纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维(nHAC/PLLA/CF)对骨缺损的治疗动物实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维(nHAC/PLLA/CF)复合材料和纳米羟基磷灰石/聚-L-乳酸(nHAC/PLLA)两种支架的成骨性能;比较纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料和纳米羟基磷灰石/聚-L-乳酸两种支架在成骨性能和生物降解方面的差异,揭示影响材料成骨性能和生物降解的相关因素。
     方法:健康新西兰白兔6只,由吉林大学实验动物中心提供,6-8周龄,体重1.5-2.0Kg,雌雄不限。随机分为2组,全部6只右侧桡骨植入纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料。左侧桡骨:空白对照组为2只,纳米羟基磷灰石/聚-L-乳酸组为4只。术后分别于4,8周将A,B组动物通过注射过量速眠新的方式处死,每次每组各处死3只,取材范围包括材料及其周围1cm正常骨组织。
     结果:
     1.X线检查纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料组和纳米羟基磷灰石/聚-L-乳酸组在4周时均显示骨断端内形成高密度骨组织阴影,提示有钙化的骨组织。纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料组骨连结比纳米羟基磷灰石/聚-L-乳酸组明显,而对照组则行成骨不连接。8周时纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料组达到骨愈合,纳米羟基磷灰石/聚-L-乳酸组基本达到骨愈合,而对照组仍旧为骨不连。
     2.组织学检查纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料组和纳米羟基磷灰石/聚-L-乳酸组在4周时,大体标本均见骨折端已行成骨性连接,其中纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料组更明显一些,而对照组则行成骨不连。8周时纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维糖复合材料组的骨化结节中的软基质已基本完成骨化过程,骨细胞的体积较小。骨化结节周围有一层致密的纤维组织覆盖。纳米羟基磷灰石/聚-L-乳酸材料组的骨化结节中的软基质骨化过程未完成,仅见少量骨细胞。而对照组则行成骨不连。
     结论:纳米羟基磷灰石/胶原/聚-L-乳酸/甲壳素纤维复合材料具有良好的修复骨缺损能力,同时也拥有较好的生物学效应,可以在于治疗骨缺损中替代自体骨。
Objective: to investigate osteogenetic ability and biological response of three kinds of biomaterial---- nHAC/PLLA/CF; comparing difference of osteogenetic ability and biodegradation between three different biomaterial thereby can we reveal some factors in related to osteogenesis ability and biodegradation of three biomaterial acting as bone replacement.
     Method: 6 New Zealand rabbits were offer by the animal laboratory of Jinlin Universtity .They were 6-8 weeks old that weigh 1.5-2.0Kg.There were no difference between male or female.Then they were divided into two groups by chance. The right radial bone were embed the material of nHAC/PLLA/CF . The left radial bone :there were two blanks for comparison and four for nHAC/PLLA/CF. Specimens harvested in4w and 8w postoperation were further assessed on the two groups. Specimens harvested on 3 rabbits every time. Sampling should include the material and the normal bone around 1cm.
     Result : 1. Use X line to check Na rice Qian radicle apatite/ the original gum /gather-L-lactic acid chitin fiber compound material set and the Na rice Qian radicle apatite/gather-L-lactic acid set at all show that the bone’s break to carry for 4 weeks inside formed a high definition bone organization shadow. There was a hint to have the bone organization of calcify. The Na rice Qian radicle apatite / the original gum /gather-L-lactic acid chitin fiber compound material set bone link compare the Na rice Qian radicle apatite/gather-the L-lactic acid set is obvious, while the matched control then go ossification which is not conjunction. In the 8 wees, the Na rice Qian radicle apatite/ the original gum /gather-L-lactic acid/chitin fiber compound the material set attain a bone to heal, the Na rice Qian radicle apatite/gather-the L-lactic acid set Be basic to attain a bone to heal, while the matched control is still a bone not connecting .
     2.The histology checks the Na rice Qian radicle apatite/the original gum /gather-L-lactic acid/chitin fiber compound material set and the Na rice Qian radicle apatite/gather-L-lactic acid set at 4 weeks. The ossification conjunction of the specimen can be seen, and among them the Na rice Qian radicle apatite/ the original gum /gather-L-lactic acid/chitin fiber compound the material set is more obviously, while the matched group’s ossification conjunction was not obvious.8 weeks later,the Na rice Qian radicle apatite/ the original gum /gather-L-lactic acid/chitin fiber sugar compound material set of bone's turning to knot the soft radicle quality in the stanza a basic completion bone have already turned process, the physical volume of bone cell is smaller. The bone turns knot stanza to around have the fine fiber organization the overlay. The Na rice Qian radicle apatite/|gather-the bone of the L-lactic acid material set turn to knot the soft radicle quality bone in the stanza to turn process not yet finished and only see a little amount bone cell. But the matched groups are not connected.
     Conclusion: the Na rice Qian radicle apatite/ the original gum /gather-L-lactic acid/chitin fiber compound the material has a good repair bone defection and damage ability, also own better biology effect in the meantime. They can lie in curing in the bone defection and damage and act for from the body bone.
引文
[1]Shital N.Parikh. Bone graft substitutes in modern orthopedics. Ortho- pedics.2002 Nov; 25(11):1301-9;quiz 1310-1.
    [2]Arrington ED Smith WJ , Chambers HG, et al. Complications of iliac crest bone graft harvesting .Clin Orthop 1996;329: 300-9.
    [3]Ross N,Tacconi L,Miles JB. Heterotrophic bone formation causing recurrent donor site pain following iliac crest bone harvesting.Br J Neurosurg2 000;14: 476- 9.
    [4]Summers BN,Eisenstein SM. Donor site pain from the Ilium: a complication of lumbar spine fusion .J Bone Joint Surge Brl989; 71-B: 677-80.
    [5]Conrad EU,Gareth DR,Obermeyer KR,et al .Transmission of the hepatitis-C virus by tissue transplantation .J Bone Joint Surg Am 1995; 77-A: 214- 24.
    [6]Boyce T, Edwards J,Scar bough N. Allograft bone: the influence of processing on safety and performance. Orthop Clin North Am1999; 30:571-81.
    [7]Palmer SH,Gibbons CL,Athanasou NA. The pathology of bone allograft . J Bone Joint Surg Brl999:81:333-5.
    [8]Friedlaender GE,Strong DM,Tomford W,Manikin HJ .Long term follow-up of patients with osteochondral allograft .A correlation between immun- ologic responses and clinical outcome .Orthop Clin North Am 1999; 30:583- 8.
    [9]Herman P,Finlayson D. Ordering allograft by weight :suggestions for impaction grafting .J Arthroplasty 2000; 15:368-71.
    [10]Galleria G, Demirkirana H, Oktarb FN, et al. Processing and characterization of biogases reinforced hydroxyapatite composites. Ceram Int, 2003; 29(6):721-724
    [11]Raquel Zap anta LeGeors. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relate Res.2002 Feb :(395):81-98.
    [12]Hench LL: Bioceramics: From concept to clinic. J Am Ceramics Soc74:148-71510,1994.
    [13]Yoshifumi Okda,Masahiko Kobayashi,Hiroshi Fujita,et al.Transmission electron microscopic study of interface between bioactive bone cement and bone :comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers .J Biomed Mater Res.1999 Jun 15; 45(4):277-84.
    [14]YW. Guar.,K.A. Khora ,P. Cheangb. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering(SPS).Biomaterial,2004 Aug;25(18):4127-34.
    [15]C.T.Wong,1 Q.Z.Chen,2 W. W. Lu,et al. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA)cement in vivo. J Biomed Mater Res 70A:428-435,2004.
    [16]A.Bigi,E. Boanini ,S .Panzavolta ,N. Roveri,et al. Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J Biomed Mater Res,2002 Mar15;59(4):709-15.
    [17]Boyde A,Corsi A,Quarto R,et al. Osteoconduction on large macroporoushydxyapatite ceramic implants: Evidence for a complementary integration mechanism. Bone 24:579-589,1999.
    [18]Christine Loyt,Jena-Michel Sautier,Habib Boulekbache,et al.In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-prepared by a biomimetic process on a bioactive glass- ceramic .J Biomed Mater Res,49,423-434,2000.
    [19]M.Neo,C.F.Voigt,H.Herbst,et al.Osteoblast reaction at the interface between surface-active material and bone in vivo:a study using in situ hybridization. J Boimed Mater Res, 39,l-8,1998.
    [20]Jian Dong,Hiorko Kojima,Toshimasa Uemura,et al.In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells.J Biomed Mater Res.2001 Nov; 57(2):208-16.
    [21]Thomas J. Webster,Celaletdin Ergun,Robert H. Doremus,et al.Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.J Biomed Mater Res.2000 Sep.5; 51(3):475-83
    [22]Thomas J. Webster,Richard W. Siegel,Rena Bizios. Osteoblast adhesion on nanophase cermaics.Biomaterials.1999 Jul; 20(13):1221-7.
    [23]Thomas J.Webster,Celaletdin Ergun,Robert H. Doremus,et al.Enhanced functions of osteoblasts on nanophase ceramics .Biomaterials.2000 Sep; 21(17): 1803-10.
    [24]SARINA KAY,ANIL THARA,KAREN M.HABERSTROH,et al. Nanostructured polymer/nanophase ceramic composites enhance osteoblast andchondrocyte adhesion. Tissue Eng.2002 Oct; 8(5):753-61.
    [25]Jae-Young Rho,Liisa Kuhn-Spearing,Peter Zioupos.Mechanical por- perties and hierarchical structure of bone. Medical Engineering & Physics 20 1998(20):92-102.
    [26]W.R.Walsh a,P.J.Chapman-Sheath,S. Cain,et al. A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model.
    [27]K.A.Hingq S.M.BEST, K.E.TANNER,et al.Quantification of bone ingrowth withine bone-derived porous hydroxyapatte implants of varying density.J Mater Sci Mater Med.1999 Oct-Nov;10(10/11):663-70.
    [28]Huipin Yuan,Kenji Kurashina, Joost D.deBruijn,et al.A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Bioma- terials.1999 Oct;20(19):1799-806.
    [29]Felicity R. Rose,Lesley A. Cyster,David M,et al. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25(2004)5507-5514.
    [30]J.X.LU,B.FLAUTRE,K.ANSELME,et al.Role of interconnections in porous biocermaics on bone recolonization in vitro and in vivo.JOURNAL OF MATERIALS SCIENCE:MATERIALS IN MEDICINE 1999 Feb;10(2):111-20.
    [31]White E ,Shors EC Biomaterial aspects of Interpore-200 porous hdroxyapatite. Dent Clin North Am.1986 Jan:30(l):49-67.
    [32]WeiJ,Li YB.Tissue engineering scaffold material of nanoapatite rystals and polyamide composite .Eur Polymer J,2004,40:509-515.
    [33]Masahiro Hasegawa ,Yutaka Doi , Atsumasa Uchida. Cell-mediated bioresorption of sintered carbonate apatite in rabbits.J Bone Joint Surg Br. 2003 Jan;85(l):142-7.
    [34]Kotani S,Fujita Y, Kitsugi T,et al .Bone bonding mechanism of betatricalcium phosphate.J Biomed Mater Res 1991;25:1303-15.
    [35]D.Heymann,G. Pradall,M.benahmedl. Cellular mechanisms of calcium phosphate ceramic degradation. Histol Histopathol. 1999J ul;14(3):871-7.
    [36]Baron R, Neff L,Roy C,et al. Evidence for a high and specific concentration of (Na+, K+)ATPase in the plasma membrane of the osteoclast.Cell 1986;46:311-20.
    [37]Le Geros RZ: Biodegradation/ bioresorption of Cap materials. Clin Mater 14:65-68,1993.
    [38]Oonishi H, Hench LL , Wilson J, et al: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res,44:31并3,1999.
    [39]Le Geros RZ, Kijkowska R, Bautista C, et al: Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites . Connect Tissue Res 33:203-209,1995.
    [40]Wei J, Li YB, Chen WQ, et al. A study on nano-composite of hydroxyapatite and polyamide, J Mater Sci, 2003; 38(15):3303-3306.
    [41]Pramanik N, Bhargava P, Alam S, et al. Processing and properties of nano-and macro-hydroxyapatite/poly(ethylene-oo-acrylic acid) composites.Polymer Com-pos, 2006; 27(6);633-641.
    [42]Mikoajczyk T, Bogun M, Blazewicz M, et al. Effect of spinning conditions on the structure and properties of PAN fibers comtaining nano- hydroxyapatite. J Applied polymer Sci. 2006; 100(4):2881-2888.
    [43]pramanik N, Mohapatrs S, Pramanik P, et al. Processing and properties of nano-hydroxyapatite (n-HAp)/poly (ethylene-co-acrylic acid)(EAA) composite using a phosphonic acid coupling agent for orthopedic applications. J Am Ceram Soc, 2007; 90(2):369-375.
    [44]Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxypatite. Bomaterials. 2004;25(17):3829-3835
    [45]LiZ, Yubao L, Aiping Y, et al. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med. 2005; 16(3):313-219.
    [46]zhang SM, Cui FZ, Liao SS, et al. Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med. 2003; 14(7):641-645.
    [47]Wang L, Nenoto R, Senna M. et al. Three- dimensicnal porous network stucture developed in hydroxyapatite-based nanocomposites containirg enzyme pretreated silk fibroin. J Nanopart Res,.2004; 6(1):91-98.
    [48]Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hyc\droxyapatite/collagen nanooomposite synthesized in vitro and its biological reaction in vivo. Bomaterials, 2001; 22(13):1705-1711.
    [49]Li X, Feng Q, Wang W, et al. Chemical characteristics and cytooom- patibiliy of collagen- based scaffold reinforced by chitin fibers for bone tissue engineering J Biomed Mater Res B Appl Biomater. 2006;77(2):219-226.
    [50]卢志华,孙康宁,赵中帆.原位合成制备碳纳米管/羟基磷灰石复合粉体,硅酸盐学报. 2007; 35(2):212-215.
    [51]Itoh S, Kikuchi M, Koyama Y, et al. Development of novel biomaterial, hydroxyapatite/collagen (Hap/Col) composite for medical use. Biomed Mater Eng. 2005;15(1-2):29-41.
    [52]Kaito T, Myoui A, Takaoks K, et al. potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials. 2005; 26(1):73-79.
    [53]马宁,曾毅,张莉等.多也纳羟羟基磷灰石/胶原复合料的制备及性能.吉林大学学报(医学版).2006; 32(1):90-93.
    [54]Wang JS Basic fibroblast growth factor for stimulation of bone formation in osteoinduction or conductive implants. Acta rthop Scand Suppl. 1996; 269:1-33.
    [55]Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis Recent Prog Horm Res. 2000; 55:15-36.
    [56]Bucholz R,Carlton A, Holmes R: Interporous hyfroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop, 1989(240):53-62.
    [57]M.Itokazu,T.Matsunaga,M.Ishii,et al.Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures.Arch OrthopTrauma Surg,1996(115):45-48.
    [58]Hiroaki Sakano , Tomihisa Koshino, Ryouhei Takeuchi,et al. Treatment of the unstable distal radius fracture with external fixation and a hydroxyapatite spacer. J Hand Surg「Am].2001SeP;26(5):923-30.
    [59]Klaus-Dieter Werber , Robert B . Brauer, Wolfgang WeiB ,et al. Osseous Integration of Bovine Hydrozyapatite Ceramic in Metaphyseal Bone Defects of the Distal Radius.J hand Surg 2000;25A:833-841.
    [60]Chapman Michael W,Bucholz,Robert. Treatment of Acute Fractures with a Collagen-Calcium Phosphate Graft Material: A Randomized Clinical Trial. J Bone Joint Surg Am ,1997(79A):495-502.
    [61]Yamamoto T,Onga T, Marui T, et al . Use of hydroxyapatite to fill cavities after excision of begin bone tumours :Clinical Results. J Bone Joint Surg B. 2000 Nov;82(8):1117-20.
    [62]Matsumine,K. Kusuzaki,M.Seto, et al. Calcium hydrozyapatite ceramic implants in bone tumour surgery.J Bone Joint Surg Br.2004 Jul:86(5):719-25.
    [63]Passuti N,Daculsi G,Rogez JM,et al. Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop,1989,248:169-174.
    [64]Delecrin J,Takahashi S,Gouin F,et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective. Randomized study . Spine,2000 25:563-569.
    [65]Ransford AO,Morley T, Edgar MA, et al. Synthetic porous ceramic compared with autograft in scoliosis surgery: Aprospective, randomized study of341 patients ,J Bone Joint Surg Br 1998:80:13-18.
    [66]Glassman SD ,Dimar JR, Carreon LY,et al . Initial fusion rates with recombinant human bone morphogenetic protein -2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine, 2005 Aug l;30(15):1694-8.
    [67]Thalgott JS,Fritts K,Giuffre JM,et al.Anterior interbody fusion of the cervicalspine with coralline hydroxyapatite. Spine,1999,24:1295- 1299.
    [68]Kim P,Wakai S,Matsuo S,et al. Bisegmental cervical interbody fusion using hydroxyapatite long-term observation in 70 cases. J Neurosurg8 8:21 -27.
    [69]程顺巧,苟立,季金苟,等.双相HA/β-TCP陶瓷的多孔结构对类骨磷灰石形成的影响.现代技术陶瓷. 2004;25(1):14-17.
    [70]Ramay H, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004; 25(21):5171-5180.
    [71]Uchida A, Nade SM, McCartney ER, et al. The use of ceramics for bone replacement. J Bone Joint Surg Vr. 1984; 66(2):269-275.
    [72]Kuhne J, Bartl R, Frish B, et al. Bone formation in coralline hydroxyapatite; Effect of pore size studied in rabit. Acta Orthop Scand, 1994;65(3):246-252.
    [73]Yuan HP, de Bruijin JD, Li YB, et al. Bone formation induced by calcium phos-phate ceramics in solt tissue of dogs; a comparative study between porous alpha TCP and beta-TCP. J Mater Sci Mater Sci Mater Med. 2001;12(1):7-13.
    
    [1]Shital N.Parikh. Bone graft substitutes in modern orthopedics. Orthopedics.2002 Nov; 25(11):1301-9;quiz 1310-1.
    [2]Arrington ED Smith WJ , Chambers HG, et al. Complications of iliac crest bone graft harvesting .Clin Orthop 1996;329: 300-9.
    [3]Ross N,Tacconi L,Miles JB. Heterotrophic bone formation causing recurrent donor site pain following iliac crest bone harvesting.Br J Neurosurg2 000;14: 476- 9.
    [4]Summers BN,Eisenstein SM. Donor site pain from the Ilium: a complication of lumbar spine fusion .J Bone Joint Surge Brl989; 71-B: 677-80.
    [5]Conrad EU,Gareth DR,Obermeyer KR,et al .Transmission of the hepatitis-C virus by tissue transplantation .J Bone Joint Surg Am 1995; 77-A: 214- 24.
    [6]Boyce T, Edwards J,Scar bough N. Allograft bone: the influence of processing on safety and performance. Orthop Clin North Am1999; 30:571-81.
    [7]Palmer SH,Gibbons CL,Athanasou NA. The pathology of bone allograft .J Bone Joint Surg Brl999:81:333-5.
    [8]Friedlaender GE,Strong DM,Tomford W,Manikin HJ .Long term follow-up of patients with osteochondral allograft .A correlation between immunologic responses and clinical outcome .Orthop Clin North Am 1999; 30:583- 8.
    [9]Herman P,Finlayson D. Ordering allograft by weight :suggestions forimpaction grafting .J Arthroplasty 2000; 15:368-71.
    [10]Yan Yongnian, Zhuo Xiong, Hu Yunyu. Layered manufacturingof tissue engineering scaffolds via multi-nozzle deposition. MaterLett 2003;57: 2623- 2628.
    [11]Sikavitsas VI, Bancroft GN, Mikos AG. Formation of threedimen- sionalcell/polymer constructs for bone tissue engineeringin a spinner flask and a rotating wall vessel bioreactor. J BiomedMater Res 2002;62:136–148.
    [12]Kose GT, Kenar H, Hasirci N, Hasirci V. Macroporous poly(3- hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissueengineering. Biomaterials 2003;24:1949-1958.
    [13]Vacanati JP, Vacanti CA, Langer R. Principles of Tissue Engineering. San Diego: Academic Press; 1997. p 1-5.
    [14]Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yazemski MJ,Mikos AG. Bone formation by three-dimensionalstromal osteoblastculture in biodegradable polymer scaffolds. J Biomed Mater Res 1997;36:17-28.
    [15]Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradablenanofiber scaffold by electrospinning and its potential for bonetissue engineering. Biomaterials 2003;24:2077-2082.
    [16]Hu Y, Grainger DW, Winn SR, Hollinger JO. Fabrication ofpoly(_- hydroxy acid) foam scaffolds using multiple solventsystems. J Biomed Mater Res 2001;59:563-572.
    [17]Nezu T, Winnik FM. Interaction of water-soluble collagen withpoly(acrylic acid). Biomaterials 2000;21:415-419.
    [18]Huang L, Nagapaudi K, Apkarian RP, Chaikof EL. Engineeredcollagen- PEO nanofibers and fabrics. J Biomater Sci Polym Ed2001;12:979-93.
    [19]Goldstein AS, Zhu G, Morris GE, Meszlenyi RK, Mikos AG.Effect of osteoblastic culture conditions on the structure ofpoly(D,L-lactic-co-glycolic acid) foam scaffolds. Tissue Eng1999;5:421-433.
    [20]Wang RZ, Cui FZ, Lu HB, Wen HB, Ma CL, Li HD. Synthesisof nanophase hydroxyapatite collagen composite. J Mater SciLett 1995;14:490-492.
    [21]Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot, K.Formation of calcium phosphate/collagen composites throughmineralization of collagen matrix. J Biomed Mater Res 2000;50:518 -527.
    [22]Smith R, Torres A, Li SM. Screening of microorganisms forbiodeg- radation of poly(lactic-acid) and lactic acid-containingpolymers. J Biomed Mater Res 1987;21:991-998.
    [23]Tormala R, Lemoine D, Francois C. Stability study of nanoparticlesof poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-coglycolide). J Biomed Mater Res 1991;25:1-10.
    [24]Sato M, Maeda M, Kurosawa H, Inoue Y. Reconstruction ofrabbit achilles tendon with three bioabsorbable materials: Histologicaland biome- chanical studies. J Orthop Sci 2000;5:256-263.
    [25]Bostman OM, Pihlajamaki HK. Late foreign-body reaction to anintraosseous bioabsorbable polylactic acid screw. A case report.J Bone JointSurg Am 1998;80:1791-1794.
    [26]Kratz G, Arnander C, Swedenborg J, Back M, Falk C. Heparin-chitosan complexes stimulate wound healing in human skin.Scand J Plast Reconstr Surg Hand Surg 1997;31:119 -123.
    [27]Aiedeh K, Gianasai E, Orienti I, Zecchi V. Chitosan microcapsulesas controlled release systems for insulin. J Microencapsul1997;14:567-576.
    [28]Okamoto Y, Watanabe M, Miyatake K, Morimoto M, ShigemasaY, Minami S. Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascularendothelium. Biomaterials2002; 23:1975- 1782.
    [29]Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, OkamotoY, Minami S. Effects of chitin and its derivatives on the proliferationand cytokine production of fibroblasts in vitro. Biomaterials1997;18:947-951.
    [30]Terai H, Hannouche D, Ochoa E, Yamano Y, Vacanti JP. Invitro engineering of bone using a rotational oxygen-permeablebioreactor system. Mater Sci Eng C 2002;20:3- 8.
    [31]Arrington ED, Smith WJ, Chambers HC, et al. Complications of iliac crest bone graft harvesting. Clin Orthop 1996; 329:300-9.
    [32]Ripamonti U, Duneas N. Tissue engineering of bone by osteoinductive biomaterials. MRS Bull 1996;21:36-9.
    [33]Racquel Zapanta LeGeros. Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clin Orthop Relat Res. 2002 Feb;(395):81-98.
    [34]Thomas J. Webster, Celaletdin Ergun, Robert H. Doremus,et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res.2000 Sep. 5; 51(3):475-83
    [35]Thomas J. Webster,Richard W. Siegel, Rena Bizios. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999 Ju1; 20(13):1221-7.
    [36]Thomas J. Webster, Celaletdin Ergun, Robert H. Doremus, et al. Enhanced functions of osteoblasts on nanophase ceramics.Biomaterials.2000 Sep; 21(17):1803-10.
    [37]SARINA KAY- ANIL THAPA, KAREN M. HABERSTROH, et al. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002 Oct; 8(5):753-61.
    [38]Kai-Uwe Lewandrowski,Shrikar P. Bondre b, Donald L, et al. Enhanced bioactivity of a poly(propylene fumarate ) bone graft substitute by augmentation with nano-hydroxyapatite. Biomed Mater Eng. 2003;13(2):115-24.
    [39]Ashkan Lahiji, Afshin Sohrabi, David S. Hungerford,et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 2000 Sep 15; 51(4):586-95.
    [40]Yuichi Hidaka, Michio Ito, Koji Mori, et al. Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res. 1999 Sep 5; 46(3):418-23.
    [41]R.A.A.Muzzarelli, C.Zucchii,P.Llari,et al. Osteoconductive properties of methylpyrrolidinone chitosan in an animal model. Biomaterials. 1993 April14(12):925-929.
    [42]Beena MS, Chandy T, Sharma CP. Heparin immobilized chitosan-polyethyleneglycol interpenetrating network: Antithrombogenicity. Artif Cell Blood Subs Immob Biotech 1995; 23:175-192.
    [43]Safdar N. Khan, Justin F. Fraser, Harvinder S. Sandhu,et al. Use of Osteopromotive Growth Factors, Demineralized Bone Matrix, and Ceramics to Enhance Spinal Fusion. J Am Acad Orthop Surg 2005; 13:129-137.
    [44]Masahiro Hasegawa, Yutaka Doi, Atsumasa Uchida. Cell- mediated bioresorption of sintered carbonate apatite in rabbits. J Bone Joint Surg Br. 2003 Jan; 85(1):142-7.
    [45]Kotani S, Fujita Y, Kitsugi T, et al. Bone bonding mechanism of betatricalcium phosphate. JBiomed Mater Res 1991;25:1303-15.
    [46]Sato M, Maeda M, Kurosawa H, Inoue Y. Reconstruction ofrabbit achilles tendon with three bioabsorbable materials: Histologicaland biome- chanical studies. J Orthop Sci 2000;5:256-263.
    [47]Bostman OM, Pihlajamaki HK. Late foreign-body reaction to anintraosseous bioabsorbable polylactic acid screw. A case report.J Bone Joint Surg Am 1998;80:1791-1794
    [48]Kratz G, Arnander C, Swedenborg J, Back M, Falk C. Heparin-chitosan complexes stimulate wound healing in human skin.Scand J Plast Reconstr Surg Hand Surg 1997;31:119 -123.
    [49]Aiedeh K, Gianasai E, Orienti I, Zecchi V. Chitosan microcapsulesascontrolled release systems for insulin. J Microencapsul1997;14:567-576.
    [50]Okamoto Y, Watanabe M, Miyatake K, Morimoto M, ShigemasaY, Minami S. Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascularendothelium. Biomaterials2002; 23:1975- 1782.
    [51]Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, OkamotoY, Minami S. Effects of chitin and its derivatives on the proliferationand cytokine production of fibroblasts in vitro. Biomaterials1997;18:947-951.
    [52]Terai H, Hannouche D, Ochoa E, Yamano Y, Vacanti JP. Invitro engineering of bone using a rotational oxygen-permeablebioreactor system. Mater Sci Eng C 2002;20:3- 8
    [53]Tomihata K, Ikada Y In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials1997; 18:567-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700