聚碳酸亚丙酯/壳聚糖纳米纤维复合三维多孔支架修复骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     分离培养新西兰大白兔骨髓间充质干细胞(bone mesenchymal stem cells, BMSCs),制作聚碳酸亚丙酯/壳聚糖纳米纤维(propylene carbonate/chitosan nanofibers, PPC/CSNF)复合三维多孔支架并评价支架与兔BMSCs的体外相容性、体内组织相容性。体外制作细胞-支架复合物并植入兔股骨髁缺损处,以评价其修复局部骨缺损的效果,初步探讨治疗骨缺损的组织工程学新方法。
     方法
     1、运用全骨髓贴壁法分离、培养兔BMSCs。
     2、通过形态学和流式细胞等方法法观察BMSCs的表面抗原、细胞周期和细胞活力等。
     3、用成骨诱导液将BMSCs向成骨细胞定向诱导分化,通过形态学观察、碱性磷酸酶(alkaline phosphatase, ALP)染色、矿化结节染色、Ⅰ型胶原染色等进行分析鉴定,了解所分离培养的BMSCs骨向分化能力。
     4、用溶液浇铸/粒子沥滤法制备PPC支架,再用相分离法原位复合三维壳聚糖纳米纤维制备PPC/CSNF支架,测定支架孔隙率,并进行扫描电镜观察。
     5、BMSCs分别与两种支架材料联合培养,比较两种支架的细胞相容性,并进行扫描电镜观察。
     6、PPC/CSNF多孔支架植入兔皮下,于术后第1,2,4周取出材料,大体观察和苏木精-伊红(hematoxylin-eosin, HE)染色观察材料的组织相容性。
     7、制作兔股骨髁部骨缺损模型,分四组实验,实验组缺损处植入PPC/CSNF/BMSCs复合物、标准组移植自体骨、对照组植入单纯PPC/CSNF.空白组不做处理,术后第4、8、12周取材,通过大体观察、放射学检查和组织学检查等方法评价其修复缺损情况。
     结果
     1、全骨髓贴壁法能获得兔BMSCs,可在体外分离扩增。
     2、经流式细胞仪分析,BMSCs细胞表面抗原CD29表达为89.23%,CD44表达为90.57%,CD34表达为0.53%,CD45表达为0.61%;G0-G1细胞占92.32%。
     3经诱导后BMSCs的细胞形态发生变化,由梭形逐渐转化为三角形或多角形等, ALP染色和Ⅰ型胶原染色阳性,钙化结节染色可见红色致密结节。
     4、PPC支架孔径为300-500μm且孔连通性好;PPC/CSNF支架中的壳聚糖纳米纤维分布均匀,其直径为50-500nm;孔隙率为92%。
     5、扫描电镜观察BMSCs可在支架材料上较好的粘附生长。
     6、将材料植入皮下后无明显组织排斥反应,HE染色未见明显炎症和排斥。7、术后观察,实验组修复缺损处有骨组织形成,支架降解,修复情况接近标准组;对照组少量骨组织形成,材料部分降解;空白组缺损主要由纤维结缔组织填充。
     结论
     1、全骨髓贴壁法可获得兔BMSCs,可在体外长期、稳定培养,可向成骨细胞诱导分化,是理想的组织工程种子细胞。
     2、PPC/CSNF多孔支架具有较好的细胞和组织相容性,在体内可逐渐降解。
     3、PPC/CSNF多孔支架复合兔BMSCs可加速新骨形成,达到修复兔股骨髁部骨缺损的目的。
Objective
     To isolate and cultivate BMSCs from New Zealand rabbits, fabricate three dimensional PPC/CSNF composite porous scaffolds, and then evaluate the compatibility of the PPC/CSNF composite porous scaffolds and the BMSCs of rabbits in vitro and in vivo. To plant cell-scaffold compound fabricated in vivo to repair bone defect of rabbits, evaluate the effect and conduct a preliminary study on this new tissue engineering method.
     Methods
     1. BMSCs were isolated from New Zealand rabbits by the whole bone marrow adherence method and cultured.
     2. The surface antigen, cell cycle and viability of BMSCs were observed with morphology and flow cytometry methods.
     3. BMSCs were induced directionally and differentiated into osteoblast by using the induction culture medium. Their capability of osteogenic differentiation is worked out through morphologic observation, ALP staining, mineralized nodule staining, type I collagen staining, etc.
     4. PPC porous scaffold was firstly fabricated by combining a solution-casting and a porogen-leaching technique, followed by in situ phase separation of chitosan solution within the PPC scaffold to form PPC/CSNF composite porous scaffold. The scaffolds were observed by a scaning electron microscope (SEM). And the porosity of the scaffolds were characterized.
     5. The two tpyes of scaffolds were co-cultured with BMSCs. They were observed by scanning electron microscope.
     6. PPC/CSNF scaffolds were planted into the subcutaneous tissue of rabbits, and were taken after 1,2 and 4 weeks later separately. General observation and HE staining were conducted to analyze the histocompatibility of the materials.
     7. The rabbits'femoral condyle defects were modeled and experimented in four groups. PPC/CSNF/BMSCs compound was planted into the defected position in the experimental group; autogenous bone in the criterion group; PPC/CSNF scaffolds in matched group; and the control group was left without any treatment.4,8 and 12 weeks after the operations, general observation, radiology examination and HE staining were made to evaluate the status of defect repairing.
     Result
     1. BMSCs of rabbit can be obtained through whole bone marrow adherence method and can be cultured in vitro.
     2. BMSCs expressed CD29 and CD44 at 89.23% and 90.57% respectively while expressed CD34 and CD45 at 0.53% and 0.61% respectively. The cell cells of G0-G1 phase were 92.32%.
     3. The cells morphology changed from spindle to ellipsoid and triangle after been induced. Positive reactions were showed in ALP and collagen typeⅠstaining. Red dense nodules were seen in the mineralized nodules staining.
     4. The pores of PPC scaffolds feature diameters varying from 200 to 500μm and have good connectivity. The diameter of chitosan nanofibers in the PPC/CSNF scaffold varied from 50nm to 500nm. All the scaffolds showed a high porosity of 92%.
     5. Observed with the scanning electron microscope, the BMSCs had good adhesion with the scaffold.
     6. No tissue rejection was seen after the planting of the materials, and no distinct inflammation and rejection was found in the HE staining.
     7. The following results were observed after the operation: in experimental group, bone tissue was formed in the defected position, the scaffolds degraded and the effect of repairing was similar to that of the criterion group; in matched group, some bone tissue was formed and the scaffold degraded partly; in control group, the defect was mainly filled with fibrillar connective tissue
     Conclusion
     1. The BMSCs of rabbit can be obtained through the whole bone marrow adherence method.. They can be cultured stably for long term and be induced into osteoblast. They are the ideal choice for tissue engineering.
     2. PPC/CSNF porous scaffold is characterized with good adhesion and tissue compatibility and can degrade gradually in vivo.
     3. PPC/CSNF porous scaffold composited with BMSCs of rabbit have a good abliity to accelerate the formation of new bone, and repair the bone defect finally。
引文
[1]Nerem RM. The challenge of limitating nature[J].Principle of Tissue Engineering, 2000;2:9-15.
    [2]Langer R, Vacanti JP. Tissue Engjoeering[J].Science,1993;260:920-926.
    [3]Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches[J].Otolaryngol Clin North Am,1994;27:263-276.
    [4]Nerem RM, Sambanis A. Tissue engineering:From biology to biological substitutes[J].Tissue Eng,1995;1:3-13.
    [5]Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering[J].Nature Medicine, 1995;1(12):1322-1324.
    [6]裴国献,金丹.骨组织工程学种子细胞研究进展[J]_中华创伤骨科杂志,2003;5(1):55-58.
    [7]Tagami M, Ichinose S, Yamagata K, et al. Genetic and ultrastructural demonstration of strong reversibility inhuman mesenchymal stem cell[J].Cell Tissue Res,2003; 312(1):31-40.
    [8]Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis[J].Cell Death Differ,1999;6(2):99-104.
    [9]Tagami M, Ichinose S, Yamagala K, et al. Genetic and ultrastructral demonstration of strong reversibility in human mesenchymal stem cells[J].Cell Tissue Res,2003; 312(1):31-40.
    [10]Qian H, Zhu W, et al. A norel tumor cell line cloned from mutated human embryonic bone morrow mesenchymal stem cells[J].Oncology Reports,2004;12(3): 501-508.
    [11]Derubeis AR, Cancedda R. Bone marrow stromal cells in bone engineering: limitations and recent advances[J]. Ann Biomed Eng,2004;32(1):160-165.
    [12]Gronthos S, Chen S, Wang CY et al. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin[J]. Bone Miner Res,2003;18(4):716-722.
    [13]孔清泉,项舟,杨志明.骨髓基质干细胞作软骨组织工程种子细胞研究[J].中国修复重建外科杂志,2002;16(4):277-280.
    [14]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999;284(5411):143-147.
    [15]Colter DC, Class R, Digirolama CM, et al. Rapid expansion of recyclings tem cells in culture of plastic-adherent cells from human bone marrow[J].Proc Natl Acad Sci USA,2000;97:3213.
    [16]孙丽莉,谭玉珍,王海杰,等.骨髓间充质干细胞的克隆培养及其向心肌的诱导分化[J].复旦学报,2003;30(6):519-522.
    [17]Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential[J].Cytotherapy,2004;6:372-379.
    [18]Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection[J].Cell Biochem,2003;89: 1235-1249.
    [19]Maniatopoulos C, Sodek J, Melcher AH, et al. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats[J].Tissue Res,1998;254(2): 317-325.
    [20]Fried BD. Dexamethasone regulation ofmarrow stromal-derived osteoblast cells[J]. Cell Biochem,1996;62:476-484.
    [21]Derubeis AR, Cancedda R. Bone marrow stromal cells in bone engineering: limitations and recent advances[J].Ann Biomed Eng,2004;32(1):160-165.
    [22]Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation[J].Bone,2004;4(3):402.
    [23]Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model[J].Orthop Res,2004;2(1):58.
    [24]Huang YC, Kaigler K, Rice KG, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-bone regeneration[J].Bone Miner Res,2005;20(5):848-857.
    [25]Mandl EW, Jahr H, Koevoet JL, et al. Fibroblast growthfactor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in mono layer culture[J]. Matrix Biol,2004,23(4):231.
    [26]Alborzi A, Mac K, Glackin CA, et al. Endochondral and intramembranous fetal bone development:osteoblastic cell proliferation and expression of alkaline phosphatase, mtwist, and histone H4[J].Craniofac Gent Dev Biol,1996;6(2):94-106.
    [27]Lu L, Zhu X, Valenzuela RG.Biodegradable polymer scaffolds for cartilage tissue engineering[J].Clin Orthop Related Res,2001;(391supple):S251-S271.
    [28]Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering[J].Biomaterials,2000;21(23):2347-2359.
    [29]Bucholz RW.Nonallograft steoconductive bone graft substitutes[J].Clin Orthop Relat Res,2002:2(395):44-52.
    [30]Anselme K.Osteoblast adhesion on biomaterials[J].Biomaterial,2000;21(7):667-681.
    [31]Ma PX. Biomimetic materials for tissue engineering[J].Adv Drug Deliv Rev,2008; 60(2):184-198.
    [32]Liu XH, Laura S, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering[J].Biomaterials,2009;30(12):2252-2258.
    [33]Hu J, Feng K, Liu XH, et al. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network[J].Biomaterials,2009;30(28):5061-5067.
    [34]He LM, Zhang YQ, Zeng X, et al. Fabrication and characterization of poly(1-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system[J].Polymer,2009;50(16): 4128-4138.
    [35]Laleh GM, Molamma PP, Mohammad M, et al. Electrospun poly(ε-caprolactone) /gelatin nanofibrous scaffolds for nerve tissue engineering [J]. Bio materials,2008;29 (34):4532-4539.
    [36]Hu J, Liu XH, Peter X, et al. Induction of osteoblast differentiation phenotype on poly(1-lactic acid) nanofibrous matrix[J].Biomaterials,2008;29(28):3815-3821.
    [37]Leonor IB, Baran ET, Kawashita M, et al. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment[J].Acta Biomaterialia,2008;4(5): 1349-1359.
    [38]Sasiprapha Phongying, Sei-ichi Aiba, Suwabun Chirachanchai, Direct chitosan nanoscaffold formation via chitin whiskers[J].Polymer 2007;48(1):393-400.
    [39]Ong SY, Wu J, Moochhala SM., et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties[J]. Bio materials, 2008;29(32):4323-4332.
    [40]Kim KS, Lee JH, Ahn HH, et al. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds[J]. Biomaterials,2008;29(33):4420-4428.
    [41]Minagawa T, Okamura Y, Shigemasa Y, et al. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing[J].Carbohydrate Polymers 2007;67(4):640-644.
    [42]Zhang YZ, Venugopal JR, Adel ET, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J].Bio materials 2008;29(32):4314-4322.
    [43]Desai Kr, Kit K, Li JJ, et al. Nanofibrous chitosan non-wovens for filtration applications[J].Polymer,2009;50(15):3661-3669.
    [44]Chu XH, Shi XL, Feng ZQ, et al. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds[J].Biomaterials 2009;30(27):4533-4538.
    [45]Niu YS, Zhang WX, Li HC,et al. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes[J].Polymer,2009;50(2):441-446.
    [46]Wang JT., Zhu Q, Lu XL, et al. ZnGA-MMT catalyzed the copolymerization of carbon dioxide with propylene oxide[J].European Polymer Journal,2005;41(5): 1108-1114.
    [47]Wang XL, Li RKY, Cao YX, et al. Essential work of fracture analysis for starch filled poly(propylene carbonate) composites[J]. Materials & Design,2007;28(6): 1934-1939.
    [48]Alexander W, Mario K, Manfred D, et al. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials[J].Biomaterials,2007;28(13):2211-2219.
    [49]Zhang L, Zheng ZH, Xi J, et al. Improved mechanical property and biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for blood vessel tissue engineering by blending with poly(propylene carbonate)[J].European Polymer Journal,2007;43(7):2975-2986.
    [50]关于善待实验动物的指导性意见[M].共和国科学技术部.2006.9.30.
    [51]李章华,吴廖文等.间充质干细胞体内成骨的实验研究[J].中国矫形外科杂志,2006,14(6):680-689.
    [52]张晓玲,戴尅戎,,汤亭亭等.未分化骨髓间充质干细胞的免疫学特性研究[J].中华实验外科杂志,2006;23(2):135-137.
    [53]Xu WR, Qian H, Zhu W. et al. A norel tumor cell line cloned from mutated human embryonic bone morrow mesenchymal stem cells [J].Oncology Reports,2004;12(3): 501-505.
    [54]Roberts. Mesenchymal stem cell[J].Vax Sanguinis,2004;87(2):38-41.
    [55]De UD, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone morro[J].Immunol Lett,2003;89(2-3):267-270.
    [56]Kishimoto KN, Watanabe Y, Nakamura H, et al. Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene[J].Bone,2002;31(2): 340-347.
    [57]Zohar R, Sodek J, Mcculloch CA. Characterization of stromal progenitor cells enriched by flow cytomerty[J].Blood,1997;90(9):3471-3480.
    [58]Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma[J].Lab Invest,1999;79(4): 449-455
    [59]Liu H, Mao J, Yao K, et al. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications[J].Biomater Sci Polym Ed,2004;15(1):25-40.
    [60]Friedenstein AJ, Petrakova KV, Kurolesova Al et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation,1968;6(2):230-247.
    [61]Derubeis AR, Cancedda R. Bone marrow stromal cells(BMSCs) in bone engineering:limitations and recent advances[J].Ann Biomed Eng,2004;32(1): 160-165.
    [62]刘向前,姚共和,卢敏,等.膝关节骨关节炎期刊文献病机因子与证候类型分析[J].江苏中医药,2005;10(26):63.
    [63]Xu WR, Qian H, Zhu W. et al. A norel tumor cell line cloned from mutated human embryonic bone morrow mesenchymal stem cells [J]. Oncology Reports,2004;12(3): 501-505.
    [64]Kim BS, Mooney DJ. Delopment of biocompatible synthetic extracellar matrice for tiddue engineering[J].Trends biotecnol,1998;16(5):224-230.
    [65]Tomihata K, Ikada Y. [J].Biomaterials,1997;18 (7):567-572.
    [66]Ravi MNV, Muzzarelli RAA. Muzzarell[J].Chemical Reviews,2004;104: 6017-6084.
    [67]N. Bhattarai, D. Edmondson, O. Veiseh, Biomaterials,26 (2005) 6176-6184.
    [68]J.A. Matthews, G.E. Wnek, D.G. Simpson, et al. Biomacromolecules 3 (2) (2002) 232.
    [69]X. Wang, C. Drew, S.H. Lee, et al. Nano. Lett.2(11) (2002) 1273.
    [70]P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surface A187-188 (2001) 469.
    [71]Jorge Mas Estelles, Ana Vidaurre, Jose M. Meseguer Duenas, et al. Physical characterization of polycaprolactone scaffolds[J].Journal of Materials Science: Materials in Medicine,2008;19(2):189-195
    [72]Whang K, Healy E, Elenz DR. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture[J].Tissue Engineering,1999;5(1):35-51.
    [73]Shuguang Zhang, Fabrizio Gelain and Xiaojun Zhao Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures[J].Seminars in Cancer Biology,2005;15(5):413-420.
    [74]Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology:Designing the next generation of tissue engineering scaffolds[J].Advanced Drug Delivery Reviews 2007;59(14):1413-1433.
    [75]Denuziere A, Ferrier D, Damour, et al. [J]. Biomaterials,1993,14 (10):793-796.
    [76]Klokkevold PR, Vandemsrk L, Kenney EB. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro[J].Periodotol,1996;67(11):1170-1175.
    [77]Chen VJ, Ma PX. Nano-fbrous poly(L-lactic acid) scaffolds with interconnected spherical macropores[J].Biomaterials,2004;25:2065-2073.
    [78]Smith LA, Liu XH, Hu J, et al. The influence of three-dimensional nanobrous scaffolds on the osteogenic differentiation of embryonic stem cells[J].Biomaterials, 2009;30:2516-2522.
    [79]Paige KT, Cima LG, Yaremchuk MJ, et al. Injectable cartilage[J].Plast Reconstr Surg,1995;96(6):1390.
    [80]Gomes ME, Reis RL. Tissue engineering:key elements and some trends[J] Macromol Biosci,2004;4(8):737-742.
    [81]Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model[J].Calif Tissue Int,1998;63(4):357-360.
    [82]Jendelova P, Herynek V, DeCroos J, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles[J].Magn Reson Med,2003;50(4):767-776.
    [83]Buttery LD, Bourne S, Xynos JD, et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells [J].Tissue Eng,2001;7:89.
    [84]朱伟南,杨志明,李秀群,等.兔骨膜成骨细胞与肾血管内皮细胞间接共培养 的体外研究[J].中国修复重建外科杂志,2002;16:30.
    [85]刘宁,查振刚,王双利,等.成骨细胞诱导骨髓基质细胞体外成骨的初步研究[J].暨南大学学报(自然科学与医学版),2009;4:413-419.
    [86]Wade Y, Kataoka H, Yokoes S, et al. Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells[J].Bone,1998;22(5): 479-485.
    [87]Yang D, Chen J, Jing Z, et al. Platelet-derivedgrowth factor(PDGF):a self-imposed cytokine in theproliferation of human fetal osteoblasts[J].Cytokine,2000;12 (8):1271-1274.
    [88]Baylink DJ, Finkelman RD, Mohan S. Growth factors to stimulate bone formation[J].Bone Min Res,1993;8(Supp2):S565-S572.
    [89]Roehlecke C, Witt M, Kasper M. Synergistic effect of titanium alloy andcollagen type I on cell adhesion,proliferation and differentiation ofosteoblast-like cell[J]. Cells Tissues Organs,2001;168(3):178-184.
    [90]Niederauer GG, Lee DR, Sankaran S. Bone Grafting in Arthroscopy and Sports Medicine[J].Sports Med Arthrosc,2006;14(3):163-168.
    [91]Fernyhough JC, Schimandle JJ, Weigel MC, et al. Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion[J].Spine,1992;17(12):1474-1480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700