基于耦合谐振透明技术的光速减慢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年以来,光速减慢即慢光(vg     首先,本文介绍,并回顾了最近几年慢光和超光速领域的相关研究进展,重点介绍了包括电磁感应透明技术和耦合谐振透明技术等实现慢光的技术。
     第二,介绍了光速减慢的理论基础:光在介质中的几种速度,以及群速度理论的发展。
     第三,发展了耦合谐振透明的理论,研究了基于耦合谐振透明实现的慢光的原理和性质,并且就耦合谐振结构的各个参数对慢光性质的影响做了研究。
     第四,在光纤中实现了耦合谐振透明的效应,并运用两种实验方法观察到了光速减慢的现象。并且将其中一种方法观察到得实验结果与理论进行了对比,实验结果和理论符合得较好。
     本论文的研究成果发展了基于耦合谐振透明技术的慢光的理论和实验方法。对于更进一步的研究提供了理论和实验指导,并为慢光技术的发展和应用提供了相应的支持。
In recent years, slow light(vgresonator-induced transparency. Through detailed experimental observation, we find that our experimental results confirm the theoretical prospect. Our results on slow light in Coupled-resonator-induced transparency will be helpful on the understanding of the related phenomenon and will be of significance on the future application of slow light.
     Firstly, the author reviewed the recent progress on the research of slow light. Also, the technologies including electromagnetically induced transparency, coupled-resonator-induced transparency based on which slow light is obtained are reviewed.
     Secondly, the different definitions of the light speed are introduced, and the progress in the theory of the wave packet propagation is demonstrated.
     Thirdly, the theoretical mode of coupled-resonator-induced transparency has been improved in optical fiber field, and the author demonstrated the principle and the property of the slow light based on coupled-resonator-induced transparency.
     At last, the author performed the effect of coupled-resonator-induced trans-parency(CRIT) in optical fiber, and the slow light based on the CRIT is observed in two ways. In one way, the experimental measured data fit the theoretical results well.
     Our researches enrich the theoretical and experimental investigations on slow light based on the coupled-resonator-induced transparency. These results will be of significance on the investigation in related fields in the future and will back up the possible application of slow light.
引文
1 S. E. Harris, J. E. Field, A. Imamoglu. Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 1990, 64(10): 1107~1110
    2 L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas. Nature (London). 1999, 397: 594~598.
    3 C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau. Observation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulses. Nature. 2001, 405: 490~493
    4 D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin. Storage of Light in Atomic Vapor. Physical Review Letters, 2001, 86(5):783~786
    5 S. E. Schwartz, T.Y. Tan. Wave Interactions in Saturable Absorbers. Appl. Phys. Lett. 1967, 10(1): 4~7
    6 M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature. Phys. Rev. Lett. 2003, 90(11), 113903
    7 M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I.Yokohama. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 2001. 87: 253902.
    8 Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides. Nature. 2005, 438: 65–69.
    9 H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers. Real-space observation of ultraslow light in photonic crystal waveguides.Phys. Rev. Lett. 2005, 94: 073903.
    10 C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton , and G. J. Parker. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Phys. Rev. E. 2006, 73: 016619.
    11 R .J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express. 2006, 14: 1658–1672.
    12 Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H Ishikawa. Effect of third-order dispersion on subpicosecond pulse propagation in photoniccrystal waveguides. Appl. Phys. Lett. 2006, 89: 131101.
    13 D. Mori, T. Baba. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Opt. Express 2005, 13: 9398–9408.
    14 S. Oliver, C. Smith. Miniband transmission in photonic crystal coupled resonator optical waveguide. Opt. Lett. 2001, 26: 1019–1021.
    15 W. J. Kim, W. Kuang and J. D. O’Brien. Dispersion characteristics of photonic crystal coupled resonator optical waveguides. Opt. Express 2003, 25: 3431–3437.
    16 M. F.Yanik, S. Fan. Stopping light all optically. Phys. Rev. Lett. 2004, 92: 083901.
    17 M. F.Yanik, W. Suh, Z. Wang and S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 2004, 93: 233903.
    18 Q. Xu, P. Dong and M. Lipson. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys. 2007, 3: 406–410.
    19 L. J. Wang, A. Kuzmich, and A. Dogariu. Gain-assisted superluminal light propagation. Nature. 2000, 406:277 ~279.
    20 A. Dogariu, L. J. Wang, and A. Kuzmich. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys.Rev. A. 2001, 63(5): 053806
    21 G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd. Observation of Backward Pulse Propagation through a Medium with a Negative Group Velocity. Science, 2006, 312: 895~897
    22 D. D. Smith, Hongrok Chang, K A. Fuller, A. T. Rosenberger, and Robert W. Boyd. Phys. Rev.A. 2004, 69:063804.
    23 D. D. Smith, Hongrok Chang. Coherence phenomena in coupled optical resonator. Journal of Modern Optics. 2004, 51:2503~2513
    24 A. Naweed, G. Farca, S.I.Shopova, A.T.Rosenberger. Induced transparency and absorption in coupled whispering-gallery microresonators Phys. Rev. A. 2005, 71, 043804
    25 D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R.W. Boyd, Q. H. Park, H. Chang, D. J. Jackson. Coupled-resonator-induced transparency in a fiber system,”Opt. Commun. 2006, 264:163-168.
    26 K. Totsuka, M. Tomita. Dynamics of fast and slow pulse propagation through a microsphere–optical-fiber system. Phys. Rev.E. 2007, 75:016610.
    27 K. Totsuka, N. Kobayashi, M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev.Lett. 2007, 98:213904.
    28 Y. Dumeige,T. K. N. Nguyen, L. Ghisa, S. Trebaol, P. Feron. Optical measurement of the phase shift introduced by a slow-light medium based on coupled erbium-doped fiber resonators. SPIE. 2008, 6904: 690407-1
    29 S. T. Chu, B. E. Little, W. Pan, T. Maneko, Y. Kokubun. Second-order-filter response from parallel coupled glass microring resonators. IEEE Photon. Technol. Lett. 1999, 11:1426-1428
    30 T. Opatrn′y, D. G. Welsch. Coupled cavities for enhancing the cross- phase-modulation in electromagnetically induced transparency. Phys. Rev. A . 2001. 64: 023805.
    31 L. Maleki, A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko. Tunable delay line with interacting whisperinggallery-mode resonators. Opt. Lett. 2004, 29: 626-628.
    32 Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 2006, 96: 123901.
    33 Q. Xu, J. Shakya, M. Lipson. Direct measurement of tunable optical delays on chip analogue to electromagneticallyinduced transparency. Opt. Express. 2006, 14: 6463-6468.
    34 L. Brillouin. Wave Propagation and Group Velocity. New York, Academic Press. 1960, 1~3
    35 M. D. Stenner, D. J. Gauthier and M. A. Neifeld. The Speed of Information in a‘Fast-light’Optical Medium. Nature. 2003, 425: 695~698
    36 M. D. Stenner, D. J. Gauthier and M. A. Neifeld. Fast Causal Information Transmission in a Medium with a Slow Group Velocity. Physical Review Letters. 2005, 94(5): 053902-1~4
    37 R. Loudon. The Propagation of Electromagnetic Energy through an Absorbing Dielectric. Journal of Physics A: General Physics. 1970, 3: 233~245
    38 M. Tanaka, M. Fujiwara, H. Ikegami. Propagation of a Gaussian wave packet in an absorbing medium.1986, 34: 4851-4858
    39 J. Peatross, S. A. Glasgow and M. Ware. Average Energy Flow of Optical Pulses in Dispersive Media. Physical Review Letters, 2000, 84(11): 2370~2373
    40 M. Xiao, Y. Q. Li, S. Z. Jin, J. Gea-Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,”Phys. Rev. Lett. 1995, 74: 666-669.
    41 R. Tripathi, G.S. Pati, M. Messall, K. Salit, M.S. Shahriar. Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing. Opt. Commun. 2006, 266: 604-608.
    42 J . E. Heebner, V. Wong, A. Schweinsberg, R.W. Boyd, D .J . Jackson. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 2004, 40: 726-730.
    43 R . M. Camacho, M. V. Pack, J .C. Howell. Low-distortion slow light using two absorption resonances. Phys.Rev. A .2006, 73: 063812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700