Res. Vet. Sci.,2002,72:95-103
    [18]D'Alonzo R C, Selvamurugan N, Krane S M, Partridge N C, Bone Proteinases, Principles of Bone Biology (Second Edition),2002:251-264
    [19]Soderstr6m M, Ekfors T, Bohling T, et al., Cysteine proteinases in chondrosarcomas, Matrix Biol.,2001,19: 717-725
    [1]Sturesson C., Carlfors J., Edsman K., et al., Preparation of biodegradable poly (lactic-co-glycolic) acid microspheres and their in vitro release of timolol maleate, Int. J. Pharm.,1993,89(3):235-244
    [2]Deng X, Zhou S, Li X, et al., In vitro degradation and release profiles for poly-dl-lactide-poly (ethylene glycol) microspheres containing human serum albumin, J Control. Release,2001,71(2):165-173.
    [3]Dalpiaz A, Scatturin A, Pavan B, et al., Poly(lactic acid) microspheres for the sustained release of antiischemic agents, Int. J. Pharm.,2002,242(1-2):115-120.
    [4]Wang H.T., Palmer H., Linhardt R.J., et al., Degradation of poly(ester) microspheres, Biomaterials,1990,11(9): 679-685.
    [5]Bodmeier R., McGinity J.W., Solvent selection in the preparation of poly (dl-lactide) microspheres prepared by the solvent evaporation method, Int. J. Pharm.,1988,43 (1-2):179-186,
    [6]Blanco-Prieto M J, Lecaroz C, Renedo M J, et al., In vitro evaluation of gentamicin released from microparticles, Int J. Pharm.,2002,242(1-2):203-206
    [7]Chung T W, Huang Y Y, Liu Y Z, Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microsphers, Int. J. Pharm.,2001,212 (2):161-169
    [8]Choi Y, Kim S Y, Kim S H, et al., Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/ PEG-PLLA blended microspheres, Int. J. Pharm.,2001,215(1-2):67-81
    [9]Liggins RT, Burt HM, Paclitaxel loaded poly (L-lactic acid) microspheres:properties of microspheres made with low molecular weight polymers, Int. J. Pharm,2001,222:19-33
    [10]Ciftci K., Hincal A.A., Kas H.S., et al., Microspheres of 5-fluorouracil using poly(dl-lactic acid):in vitro release properties and distribution in mice after i.v. administration, Eur. J. Pharm. Sci.,1994,1(5):249-258
    [11]Ghaderi R., Sturesson C., Carlfors J., Effect of preparative parameters on the characteristics of poly-D,L-lactide-co-glycolide) microspheres made by the double emulsion method, Int. J. Pharm,1996,141 (1-2): 205-216
    [12]Ehtezazi T, Washington C, Controlled release of macromolecules from PLA microspheres:using porous structure topology, J. Control. Release,2000,68(3):361-372.
    [13]Yamaguchi Y, Takenaga M, Kitagawa A, et al., Insulin-loaded biodegradable PLGA microcapsules:initial burst release controlled by hydrophilic additives, J. Control. Release,2002,81 (3):235-249
    [14]Tarvainen T, Karjalainen T, Malin M, et al, Degradation of and drug release from a novel 2,2-bis(2-oxazoline) linked poly(lactic acid) polymer, J. Control. Release,2002,81 (3):251-261
    [15]Gao M., Yang Y, Fan Y., Ma J., Conjugates of poly(dl-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β-cyclodextrin)s and their nanoparticles as protein delivery systems, J. Control. Release,2006,112:301-311.
    [16]Schoubben A., Blasi P., Giovagnoli S., et al., Novel composite microparticles for protein stabilization and delivery, Eur. J. Pharm Sci.,2009,36:226-234
    [17]Al-Maaieh A, Flanagan DR, Salt and cosolvent effects on ionic loading into microspheres using an O/W method, J. Control. Release,2001,70:169-181
    [18]Chung T. W., Huang Y. Y., Liu Y. Z., Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres, Int. J. Pharm,2001,212:161-169
    [19]Paclitaxel loaded poly(L-lactic acid) (PLLA) microspheres II. The effect of processing parameters on microsphere morphology and drug release kinetics, Int. J. Pharm,2004,281:103-166.
    [20]Schugens Ch., Laruelle N., Nihant N., et al., Effect of the emulsion stability on the morphology and porosity of semicrystalline poly 1-lactide microparticles prepared by w/o/w double emulsion-evaporation, J. Control. Release,1994,32(2):161-176
    [21]钟皎,赵文艳,反向高效液相色谱法测定人血浆中吉西他滨浓度,中国药师,2009,12(1):17-19
    [22]Bodmeier R., Oh K.H., Chen H., The effect of the addition of low molecular weight poly(dl-lactide) on drug release from biodegradable poly (dl-lactide) drug delivery systems, Int. J. Pharm.,1989,51(1):1-8
    [23]Anderson J. M., Shive M. S., Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev.,1997,28:5-24
    [24]王建华,非小细胞肺癌术后吉西他滨联合紫杉醇时辰化疗疗效分析,山东医药,2009,49(30):94-95
    [25]古伟光,廖思海,罗海涛,贺志仁,吉西他滨加奥沙利铂治疗老年晚期非小细胞肺癌的临床观察,肿瘤预防与治疗,2009,22(2):187-189
    [26]刘凌晓,王建华,王小林等,中晚期胰腺癌动脉灌注吉西他滨化疗的疗效分析,中国医学计算机成像杂志,2007,13(3):202-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700