氧化石墨烯及超声对饮用水消毒副产物的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制饮用水中消毒副产物(DBPs)是饮用水水质安全保障的重要环节。DBPs前体物的控制被认为是最有效的DBPs控制方法。混凝技术作为最经济的前体物控制技术,几乎是所有水厂的必备工艺。但传统的铁、铝等金属盐类混凝剂对DBPs前体物的控制效果不佳。自2004年被发现以来,石墨烯就引起了科学界的研究热潮。作为石墨烯制备过程中的中间体,氧化石墨烯(GO)由于其分子结构中含有大量含氧官能团,已被证实对多价金属离子及部分有机物具有良好的吸附去除效果。GO在对高价态金属离子的吸附时会发生团聚,沉淀,这一现象与混凝剂的胶体脱稳现象类似。在GO制备过程中,已用强氧化剂对其进行了相对彻底的氧化,O3、Cl2、ClO2等常用消毒剂不会对其进行进一步氧化,即使在水中有残留,也不会与消毒剂反应产生DBPs。已有的毒理学研究表明,一定浓度下GO不会引起细胞毒性及遗传毒性,是一种绿色材料。此外,在实验室层面,GO的制备方法相对成熟,简单,成本相对较低。基于上述原因,本研究提出采用GO作为混凝剂,在考察其絮体形成影响的基础上,分别研究其对腐植酸配水、地表水、藻细胞及藻细胞胞外有机物的去除效率及相应的DBPs控制效果。
     本研究在采用密闭氧化法制备氧化石墨烯。经表征分析,制得的氧化石墨烯呈透明网状结构且具有明显褶皱,分子结构中碳氧原子质量比为1.63。红外分析显示制得的氧化石墨烯中含有羟基、C=O键、C-O-C等含氧官能团。
     200-400mg/L钙离子作用时,可以明显观察到GO絮体的产生。GO絮体的产生速率、大小及其沉降性能随pH的升高而增强。相同离子浓度下,钾、钠、镁离子作用产生的絮体大小及沉降性能不及钙离子,铝离子作用能产生更大更紧实的GO絮体。网捕作用是GO混凝去除有机物的主要作用,在pH5-9范围内GO对腐植酸均具有很好的去除效果。pH对GO去除腐植酸的影响较小,但对其去除地表水中有机物具有很大影响,pH≤5的条件下可获得最佳的有机物去除效率。初始pH4-10的地表水经GO处理后的pH稳定在6.3-7.7之间,这与GO表面丰富的含氧官能团有密切关系。经GO处理后,水样的SUVA值略微降低,说明GO对水样中腐植酸类,疏水性,大分子有机物去除较亲水性,小分子有机物的去除能力强。GO能够有效去除水体中DBPs尤其是卤乙酸的前体物,最多能够降低86.5%的三氯乙酸前体物。三维荧光分析表明GO混凝对腐植酸及富里酸类物质具有很好的去除效果,但对蛋白质类物质的去除效果不佳。
     藻类的控制近年来一直是饮用水水质安全保障的重要课题。传统的金属盐类混凝剂对藻类的控制效果不甚理想,以臭氧为代表的预氧化则会破坏藻细胞结构释放藻毒素等有机物。本研究采用GO混凝控藻,实验结果表明,GO对藻细胞有很强的网捕能力。在酸性及中性条件下,40mg/L的GO即可实现对叶绿素a的完全去除,对UV254的去除效率也可达到98.3%,消毒副产物前体物减少了97.5%-100%。碱性条件下GO与藻细胞间静电斥力增大,控藻效率明显降低,当pH=10时,对叶绿素a、浊度、DOC、UV254的去除率分别降低到13.8%、17.7%、42.1%、30.8%。硅藻土的投加不会使GO控藻效率发生变化,但会明显增强絮体的沉降性能,缩短沉降时间,减少絮凝污泥量。GO混凝沉淀对组成藻类胞外有机物(EOM)的有机物也有很好的去除效果,pH<6时,TOC的去除率能达到61%。GO混凝能够有效去除EOM中消毒副产物尤其是卤乙酸的前体物,不添加溴离子时,最多能够降低90.1%的一氯乙酸前体物,溴离子存在条件下,能够使三氯乙酸前体物降低91.0%。进一步的分析表明,GO混凝对EOM中含苯环结构,类腐植酸类物质及含C=C双键和C=O双键的芳香族化合物具有一定的去除效果。此外,GO对EOM中的亲水性、大分子有机物的去除能力较疏水性、小分子物质去除能力强。
     对DBPs的终端控制是DBPs控制最直接的方式。本论文分别采用超声,石英砂及二者的联合作用对17种常见DBPs进行去除研究。结果表明,20kHz超声对logKow>1.97的6种DBPs具有超过20%的降解效果,但其降解速率与logKow没有明显关系。KH及蒸汽压不是影响超声降解速率的主要因素,但在同类物质之间超声降解效率与物质的KH及蒸汽压呈正相关关系。官能团对物质的超声降解特性有重要影响,分子结构中含有硝基官能团更容易被超声降解,其次为含腈基官能团的化合物,超声对羰基和羟基的作用效果不甚明显。石英砂对17种DBPs中的9种具有12-80%的吸附效果。超声石英砂的联合作用对除卤乙酸外的12种DBPs均能达到50%以上的去除效果,其中对三氯硝基甲烷能实现100%去除。超声石英砂联合作用一方面增强了超声的空化作用效率,另一方面超声的存在加速了DBPs分子的传质速率,提高了石英砂对DBPs的吸附效率。此外,经超声或超声/石英砂处理后,溶液pH值略微降低,但都满足《生活饮用水卫生标准》的相关要求。三种处理方式下,除对DBPs有一定的去除效果外,对水中溶解性非DBPs有机物也具有一定的去除能力。
Disinfection byproducts (DBPs) control is one of the most important parts ofprotecting the safety of drinking water. DBPs precursorcontrolis considered the mosteffective method of controlling DBPs. As the most economical technology for removingDBPs precursors, coagulation is one of the essential process of almost all water treatmentplants. However, the traditional iron and aluminum salts coagulant cannot efficientlyremove DBPs precursors.Graphene has gained intense interest in scientific communitysince it was discovered in2004.As the intermediate of graphene preparation, grapheneoxide (GO) has been confirmed has the ability of adsorption and removal of muti-valentmetal ion and organic compounds due to its molecular structure possesses large quantitiesof the oxygen-containing functional group. Agglomeration and settling will be found whenapplying GO for adsorption of multi-valent ions, this phenomenon is similar with that ofcolloidal destabilization of coagulant. Common disinfectants such as O3、Cl2、ClO2cannotfurther oxide GO because it was completely oxidase by strong oxidizers such asconcentrated sulfuric acid and potassium permanganate, thus DBPs cannot be formed evenGO remained in water. The existing toxicological data have shown thatGO cannot causecytotoxicity and genotoxicity, and was considered as a green materia. In addition, itrelatively simple and economic for preparation of GO in the laboratory. Based on thereasons mentioned above, GO was used as a coagulant to control DBPs precursors fromhumic acid water, surface water, algae solution and its EOM solution.
     GO was prepared with pressurized oxidation method and presents transparent meshstructure and possesses obvious fold, the C/O atomic ratio of is1.63. The FTIR spectra ofGO shows it contains hydroxyl, C=O and C-O-C functional groups.
     Coagulation constituent formed obviously when200-400mg/L Ca2+is added into thesolution. Sedimentation rate of GO, size of the floc properties and the forming rate ofcoagulation constituent increase with pH. Floc size generated by different ionsperformance better with Ca2+than Na+, K+and Mg2+under the same ion concentration,effect can produce.Larger and more compacted GO flocs was found whtn Al3+ion wasadded. The trap effect is the main function of GO to remove organic matter, GO showsgoodhumic acid removal efficiency within the pH5-9. It is proved that pH variation hasless effect on the trap flocculation of humic acid by GO, but it has great effects on theremoval of organic matter in surface water as the best removal efficiency was found whenpH≤5. The pH of surface water which initial pH is4-10will change after GO treatment andmaintain between6.3-7.7because of the rich oxygen-containing functional group on thesurface of GO. SUVA values of water samples are slightly lower after GO treatment, itshows that the GO has better removal ability on humic like matter in surface water samples.GO can effectively remove precursors of DBPs especially haloacetic acid (HAAs). At most86.5%of trichloroacetic acid (TCAA) precursors can be removed. EEM analysis showsthat GO has good removal efficiency on humic acid and fulvic acid like material, but thethe efficiency on protein like mater is not ideal.
     Algae control is a significant issue for guaranting the quality of drinking water for thelast decade.Traditional metal salt coagulants cannot effectivelyremoval of algaes.Chemicalpreoxidation shows good ability for controlling of algaes,but it will destroy the structure ofalgaes and resulting in releasing some organics such as algal toxin.This dissertationinvestigated the algae removal efficiency by GO. It shows that GO has good ability oftrapping algaes. Under the condition of acid and neutral, could chlorophyll a will becompletely removed under40mg/LGO, the removalefficiency of UV254and DBPsprecursors could reach at98.3%, and97.5%-100%, respectively. Under alkalcondition, theelectrostatic repulsion increases between GO and algal cells and resulting in reducingefficiency of algaecontrol.At pH10, the removalefficiency of chlorophyll a, turbidity, DOC,UV254dramatically reduced to13.8%,17.7%,42.1%,30.8%, respectively. Addingdiatomite to the system couldn’t change the algaes removal efficiency, but it could reducethe sedimentation time and the amount of sludge. GO coagulation also has a good effect onremoving organic matter of EOM of algae, when pH<6, the efficiency of removing TOCcould reach61%. It showed that GO could remove the DBPs precursors of EOM,especially those of HAAs. It could remove the precursors of Monochloroaceticacid by90.1%in the absent of Br-, while remove those of trichloroaceticacid by91.0%in the present ofBr-. It showed that GO hasthe ability of removing organic mattere which containedbenzene ring structure, kind of humic acid substances and aromatic compounds, whichcontain C=C, C=O. Morever, GO has a better ability of removing hydrophilic thanhydrophobic organic maters.
     To the best of our knowledge, little information is available on the combined use ofultrasound (US) and quartz sand (QS) in the removal of DBPs from drinking water. Thisstudy investigates the removal efficiency for17DBPs from drinking water by20KHz sonolytic treatment, QS adsorption, and their combination. Results indicate that DBPs withlogKow≤1.12could not be sonolysized; for logKow≥1.97, more than20%removalefficiency was observed, but the removal efficiency was unrelated to logKow. DBPscontaining a nitro group are more sensitive to US than those that comprise nitrile, hydroxyl,and hydroxyl groups. Among the17investigated DBPs,9could be adsorbed by QSadsorption. The adsorption efficiency ranged from12%for1,1-dichloro-2-propanone to80%for trichloroacetonitrile. A synergistic effect was found between the US and QS on DBPsremoval, and12DBPs could be effectively removed by the combined use of US and QS.In the presence of US, part of the QS particles were corroded into small particles whichplay a role in increasing the number of cavitation bubbles and reducing cavitation bubblesize and then improve the removal efficiency of DBPs. On the other hand, the presence ofUS enhances the DBP mass transfer rate to cavitation bubbles and quartz sand. In addition,sonolytic treatment led to a slight decrease of pH, and TOC values decreased under all thethree treatment processes.
引文
[1] Thielemann H. Experimental studies on the problem of chlorine dioxide treatment of drinkingwater when phenol compounds and3,4-benzpyrenes are present [J]. Zeitschrift für die gesamte Hygieneund ihre Grenzgebiete,1976,22(3):165-169.
    [2] Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity ofregulated and emerging disinfection by-products in drinking water: a review and roadmap for research[J]. Mutat Res-Rev Mutat,2007,636(1-3):178-242.
    [3] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfectionbyproducts [J]. Environ Sci Technol,2006,40(23):7175-7185.
    [4] Sadiq R, Rodriguez M J. Disinfection by-products (DBPs) in drinking water and predictive modelsfor their occurrence: a review [J]. Sci Total Environ,2004,321(1–3):21-46.
    [5] McGuire M J, McLain J L, Obolensky A. Information Collection Rule Data Analysis [M]. AWWAFoundation and AWWA, Denver, USA,2002.
    [6]邓瑛,魏建荣,鄂学礼,等.中国六城市饮用水中氯化消毒副产物分布的研究[J].卫生研究,2008,(02):207-210.
    [7] Montesinos I, Cardador M J, Gallego M. Determination of halonitromethanes in treated water [J]. JChromatogr A,2011,1218(18):2497-2504.
    [8] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfectionbyproducts [J]. Environ Sci Technol,2006,40(23):7175-7185.
    [9] Krasner S W, Sclimenti M J, Mitch W A, et al. Wastewater and Algal Derived N-DBPs [M].AWWA, Denver, CO, USA (2007) AWWA Annual Conference.2007.
    [10] Gan W, Guo W, Mo J, et al. The occurrence of disinfection by-products in municipal drinkingwater in China's Pearl River Delta and a multipathway cancer risk assessment [J]. Sci Total Environ,2013,447(0):108-115.
    [11] Goslan E H, Krasner S W, Bower M, et al. A comparison of disinfection by-products found inchlorinated and chloraminated drinking waters in Scotland [J]. Water Res,2009,43(18):4698-4706.
    [12] Simpson K L, Hayes K P. Drinking water disinfection by-products: An Australian perspective [J].Water Res,1998,32(5):1522-1528.
    [13] Wei J, Ye B, Wang W, et al. Spatial and temporal evaluations of disinfection by-products indrinking water distribution systems in Beijing, China [J]. Sci Total Environ,2010,408(20):4600-4606.
    [14] Nawrocki J, Andrzejewski P. Nitrosamines and water [J]. J Hazard Mater,2011,189(1-2):1-18.
    [15] Asami M, Oya M, Kosaka K. A nationwide survey of NDMA in raw and drinking water in Japan[J]. Sci Total Environ,2009,407(11):3540-3545.
    [16] Huy N V, Murakami M, Sakai H, et al. Occurrence and formation potential ofN-nitrosodimethylamine in ground water and river water in Tokyo [J]. Water Res,2011,45(11):3369-3377.
    [17]梁闯,徐斌,夏圣骥,等. SPE/LC/MS/MS检测水中痕量二甲基亚硝胺[J].中国给水排水,2009,25(14):82-85,92.
    [18] Liu J J, Wang X C, Fan B. Characteristics of PAHs adsorption on inorganic particles and activatedsludge in domestic wastewater treatment [J]. Bioresource Technol,2011,102(9):5305-5311.
    [19] Krauss M, Longrée P, Dorusch F, et al. Occurrence and removal of N-nitrosamines in wastewatertreatment plants [J]. Water Res,2009,43(17):4381-4391.
    [20] Bond T, Goslan E H, Parsons S A, et al. Treatment of disinfection by-product precursors [J].Environ Technol,2011,32(1):1-25.
    [21] Liang L, Singer P C. Factors influencing the formation and relative distribution of haloacetic acidsand trihalomethanes in drinking water [J]. Environ Sci Technol,2003,37(13):2920-2928.
    [22] Singer P C, Bilyk K. Enhanced coagulation using a magnetic ion exchange resin [J]. Water Res,2002,36(16):4009-4022.
    [23] Mergen M R, Jefferson B, Parsons S A, et al. Magnetic ion-exchange resin treatment: Impact ofwater type and resin use [J]. Water Res,2008,42(8):1977-1988.
    [24] Boyer T H, Singer P C. Bench-scale testing of a magnetic ion exchange resin for removal ofdisinfection by-product precursors [J]. Water Res,2005,39(7):1265-1276.
    [25] Chin A, Bérubé P R. Removal of disinfection by-product precursors with ozone-UV advancedoxidation process [J]. Water Res,2005,39(10):2136-2144.
    [26] Toor R, Mohseni M. UV-H2O2based AOP and its integration with biological activated carbontreatment for DBP reduction in drinking water [J]. Chemosphere,2007,66(11):2087-2095.
    [27] Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon,2004,42(1):83-94.
    [28]Karanfil T, Cheng W, Dastgheib S, et al. DBP formation control by modified activated carbons [M].Awwa Research Foundation Denver, CO,2007.
    [29] Westerhoff P, Mezyk S P, Cooper W J, et al. Electron pulse radiolysis determination of hydroxylradical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates [J].Environ Sci Technol,2007,41(13):4640-4646.
    [30] Yang X, Peng J, Chen B, et al. Effects of ozone and ozone/peroxide pretreatments on disinfectionbyproduct formation during subsequent chlorination and chloramination [J]. J Hazard Mater,2012,239–240(0):348-354.
    [31] Siddiqui M, Amy G, Ryan J, et al. Membranes for the control of natural organic matter fromsurface waters [J]. Water Res,2000,34(13):3355-3370.
    [32] Hyung Kim M, Yu M J. Characterization of NOM in the Han River and evaluation of treatabilityusing UF–NF membrane [J]. Environ Res,2005,97(1):116-123.
    [33] Kroto H W, Heath J R, O'Brien S C, et al. C60: buckminsterfullerene [J]. Nature,1985,318(6042):162-163.
    [34] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [35] Tans S J, Verschueren A R, Dekker C. Room-temperature transistor based on a single carbonnanotube [J]. Nature,1998,393(6680):49-52.
    [36]祁小四.新颖碳基纳米材料的合成与性能研究[D].南京大学,2011.
    [37]钱文.碳基纳米材料的合成及储氢性能的研究[D].中国科学技术大学,2006.
    [38] Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes andtheir field emission properties [J]. Science,1999,283(5401):512-514.
    [39] Sitko R, Zawisza B, Malicka E. Graphene as a new sorbent in analytical chemistry [J]. TrAC-TrendAnal Chem,2013,51:33-43.
    [40] Ellerie J R, Apul O G, Karanfil T, et al. Comparing graphene, carbon nanotubes, and superfinepowdered activated carbon as adsorptive coating materials for microfiltration membranes [J]. J HazardMater,2013,261:91-98.
    [41] Hartono T, Wang S, Ma Q, et al. Layer structured graphite oxide as a novel adsorbent for humicacid removal from aqueous solution [J]. J Colloid Interf Sci,2009,333(1):114-119.
    [42] Pyrzynska K. Carbon nanostructures for separation, preconcentration and speciation of metal ions[J]. TrAC-Trend Anal Chem,2010,29(7):718-727.
    [43] Valcárcel M, Cárdenas S, Simonet B, et al. Carbon nanostructures as sorbent materials in analyticalprocesses [J]. TrAC-Trend Anal Chem,2008,27(1):34-43.
    [44] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [45]耿志刚.石墨烯复合结构的吸附和电催化性能研究[D].中国科学技术大学,2013.
    [46] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol,2009,4(4):217-224.
    [47] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueoussolution by graphene oxide [J]. J Colloid Interf Sci,2012,368(1):540-546.
    [48] Pavagadhi S, Tang A L L, Sathishkumar M, et al. Removal of microcystin-LR and microcystin-RRby graphene oxide: Adsorption and kinetic experiments [J]. Water Res,2013,47(13):4621-4629.
    [49] Yang Z, Yan H, Yang H, et al. Flocculation performance and mechanism of graphene oxide forremoval of various contaminants from water [J]. Water Res,2013,47(9):3037-3046.
    [50] Sitko R, Zawisza B, Malicka E. Modification of carbon nanotubes for preconcentration, separationand determination of trace-metal ions [J]. TrAC-Trend Anal Chem,2012,37:22-31.
    [51] Zhao G, Li J, Ren X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavymetal ion pollution management [J]. Environ Sci Technol,2011,45(24):10454-10462.
    [52] Scherba G, Weigel R M, O'Brien W D. Quantitative assessment of the germicidal efficacy ofultrasonic energy [J]. Appl Environ Microb,1991,57(7):2079-2084.
    [53] Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environ Sci Technol,1997,31(8):2237-2243.
    [54] Phull S S, Newman A P, Lorimer J P, et al. The development and evaluation of ultrasound in thebiocidal treatment of water [J]. Ultrason Sonochem,1997,4(2):157-164.
    [55] Duckhouse H, Mason T J, Phull S S, et al. The effect of sonication on microbial disinfection usinghypochlorite [J]. Ultrason Sonochem,2004,11(3-4):173-176.
    [56]张胜华.回用中水超声及其协同紫外消毒效能与机制研究[D].江苏大学,2009.
    [57] Blume T, Neis U. Improving chlorine disinfection of wastewater by ultrasound application [M].2005:139-144.
    [58] Chemat F, Teunissen P G M, Chemat S, et al. Sono-oxidation treatment of humic substances indrinking water [J]. Ultrason Sonochem,2001,8(3):247-250.
    [59]吴晓晖.造纸废水的超声降解研究[D].华中科技大学,2004.
    [60]刘畅.超声预处理组合技术改善污水污泥厌氧消化的研究[D].华中科技大学,2011.
    [61]艾智慧.微波/超声辅助光催化降解氯酚的研究[D].华中科技大学,2004.
    [62] Andaluri G, Rokhina E V, Suri R P S. Evaluation of relative importance of ultrasound reactorparameters for the removal of estrogen hormones in water [J]. Ultrason Sonochem,2012,19(4):953-958.
    [63] Guo Z, Feng R. Ultrasonic irradiation-induced degradation of low-concentration bisphenol A inaqueous solution [J]. J Hazard Mater,2009,163(2-3):855-860.
    [64] Petrier C, Jiang Y, Lamy M F. Ultrasound and environment: Sonochemical destruction ofchloroaromatic derivatives [J]. Environ Sci Technol,1998,32(9):1316-1318.
    [65] Serpone N, Terzian R, Hidaka H, et al. Ultrasonic induced dehalogenation and oxidation of2-,3-,and4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductorparticulates [J]. J Phys Chem,1994,98(10):2634-2640.
    [66] Kotronarou A, Mills G, Hoffmann M R. Decomposition of parathion in aqueous solution byultrasonic irradiation [J]. Environ Sci Technol,1992,26(7):1460-1462.
    [67] Sáez V, Esclapez M D, Tudela I, et al.20kHz sonoelectrochemical degradation ofperchloroethylene in sodium sulfate aqueous media: Influence of the operational variables in batchmode [J]. J Hazard Mater,2010,183(1–3):648-654.
    [68] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem Soc Rev,2010,39(1):228-240.
    [69] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide [J]. J AM Chem Soc,1958,80(6):1339-1339.
    [70] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide [J]. ACSnano,2010,4(8):4806-4814.
    [71] Bao C, Song L, Xing W, et al. Preparation of graphene by pressurized oxidation and multiplexreduction and its polymer nanocomposites by masterbatch-based melt blending [J]. J Mater Chem,2012,22(13):6088-6096.
    [72] Zhao G, Ren X, Gao X, et al. Removal of Pb (II) ions from aqueous solutions on few-layeredgraphene oxide nanosheets [J]. Dalton T,2011,40(41):10945-10952.
    [73]包晨露.石墨烯及其典型聚合物纳米复合材料的制备方法、结构与机理研究[D].中国科学技术大学,2012.
    [74] Bissessur R, Scully S F. Intercalation of solid polymer electrolytes into graphite oxide [J]. SolidState Ionics,2007,178(11):877-882.
    [75] Matilainen A, Veps l inen M, Sillanp M. Natural organic matter removal by coagulation duringdrinking water treatment: A review [J]. Adv Colloid Interfac,2010,159(2):189-197.
    [76] Ghernaout D, Ghernaout B, Naceur M W. Embodying the chemical water treatment in the greenchemistry—A review [J]. Desalination,2011,271(1):1-10.
    [77] Baghoth S, Sharma S, Amy G. Tracking natural organic matter (NOM) in a drinking watertreatment plant using fluorescence excitation–emission matrices and PARAFAC [J]. Water Res,2011,45(2):797-809.
    [78] Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct (DBP)formation in drinking waters: a chronological review [J]. Sci Total Environ,2009,407(14):4189-4206.
    [79] Gang D, Clevenger T E, Banerji S K. Effects of alum coagulation on speciation and distribution oftrihalomethanes (THMs) and haloacetic acids (HAAs)[J]. J Environ Sci Heal,2005,40(3):521-534.
    [80] Roccaro P, Chang H S, Vagliasindi F G, et al. Differential absorbance study of effects oftemperature on chlorine consumption and formation of disinfection by-products in chlorinated water [J].Water Res,2008,42(8):1879-1888.
    [81] Chuang Y H, Lin A Y C, Wang X h, et al. The contribution of dissolved organic nitrogen andchloramines to nitrogenous disinfection byproduct formation from natural organic matter [J]. Water Res,2013,47(3):1308-1316.
    [82] Kanan A, Karanfil T. Formation of disinfection by-products in indoor swimming pool water: Thecontribution from filling water natural organic matter and swimmer body fluids [J]. Water Res,2011,45(2):926-932.
    [83] Kristiana I, Joll C, Heitz A. Powdered activated carbon coupled with enhanced coagulation fornatural organic matter removal and disinfection by-product control: Application in a Western Australianwater treatment plant [J]. Chemosphere,2011,83(5):661-667.
    [84] Liu H, Liu R, Tian C, et al. Removal of natural organic matter for controlling disinfectionby-products formation by enhanced coagulation: A case study [J]. Sep Purif Technol,2012,84(0):41-45.
    [85] Lu J, Zhang T, Ma J, et al. Evaluation of disinfection by-products formation during chlorinationand chloramination of dissolved natural organic matter fractions isolated from a filtered river water [J].J Hazard Mater,2009,162(1):140-145.
    [86] Yang X, Guo W, Lee W. Formation of disinfection byproducts upon chlorine dioxide preoxidationfollowed by chlorination or chloramination of natural organic matter [J]. Chemosphere,2013,91(11):1477-1485.
    [87] Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions—enhancingmechanical properties via chemical cross-linking [J]. ACS nano,2008,2(3):572-578.
    [88] Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: agreen route to graphene preparation [J]. Adv Mate,2008,20(23):4490-4493.
    [89] Jin Y, Huang S, Zhang M, et al. A green and efficient method to produce graphene forelectrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent [J]. ApplSurf Sci,2013,268:541-546.
    [90] Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions usinggraphene oxide [J]. Dalton T,2013,42(16):5682-5689.
    [91] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance asan indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environ SciTechnol,2003,37(20):4702-4708.
    [92] Hua G, Reckhow D A. Effect of pre-ozonation on the formation and speciation of DBPs [J]. WaterRes,2013,47(13):4322-4330.
    [93] Chen J, LeBoeuf E J, Dai S, et al. Fluorescence spectroscopic studies of natural organic matterfractions [J]. Chemosphere,2003,50(5):639-647.
    [94] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regionalintegration to quantify spectra for dissolved organic matter [J]. Environ Sci Technol,2003,37(24):5701-5710.
    [95] Ghernaout D. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation–Areview [J]. J King Saud Univer-Sci,2013, http://dx.doi.org/10.1016/j.jksus.2013.09.005
    [96]中华人民共和国环境保护部.2012年中国环境状况公报[R].2013.
    [97] Li L, Gao N, Deng Y, et al. Characterization of intracellular&extracellular algae organic matters(AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor&taste compounds [J]. Water Res,2012,46(4):1233-1240.
    [98] Dittmann E, Wiegand C. Cyanobacterial toxins–occurrence, biosynthesis and impact on humanaffairs [J]. Mol Nutr Food Res,2006,50(1):7-17.
    [99] Codd G A. Cyanobacterial toxins, the perception of water quality, and the prioritisation ofeutrophication control [J]. Ecol Eng,2000,16(1):51-60.
    [100] Cheng W P, Chi F H. Influence of eutrophication on the coagulation efficiency in reservoirwater [J]. Chemosphere,2003,53(7):773-778.
    [101] Plummer J D, Edzwald J K. Effect of ozone on algae as precursors for trihalomethane andhaloacetic acid production [J]. Environ Sci Technol,2001,35(18):3661-3668.
    [102] Nguyen M-L, Westerhoff P, Baker L, et al. Characteristics and reactivity of algae-produceddissolved organic carbon [J]. J Environ Eng,2005,131(11):1574-1582.
    [103] Fang J, Ma J, Yang X, et al. Formation of carbonaceous and nitrogenous disinfectionby-products from the chlorination of Microcystis aeruginosa [J]. Water Res,2010,44(6):1934-1940.
    [104] Zhou S, Shao Y, Gao N, et al. Characterization of algal organic matters of Microcystisaeruginosa: Biodegradability, DBP formation and membrane fouling potential [J]. Water Res,2014,52(0):199-207.
    [105] Hong H C, Mazumder A, Wong M H, et al. Yield of trihalomethanes and haloacetic acidsupon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. WaterRes,2008,42(20):4941-4948.
    [106] Huang J, Graham N, Templeton M, et al. A comparison of the role of two blue–green algae inTHM and HAA formation [J]. Water Res,2009,43(12):3009-3018.
    [107] Wardlaw V, Perry R, Graham N. Role of algae as trihalomethane precursors a review [J]. JWater Supply Res Tecnol,1991,40(6):335-345.
    [108] Henderson R, Parsons S A, Jefferson B. The impact of algal properties and pre-oxidation onsolid–liquid separation of algae [J]. Water Res,2008,42(8):1827-1845.
    [109]邓风.南京某自备水厂除藻对策[J].青岛建筑工程学院学报,2005,26(1):52-54.
    [110]石颖,陈忠林,李圭白.高锰酸钾复合药剂(PPC)强化混凝除藻室内试验研究[J].哈尔滨建筑大学学报,2000,04:43-45.
    [111]谢鹏超.化学预氧化对藻类特性及氯化消毒副产物生成规律的影响[D].哈尔滨工业大学,2011.
    [112]方晶云.蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制[D].哈尔滨工业大学,2010.
    [113] Wert E C, Rosario-Ortiz F L. Intracellular organic matter from cyanobacteria as a precursorfor carbonaceous and nitrogenous disinfection byproducts [J]. Environ Sci Technol,2013,47(12):6332-6340.
    [114] Tian J-y, Liang H, Nan J, et al. Submerged membrane bioreactor (sMBR) for the treatment ofcontaminated raw water [J]. Chem Eng J,2009,148(2):296-305.
    [115] Yang X, Guo W, Shen Q. Formation of disinfection byproducts from chlor(am)ination of algalorganic matter [J]. J Hazard Mater,2011,197:378-388.
    [116] Yang X, Shang C, Westerhoff P. Factors affecting formation of haloacetonitriles, haloketones,chloropicrin and cyanogen halides during chloramination [J]. Water Res,2007,41(6):1193-1200.
    [117] Mitch W A, Schreiber I M. Degradation of tertiary alkylamines duringchlorination/chloramination: implications for formation of aldehydes, nitriles, halonitroalkanes, andnitrosamines [J]. Environ Sci Technol,2008,42(13):4811-4817.
    [118] Joo S H, Mitch W A. Nitrile, aldehyde, and halonitroalkane formation duringchlorination/chloramination of primary amines [J]. Environ Sci Technol,2007,41(4):1288-1296.
    [119] Obolensky A, Singer P C. Halogen substitution patterns among disinfection byproducts in theinformation collection rule database [J]. Environ Sci Technol,2005,39(8):2719-2730.
    [120] Henderson R K, Baker A, Parsons S A, et al. Characterisation of algogenic organic matterextracted from cyanobacteria, green algae and diatoms [J]. Water Res,2008,42(13):3435-3445.
    [121] Gon alves M, Sánchez-García L, Oliveira Jardim E d, et al. Ammonia removal usingactivated carbons: Effect of the surface chemistry in dry and moist conditions [J]. Environ Sci Technol,2011,45(24):10605-10610.
    [122] Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemicalapplications [J]. Chem Rev,2012,112(11):6027-6053.
    [123] Khraisheh M A, Aldegs Y S, Mcminn W A. Remediation of wastewater containing heavymetals using raw and modified diatomite [J]. Chem Eng J,2004,99(2):177-184.
    [124] Yang X L, Song H L, Lu J L, et al. Influence of diatomite addition on membrane fouling andperformance in a submerged membrane bioreactor [J]. Bioresource Technol,2010,101(23):9178-9184.
    [125] Erdem E, lge en G, Donat R. The removal of textile dyes by diatomite earth [J]. J ColloidInterf Sci,2005,282(2):314-319.
    [126] Wu J, Yang Y, Lin J. Advanced tertiary treatment of municipal wastewater using raw andmodified diatomite [J]. J Hazard Mater,2005,127(1):196-203.
    [127] Wu C D, Xu X J, Liang J L, et al. Enhanced coagulation for treating slightly pollutedalgae-containing surface water combining polyaluminum chloride (PAC) with diatomite [J].Desalination,2011,279(1–3):140-145.
    [128] Kitis M, Karanfil T, Wigton A, et al. Probing reactivity of dissolved organic matter fordisinfection by-product formation using XAD-8resin adsorption and ultrafiltration fractionation [J].Water Res,2002,36(15):3834-3848.
    [129] Qu F, Liang H, Wang Z, et al. Ultrafiltration membrane fouling by extracellular organicmatters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics offoulants and fouling mechanisms [J]. Water Res,2012,46(5):1490-1500.
    [130] Hanchao L, Suping F, Xiaolin D, et al. Comparison of three sorbents for organic pollutantremoval in drinking water [J]. Energy Procedia,2011,5:985-990.
    [131] Jada A, Ait Akbour R, Douch J. Surface charge and adsorption from water onto quartz sand ofhumic acid [J]. Chemosphere,2006,64(8):1287-1295.
    [132] Akbour R A, Amal H, Ait-Addi A, et al. Transport and retention of humic acid through naturalquartz sand: Influence of the ionic strength and the nature of divalent cation [J]. Colloid Surface A,2013,436(0):589-598.
    [133] Shemer H, Narkis N. Sonochemical removal of trihalomethanes from aqueous solutions [J].Ultrason Sonochem,2005,12(6):495-499.
    [134] Guo Z, Gu C, Zheng Z, et al. Sonodegradation of halomethane mixtures in chlorinateddrinking water [J]. Ultrason Sonochem,2006,13(6):487-492.
    [135] Zhang G, Hua I. Ultrasonic degradation of trichloroacetonitrile, chloropicrin andbromobenzene: design factors and matrix effects [J]. Adv Environ Res,2000,4(3):219-224.
    [136] Nikolaou A D, Lekkas T D, Kostopoulou M N, et al. Investigation of the behaviour ofhaloketones in water samples [J]. Chemosphere,2001,44(5):907-912.
    [137] Drijvers D, Van Langenhove H, Herrygers V. Sonolysis of fluoro-, chloro-, bromo-andiodobenzene: a comparative study [J]. Ultrason Sonochem,2000,7(2):87-95.
    [138] Ayyildiz O, Peters R W, Anderson P R. Sonolytic degradation of halogenated organiccompounds in groundwater: mass transfer effects [J]. Ultrason Sonochem,2007,14(2):163-172.
    [139] Hua I, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of CCL4:Intermediates and byproducts [J]. Environ Sci Technol,1996,30(3):864-871.
    [140] Donovan S F, Pescatore M C. Method for measuring the logarithm of the octanol–waterpartition coefficient by using short octadecyl–poly(vinyl alcohol) high-performance liquidchromatography columns [J]. J Chromatogr A,2002,952(1–2):47-61.
    [141] Wu Z, Ondruschka B. Roles of hydrophobicity and volatility of organic substrates onsonolytic kinetics in aqueous solutions [J]. The J Phys Chem A,2005,109(29):6521-6526.
    [142] Lim M, Son Y, Khim J. Frequency effects on the sonochemical degradation of chlorinatedcompounds [J]. Ultrason Sonochem,2011,18(1):460-465.
    [143] Colussi A, Hung H-M, Hoffmann M R. Sonochemical degradation rates of volatile solutes [J].J Phys Chem A,1999,103(15):2696-2699.
    [144] Bambrough C M, Slade R C T, Williams R T. Synthesis of a large pore phenyl-modifiedmesoporous silica and its characterization by nitrogen and benzene sorption [J]. J Mater Chem,1998,8(3):569-571.
    [145] Dou B, Hu Q, Li J, et al. Adsorption performance of VOCs in ordered mesoporous silicas withdifferent pore structures and surface chemistry [J]. J Hazard Mater,2011,186(2-3):1615-1624.
    [146]李满,赵磊,钟振堃.改性石英砂滤料在水处理中的应用[J].水科学与工程技术,2007,03):62-64.
    [147] Ragaini V, Selli E, Letizia Bianchi C, et al. Sono-photocatalytic degradation of2-chlorophenolin water: kinetic and energetic comparison with other techniques [J]. Ultrason Sonochem,2001,8(3):251-258.
    [148] Sekiguchi H, Saita Y. Effect of alumina particles on sonolysis degradation of chlorobenzene inaqueous solution [J]. J Chem Eng JPN,2001,34(8):1045-1048.
    [149] Zouaghi R, David B, Suptil J, et al. Sonochemical and sonocatalytic degradation ofmonolinuron in water [J]. Ultrason Sonochem,2011,18(5):1107-1112.
    [150] Hamdaoui O, Naffrechoux E. Adsorption kinetics of4-chlorophenol onto granular activatedcarbon in the presence of high frequency ultrasound [J]. Ultrason Sonochem,2009,16(1):15-22.
    [151] Zhao D, Cheng J, Vecitis C D, et al. Sorption of perfluorochemicals to granular activatedcarbon in the presence of ultrasound [J]. J Phys Chem A,2011,115(11):2250-2257.
    [152] Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds,phenolic compounds and organic dyes: a review [J]. Sci Total Environ,2009,407(8):2474-2492.
    [153] Hamdaoui O, Naffrechoux E, Tifouti L, et al. Effects of ultrasound on adsorption–desorptionof p-chlorophenol on granular activated carbon [J]. Ultrason Sonochem,2003,10(2):109-114.
    [154] Nouri L, Hamdaoui O. Ultrasonication-assisted sorption of cadmium from aqueous phase bywheat bran [J]. J Phys Chem A,2007,111(34):8456-8463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700