基于波导结构的高Q值光子晶体微腔的设计与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种新型的光学材料,它是由不同折射率的材料周期性排列而形成的人工晶体结构。它最显著的特征是光子带隙和局域特性,处于禁带中的光不能在光子晶体中传播。如果在完整的光子晶体晶格中引入缺陷,在原来的带隙中允许缺陷态存在。因此,在光子晶体中引入点缺陷、线缺陷,可形成光子晶体微腔和一维光波导,进一步利用这些缺陷以及它们的组合可以形成多种新型的光子器件。
     光子晶体有着十分广泛的应用领域,从微波通信、太赫兹器件到光子芯片,从通信器件、太阳能电池、生物化学传感到隐身技术,可以说,涵盖了光通讯、激光器、光子器件等非常广阔的领域。因此近年来对光子晶体的研究是如火如荼,其中之一就是光子晶体微腔的研究,在光子晶体中引入一个点缺陷,就会形成以点缺陷为中心的微谐振腔。
     本文阐述了光子晶体的研究现状及理论基础,根据能带理论自行设计了一种新型的光子晶体微腔结构,并首次通过调整与线缺陷波导紧邻的两排空气孔之间的间隔,达到调整折射率分布,从而得到异质结结构,将光约束在微腔中,同时考虑到传感的实际运用,在波导微腔中留有一放置被探测物的空气小孔。首先通过调整光子晶体波导宽度得到单模波导;然后设计模式间隙(mode-gap),同时根据布洛赫波与波导导模来设计反射镜(mirror)与喇叭口(taper)将光有效地约束在腔中;通过仿真,得出了微腔的谱响应和缺陷态模场分布;对缺陷态光谱曲线的分析得出Q值。进而对微腔结构参数对Q值的影响进行了分析。结果表明,我们的结构不仅可以保持较高的Q值,而且使结构简单、易耦合、工艺上易实现而且精度高,同时保持很小的尺寸,大约7.2μm×2.8μm,非常利于光电子器件的集成。
     最后,将上述光子晶体微腔应用于传感,结果表明中心波长对待探测物折射率扰动引起的漂移足够大,可以用于生物化学传感。
Photonic crystal (PhC)is a kind of novel optical material, it is artificial periodic structure made of arrays with different constant. Its outstanding feature is photonic bandgap, light frequency located in which will be forbidden at all. If some“defect”is introduced in the perfect photonic crystal lattice, some defect state will be permitted in the original bandgap. So photonic crystal microcavity and one dimensional waveguide can be formed through introducing point defect and line defect respectively, and various optical devices can be made by using these defects and their combination.
     Photonic crystal has extensive applications, from microwave communication, terahertz devices to photon chips, from communication devices, sollar cell, biochemical sensor to stealth technology. It covers a very broad area including optical communication, lasers and photonic devices. Thus, study on photonic crystals becomes very hot recently, among which is photonic crystal microcavity, a micro-resonator formed by introducing a point defect in photonic crystal lattice.
     The recent progress on theoretical work of photonic crystal cavities are introduced in this thesis, and a novel microcavity based on photonic crystal is designed according to the photonic band theory. And it’s the first time to our knowledge to tune the two rows of air holes ajacent to the waveguide and a PhC heterostructure is obtained, thus confining light into the cavity. Considering the application for sensor, a smaller air hole in the middle of the structure is used to place analytes.
     First, single mode waveguide is got through tuning the width of the PhC waveguide, and then modegap is designed; meanwhile, mirror and tapre is designed according to the effective index matching of the bloch mode and the guided mode of the waveguide to confine light in the cavity effectively. The spectra response and the mode profile of the defect are obtained; Q value is obtained through the analysis of the defect spectra response. Furthermore, the influence of structure parameters on Q value are analyzed. The result shows that the structure proposed in this article is very simple, easy for coupling, easy to realize, and meanwhile maintaining higher Q value and smaller size compared to those structures mentioned in relevant documentations, about 7.2μm×2.8μm,very good for integration.
     The application of the above high Q PhC cavity in biochemical sensing is proposed. It has shown that the central wavelength shift of this high Q cavity is large enough for refractive index perturbation of the analyte.
引文
[1]张桂萍.光学器件与光计算机. 1994, 15(1): 12~15
    [2]何兴仁.迈向21世纪的光互连和光计算机. 1995, 16 (1): 19~24
    [3]周治平,郜定山,汪毅等.硅基集成光电子器件的新进展.激光与光电子学进展, 2007, 44(2): 31~38
    [4]快素兰,章俞之,胡行方.光子晶体的能带结构、潜在应用和制备方法.无机材料学报, 2001, 16(2): 193~199
    [5] E. Yablonoviteh. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58(20): 2059~2062
    [6] S. John. Strong localization of photons in certain disordered physics dielectric superlattices. Phys. Rev. Lett. , 1987, 58(23): 2486~2489
    [7] G. Fleming, S. Y. Lin. Three-dimensional photonic crystal with a stop band from 1. 35 to 1. 95μm. Opt. Lett. , 1999, 24(1): 49~51
    [8] S. Ogawa, M. Imada, S. Yoshimoto, et al. Control of light emission by 3D photonic crystals. Science, 2004, 305(5681): 227~229
    [9] Y. Fink, J. Winn, S. Fan et al. A dielectric omnidirectional reflector. Science, 1988, 282: 1679~1682
    [10] Hatice Altug. Physics and applications of photonic crystals nanocavities: doctoral dissertation. America: stanford university, 2006
    [11] Dennis W. Prather. Photonic crystals: An Engineering Perspective. Optics & Photonics News, 2002, 13(6): 16~19
    [12]侯金,郜定山,周治平.光子晶体器件进展.光学技术, 2009, 35(1): 93~97
    [13] I. Schnitzer, E. Yablonovitch, C. Caneau, et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructure. Appl. Phys. Lett. , 1993, 62(2): 131~133
    [14] I. Schnitzer, E. Yablonovitch, C. Caneau, et al. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. , 1993,63(16): 2174~2176
    [15] Loncar M, Yoshie T, Scherer A, et al. Low-threshold photonic crystal laser. Appl. Phys. Lett. , 2002, 81(15): 2680~2682
    [16] Thomas F. Krauss, Richard M. De La Rue. Photonic crystal in the optical regime-past, present and future. Progress in Quantum Electronics, 1999, 23(2): 51~96
    [17] M. M. Sigalas, C. M. Soukoulis, C. T. Chan, et al. Electromagnetic-wave dispersive and absorbative photonic-band-gap materials. Phys. Rev. B, 1994, 49(16): 11080~11087
    [18] K. Sakoda, H. Shiroma. Numerical method for localized defect modes in photonic lattices. Phys. Rev. B, 1997, 56(8): 4830~4835
    [19] E. Yablonovitch, T. J. Gmitter. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 1991, 67(24): 3380~3383
    [20] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. , 1990, 65(25): 3152~3155
    [21]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2002. 8~10
    [22] K. S. Yee. Numerical solution of initial boundary value problems involving maxwell’s equation in isotropic media. IEEE Trans. Antennas Propagat. , 1966, 14(2): 302~307
    [23] G. Tayeb, D. Maystre. Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities. J. Opt. Soc. Am. A, 1997, 14(12): 3323~3332
    [24] M. Qiu. Effective index method for heterostructure-slab waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. , 2002, 81(7): 1163~1165
    [25] H. Benisty, C. Weisbuch, D. labilloy, et al. Optical and confinement properties of two-dimensional photonic crystals. J. Lightwave. Technol. , 1999, 17(11): 2063~2077
    [26] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev. , 1946, 69(681): 634~636
    [27] S. Fan, Joshua N. Winn, Adrian Devenyi, et al. Guided and defect modes in periodic dielectric waveguides. J. Opt. Am. B, 1995, 12(7): 1267~1272
    [28] O. Painter, R. K. Lee, A. Scherer, et al. Two-Dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819~1821
    [29] K. Inoshita, T. Baba. Lasing at bend, branch and intersection of photonic crystal waveguides. Electron. Lett. 2003, 39(11): 844~846
    [30] Gary Taubes. Physics-Photonic crystal made to work at an optical wavelength. Science, 1997, 278(5344): 1709-1710
    [31] Amir Boag, Ben Zion Steinberg. Narrow-band microcavity waveguides in photonic crystals. J. Opt. Soc. Am. A, 2001, 18(11): 2799~2805
    [32] S. Y. Lin, Edmond Chow. Direct measurement of the quality factor in two-dimensional photonic-crystal microcavity. Opt. Express. , 2001, 26(23): 1903~1905
    [33] Kartik Srinivasan, Paul E. Barclay, Oskar Painter, et al. Experimental demonstration of a high quality factor crystal microcavity. Appl. Phys. Lett. , 2003, 83(10): 1915~1917
    [34]李云辉,江海涛,李宏强等.光子晶体微腔研究进展.同济大学学报(自然科学版), 2005, 33(7):864~868
    [35] Bong-Shik Song, Susumu Noda, Takashi Asano, et al. Ultra-high-Q photonic double-heterostructure nanocavity. Nature material, 2005, 4(3): 207~210
    [36] Soom-Hong Kwon, Thomas Sünner, Martin Kamp, et al. Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide. Opt. Express. , 2008, 16(7): 4605~4614
    [37] Eiichi Kuramochi, Masaya Notomi, Satoshi Mitsugi, etal. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. , 2006, 88(4): 041112
    [38] Yoshihiro Akahane, Takashi Asano, Bong-shik Song, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944~947
    [39] Masaya Notomi, Akihiko Shinya, Koji Yamada, etal. Structural tuning of guidingmodes of line-defect waveguides of silicon-on-insulator photonic crystal slabs. IEEE Journal of quantum electronics, 2002, 38(7): 736~742
    [40] Koji Yamada, Hirofumi Morita, Akihiko Shinya, et al. Improved line-defect structure for photonic-crystal waveguides with high group velocity. Optics Communications, 2001, 198(4-6): 395~402
    [41] J. D. Joannopoulos, R. D. Meade, J. N. Winn, et al. Photonic Crystals: Molding the Flow of Light. Second edition. Princeton: Princeton University Press, 1995. 1~278
    [42] O. Painter, A. Scherer. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B, 1999, 16(2): 275~285
    [43] Yoshihiro Akahane, Takashi Asano, Bong-Shik Song, et al. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express, 2005, 13(4): 1202~1214
    [44] C. Chao, L. Guo. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. , 2003, 83(8): 1527~1529
    [45] K. De Vos, I. Bartolozzi, E. Schacht, et al. Silicon on insulator microring resonator for sensitive and label-free biosensing. Opt. Express, 2007, 15(12): 7610~7615
    [46] A. Yalcin, K. Popat, J. Aldridge, et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron, 2006, 12(1): 148~155
    [47] S. Cho, N. Jokerst. A polymer microdisk photonic sensor integrated onto silicon. IEEE Photon. Technol. Lett. , 2006, 18(17-20): 2096~2098
    [48] E. Chow, A. Grot, L. W. Mirkarimi, et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29(10): 1093~1095
    [49] M. Lee, P. Fauchet. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express, 2007, 15(8): 4530~4535
    [50] T. Baehr-Jones, M. Hochberg, C. Walker, et al. High-Q ring resonators in thin silicon-on-insultor. Appl. Phys. Lett. , 2004, 85(16): 3346-3347
    [51] Xiaoling Wang, Zhenfeng Xu, Naiguang Lu, et al. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Optics Communications, 2008, 281(6): 1725~1731
    [52] Xiaoling Wang, Naiguang Lu, Qiaofeng Tan, et al. Investigation of biosensor built with photonic crystal microcavity. Chinese Optics Letters, 2008, 6(12): 925~927
    [53]夏志轩.光学微环生物传感器的设计与优化:[硕士学位论文].中国知网, 2007
    [54] Zhixuan Xia, Yao Chen, Zhiping Zhou. Dual waveguide coupled microring resonator sensor based on intensity detection. IEEE Journal of Quantum Electronics, 2008, 44(1): 100~107
    [55] J. Liu, Z. Zhou. Highly sensitive field effect charge sensor for direct detection of biomolecules. Electronics Letters, 2008, 44(17): 1005-U8
    [56] Juejun Hu, Xiaochen Sun, Anu Agarwal, et al. Design guidelines for optical resonator biochemical sensors. J. Opt. Soc. Am. B, 2009, 26(5): 1032~1041
    [57] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B, 1999, 54(1-2): 3~15
    [58] L. Rindorf, J. B. Jensen, M. Dufva, et al. Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express, 2006, 14(18): 8224~8231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700